共查询到20条相似文献,搜索用时 15 毫秒
1.
Bethann Mangel Pflugeisen Catherine A. Calder 《Environmental and Ecological Statistics》2013,20(2):179-190
The field of fisheries research commonly uses classical statistical classification methods to estimate the proportion of fish that return to natal spawning grounds to spawn. With the advent of otolith microchemical analysis, researchers are able to extract information from fish ear stones (otoliths) about the chemical composition of water in which fish have spent distinct periods of their lives. Here we present a method of analysis set in the Bayesian statistical paradigm which enables explicit incorporation of habitat information into the analysis. The ecological system is seen as arising from a mixture of disparate fish populations and information from the biological relationships inherent in otolith formation is exploited through the hierarchical model structure. We present the model and motivation, demonstrate the validity of the model through simulation studies, and conclude with an analysis of a data set from Lake Erie. 相似文献
2.
Model practitioners increasingly place emphasis on rigorous quantitative error analysis in aquatic biogeochemical models and the existing initiatives range from the development of alternative metrics for goodness of fit, to data assimilation into operational models, to parameter estimation techniques. However, the treatment of error in many of these efforts is arguably selective and/or ad hoc. A Bayesian hierarchical framework enables the development of robust probabilistic analysis of error and uncertainty in model predictions by explicitly accommodating measurement error, parameter uncertainty, and model structure imperfection. This paper presents a Bayesian hierarchical formulation for simultaneously calibrating aquatic biogeochemical models at multiple systems (or sites of the same system) with differences in their trophic conditions, prior precisions of model parameters, available information, measurement error or inter-annual variability. Our statistical formulation also explicitly considers the uncertainty in model inputs (model parameters, initial conditions), the analytical/sampling error associated with the field data, and the discrepancy between model structure and the natural system dynamics (e.g., missing key ecological processes, erroneous formulations, misspecified forcing functions). The comparison between observations and posterior predictive monthly distributions indicates that the plankton models calibrated under the Bayesian hierarchical scheme provided accurate system representations for all the scenarios examined. Our results also suggest that the Bayesian hierarchical approach allows overcoming problems of insufficient local data by “borrowing strength” from well-studied sites and this feature will be highly relevant to conservation practices of regions with a high number of freshwater resources for which complete data could never be practically collected. Finally, we discuss the prospect of extending this framework to spatially explicit biogeochemical models (e.g., more effectively connect inshore with offshore areas) along with the benefits for environmental management, such as the optimization of the sampling design of monitoring programs and the alignment with the policy practice of adaptive management. 相似文献
3.
4.
《Ecological modelling》2005,185(1):105-131
Establishing cause–effect relationships for deforestation at various scales has proven difficult even when rates of deforestation appear well documented. There is a need for better explanatory models, which also provide insight into the process of deforestation. We propose a novel hierarchical modeling specification incorporating spatial association. The hierarchical aspect allows us to accommodate misalignment between the land-use (response) data layer and explanatory data layers. Spatial structure seems appropriate due to the inherently spatial nature of land use and data layers explaining land use. Typically, there will be missing values or holes in the response data. To accommodate this we propose an imputation strategy. We apply our modeling approach to develop a novel deforestation model for the eastern wet forested zone of Madagascar, a global rain forest “hot spot”. Using five data layers created for this region, we fit a suitable spatial hierarchical model. Though fitting such models is computationally much more demanding than fitting more standard models, we show that the resulting interpretation is much richer. Also, we employ a model choice criterion to argue that our fully Bayesian model performs better than simpler ones. To the best of our knowledge, this is the first work that applies hierarchical Bayesian modeling techniques to study deforestation processes. We conclude with a discussion of our findings and an indication of the broader ecological applicability of our modeling style. 相似文献
5.
Balgobin Nandram Emily Berg Wendy Barboza 《Environmental and Ecological Statistics》2014,21(3):507-530
Historically, the National Agricultural Statistics Service crop forecasts and estimates have been determined by a group of commodity experts called the Agricultural Statistics Board (ASB). The corn yield forecasts for the “speculative region,” ten states that account for approximately 85 % of corn production, are based on two sets of monthly surveys, a farmer interview survey and a field measurement survey. The members of the ASB subjectively determine a forecast on the basis of a discussion of the survey data and auxiliary information about weather, average planting dates, and crop maturity. The ASB uses an iterative procedure, where initial state estimates are adjusted so that the weighted sum of the final state estimates is equal to a previously-determined estimate for the speculative region. Deficiencies of the highly subjective ASB process are lack of reproducibility and a measure of uncertainty. This paper describes the use of Bayesian methods to model the ASB process in a way that leads to objective forecasts and estimates of the corn yield. First, we use small area estimation techniques to obtain state-level forecasts. Second, we describe a way to adjust the state forecasts so that the weighted sum of the state forecasts is equal to a previously-determined regional forecast. We use several diagnostic techniques to assess the goodness of fit of various models and their competitors. We use Markov chain Monte Carlo methods to fit the models to both historic and current data from the two monthly surveys. Our results show that our methodology can provide reasonable and objective forecasts of corn yields for states in the speculative region. 相似文献
6.
A Bayesian framework for stable isotope mixing models 总被引:1,自引:0,他引:1
Stable isotope sourcing is used to estimate proportional contributions of sources to a mixture, such as in the analysis of animal diets and plant nutrient use. Statistical methods for inference on the diet proportions using stable isotopes have focused on the linear mixing model. Existing frequentist methods provide inferences when the diet proportion vector can be uniquely solved for in terms of the isotope ratios. Bayesian methods apply for arbitrary numbers of isotopes and diet sources but existing models are somewhat limited as they assume that trophic fractionation or discrimination is estimated without error or that isotope ratios are uncorrelated. We present a Bayesian model for the estimation of mean diet that accounts for uncertainty in source means and discrimination and allows correlated isotope ratios. This model is easily extended to allow the diet proportion vector to depend on covariates, such as time. Two data sets are used to illustrate the methodology. Code is available for selected analyses. 相似文献
7.
Mimnagh Niamh Parnell Andrew Prado Estevão Moral Rafael de Andrade 《Environmental and Ecological Statistics》2022,29(4):755-778
Environmental and Ecological Statistics - We propose an extension of the N-mixture model that enables the estimation of abundances of multiple species as well as the correlations between them. Our... 相似文献
8.
We propose the use of finite mixtures of continuous distributions in modelling the process by which new individuals, that arrive in groups, become part of a wildlife population. We demonstrate this approach using a data set of migrating semipalmated sandpipers (Calidris pussila) for which we extend existing stopover models to allow for individuals to have different behaviour in terms of their stopover duration at the site. We demonstrate the use of reversible jump MCMC methods to derive posterior distributions for the model parameters and the models, simultaneously. The algorithm moves between models with different numbers of arrival groups as well as between models with different numbers of behavioural groups. The approach is shown to provide new ecological insights about the stopover behaviour of semipalmated sandpipers but is generally applicable to any population in which animals arrive in groups and potentially exhibit heterogeneity in terms of one or more other processes. 相似文献
9.
In this study we combined an extensive database of observed wildfires with high-resolution meteorological data to build a novel spatially and temporally varying survival model to analyze fire regimes in the Mediterranean ecosystem in the Cape Floristic Region (CFR) of South Africa during the period 1980-2000. The model revealed an important influence of seasonally anomalous weather on fire probability, with increased probability of fire in seasons that are warmer and drier than average. In addition to these local-scale influences, the Antarctic Ocean Oscillation (AAO) was identified as an important large-scale influence or teleconnection to global circulation patterns. Fire probability increased in seasons during positive AAO phases, when the subtropical jet moves northward and low level moisture transport decreases. These results confirm that fire occurrence in the CFR is strongly affected by climatic variability at both local and global scales, and thus likely to respond sensitively to future climate change. Comparison of the modelled fire probability between two periods (1951-1975 and 1976-2000) revealed a 4-year decrease in an average fire return time. If, as currently forecasted, climate change in the region continues to produce higher temperatures, more frequent heat waves, and/or lower rainfall, our model thus indicates that fire frequency is likely to increase substantially. The regional implications of shorter fire return times include shifting community structure and composition, favoring species that tolerate more frequent fires. 相似文献
10.
Multimethod,multistate Bayesian hierarchical modeling approach for use in regional monitoring of wolves 下载免费PDF全文
José Jiménez Emilio J. García Luis Llaneza Vicente Palacios Luis Mariano González Francisco García‐Domínguez Jaime Múñoz‐Igualada José Vicente López‐Bao 《Conservation biology》2016,30(4):883-893
In many cases, the first step in large‐carnivore management is to obtain objective, reliable, and cost‐effective estimates of population parameters through procedures that are reproducible over time. However, monitoring predators over large areas is difficult, and the data have a high level of uncertainty. We devised a practical multimethod and multistate modeling approach based on Bayesian hierarchical‐site‐occupancy models that combined multiple survey methods to estimate different population states for use in monitoring large predators at a regional scale. We used wolves (Canis lupus) as our model species and generated reliable estimates of the number of sites with wolf reproduction (presence of pups). We used 2 wolf data sets from Spain (Western Galicia in 2013 and Asturias in 2004) to test the approach. Based on howling surveys, the naïve estimation (i.e., estimate based only on observations) of the number of sites with reproduction was 9 and 25 sites in Western Galicia and Asturias, respectively. Our model showed 33.4 (SD 9.6) and 34.4 (3.9) sites with wolf reproduction, respectively. The number of occupied sites with wolf reproduction was 0.67 (SD 0.19) and 0.76 (0.11), respectively. This approach can be used to design more cost‐effective monitoring programs (i.e., to define the sampling effort needed per site). Our approach should inspire well‐coordinated surveys across multiple administrative borders and populations and lead to improved decision making for management of large carnivores on a landscape level. The use of this Bayesian framework provides a simple way to visualize the degree of uncertainty around population‐parameter estimates and thus provides managers and stakeholders an intuitive approach to interpreting monitoring results. Our approach can be widely applied to large spatial scales in wildlife monitoring where detection probabilities differ between population states and where several methods are being used to estimate different population parameters. 相似文献
11.
Hierarchical Bayesian Spatial Models for Multispecies Conservation Planning and Monitoring 总被引:1,自引:0,他引:1
CARLOS CARROLL DEVIN S. JOHNSON JEFFREY R. DUNK WILLIAM J. ZIELINSKI 《Conservation biology》2010,24(6):1538-1548
Abstract: Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence–absence data derived from regional monitoring programs to develop models with both landscape and site‐level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence–absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad‐scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km2 hexagons), can increase the relevance of habitat models to multispecies conservation planning. 相似文献
12.
Traditional Markov chain Monte Carlo (MCMC) sampling of hidden Markov models (HMMs) involves latent states underlying an imperfect observation process, and generates posterior samples for top-level parameters concurrently with nuisance latent variables. When potentially many HMMs are embedded within a hierarchical model, this can result in prohibitively long MCMC runtimes. We study combinations of existing methods, which are shown to vastly improve computational efficiency for these hierarchical models while maintaining the modeling flexibility provided by embedded HMMs. The methods include discrete filtering of the HMM likelihood to remove latent states, reduced data representations, and a novel procedure for dynamic block sampling of posterior dimensions. The first two methods have been used in isolation in existing application-specific software, but are not generally available for incorporation in arbitrary model structures. Using the NIMBLE package for R, we develop and test combined computational approaches using three examples from ecological capture–recapture, although our methods are generally applicable to any embedded discrete HMMs. These combinations provide several orders of magnitude improvement in MCMC sampling efficiency, defined as the rate of generating effectively independent posterior samples. In addition to being computationally significant for this class of hierarchical models, this result underscores the potential for vast improvements to MCMC sampling efficiency which can result from combinations of known algorithms. 相似文献
13.
Fire managers are now realizing that wildfires can be beneficial because they can reduce hazardous fuels and restore fire-dominated ecosystems. A software tool that assesses potential beneficial and detrimental ecological effects from wildfire would be helpful to fire management. This paper presents a simulation platform called FLEAT (Fire and Landscape Ecology Assessment Tool) that integrates several existing landscape- and stand-level simulation models to compute an ecologically based measure that describes if a wildfire is moving the burning landscape towards or away from the historical range and variation of vegetation composition. FLEAT uses a fire effects model to simulate fire severity, which is then used to predict vegetation development for 1, 10, and 100 years into the future using a landscape simulation model. The landscape is then simulated for 5000 years using parameters derived from historical data to create an historical time series that is compared to the predicted landscape composition at year 1, 10, and 100 to compute a metric that describes their similarity to the simulated historical conditions. This tool is designed to be used in operational wildfire management using the LANDFIRE spatial database so that fire managers can decide how aggressively to suppress wildfires. Validation of fire severity predictions using field data from six wildfires revealed that while accuracy is moderate (30-60%), it is mostly dictated by the quality of GIS layers input to FLEAT. Predicted 1-year landscape compositions were only 8% accurate but this was because the LANDFIRE mapped pre-fire composition accuracy was low (21%). This platform can be integrated into current readily available software products to produce an operational tool for balancing benefits of wildfire with potential dangers. 相似文献
14.
15.
Matthew L Farnsworth Jennifer A Hoeting N Thompson Hobbs Michael W Miller 《Ecological applications》2006,16(3):1026-1036
Observed spatial patterns in natural systems may result from processes acting across multiple spatial and temporal scales. Although spatially explicit data on processes that generate ecological patterns, such as the distribution of disease over a landscape, are frequently unavailable, information about the scales over which processes operate can be used to understand the link between pattern and process. Our goal was to identify scales of mule deer (Odocoileus hemionus) movement and mixing that exerted the greatest influence on the spatial pattern of chronic wasting disease (CWD) in northcentral Colorado, USA. We hypothesized that three scales of mixing (individual, winter subpopulation, or summer subpopulation) might control spatial variation in disease prevalence. We developed a fully Bayesian hierarchical model to compare the strength of evidence for each mixing scale. We found strong evidence that the finest mixing scale corresponded best to the spatial distribution of CWD infection. There was also evidence that land ownership and habitat use play a role in exacerbating the disease, along with the known effects of sex and age. Our analysis demonstrates how information on the scales of spatial processes that generate observed patterns can be used to gain insight when process data are sparse or unavailable. 相似文献
16.
Bayesian hierarchical models were used to assess trends of harbor seals, Phoca vitulina richardsi, in Prince William Sound, Alaska, following the 1989 Exxon Valdez oil spill. Data consisted of 4–10 replicate observations per year at 25 sites over 10 years. We had multiple objectives, including estimating the effects of covariates on seal counts, and estimating trend and abundance, both per site and overall. We considered a Bayesian hierarchical model to meet our objectives. The model consists of a Poisson regression model for each site. For each observation the logarithm of the mean of the Poisson distribution was a linear model with the following factors: (1) intercept for each site and year, (2) time of year, (3) time of day, (4) time relative to low tide, and (5) tide height. The intercept for each site was then given a linear trend model for year. As part of the hierarchical model, parameters for each site were given a prior distribution to summarize overall effects. Results showed that at most sites, (1) trend is down; counts decreased yearly, (2) counts decrease throughout August, (3) counts decrease throughout the day, (4) counts are at a maximum very near to low tide, and (5) counts decrease as the height of the low tide increases; however, there was considerable variation among sites. To get overall trend we used a weighted average of the trend at each site, where the weights depended on the overall abundance of a site. Results indicate a 3.3% decrease per year over the time period. 相似文献
17.
A Bayesian state-space formulation of dynamic occupancy models 总被引:1,自引:0,他引:1
Species occurrence and its dynamic components, extinction and colonization probabilities, are focal quantities in biogeography and metapopulation biology, and for species conservation assessments. It has been increasingly appreciated that these parameters must be estimated separately from detection probability to avoid the biases induced by non-detection error. Hence, there is now considerable theoretical and practical interest in dynamic occupancy models that contain explicit representations of metapopulation dynamics such as extinction, colonization, and turnover as well as growth rates. We describe a hierarchical parameterization of these models that is analogous to the state-space formulation of models in time series, where the model is represented by two components, one for the partially observable occupancy process and another for the observations conditional on that process. This parameterization naturally allows estimation of all parameters of the conventional approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g., to modeling heterogeneity or latent structure in model parameters. We also highlight the important distinction between population and finite sample inference; the latter yields much more precise estimates for the particular sample at hand. Finite sample estimates can easily be obtained using the state-space representation of the model but are difficult to obtain under the conventional approach of likelihood-based estimation. We use R and WinBUGS to apply the model to two examples. In a standard analysis for the European Crossbill in a large Swiss monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic parameters varied greatly among years, highlighting the irruptive population dynamics of that species. In the second example, we analyze route occupancy of Cerulean Warblers in the North American Breeding Bird Survey (BBS) using a model allowing for site-specific heterogeneity in model parameters. The results indicate relatively low turnover and a stable distribution of Cerulean Warblers which is in contrast to analyses of counts of individuals from the same survey that indicate important declines. This discrepancy illustrates the inertia in occupancy relative to actual abundance. Furthermore, the model reveals a declining patch survival probability, and increasing turnover, toward the edge of the range of the species, which is consistent with metapopulation perspectives on the genesis of range edges. Given detection/non-detection data, dynamic occupancy models as described here have considerable potential for the study of distributions and range dynamics. 相似文献
18.
We present a strategy for using an empirical forest growth model to reduce uncertainty in predictions made with a physiological process-based forest ecosystem model. The uncertainty reduction is carried out via Bayesian melding, in which information from prior knowledge and a deterministic computer model is conditioned on a likelihood function. We used predictions from an empirical forest growth model G-HAT in place of field observations of aboveground net primary productivity (ANPP) in a deciduous temperate forest ecosystem. Using Bayesian melding, priors for the inputs of the process-based forest ecosystem PnET-II were propagated through the model, and likelihoods for the PnET-II output ANPP were calculated using the G-HAT predictions. Posterior distributions for ANPP and many PnET-II inputs obtained using the G-HAT predictions largely matched posteriors obtained using field data. Since empirical growth models are often more readily available than extensive field data sets, the method represents a potential gain in efficiency for reducing the uncertainty of process-based model predictions when reliable empirical models are available but high-quality data are not. 相似文献
19.
《Ecological modelling》2005,185(1):13-27
This paper describes an approach for conducting spatial uncertainty analysis of spatial population models, and illustrates the ecological consequences of spatial uncertainty for landscapes with different properties. Spatial population models typically simulate birth, death, and migration on an input map that describes habitat. Typically, only a single “reference” map is available, but we can imagine that a collection of other, slightly different, maps could be drawn to represent a particular species’ habitat. As a first approximation, our approach assumes that spatial uncertainty (i.e., the variation among values assigned to a location by such a collection of maps) is constrained by characteristics of the reference map, regardless of how the map was produced. Our approach produces lower levels of uncertainty than alternative methods used in landscape ecology because we condition our alternative landscapes on local properties of the reference map. Simulated spatial uncertainty was higher near the borders of patches. Consequently, average uncertainty was highest for reference maps with equal proportions of suitable and unsuitable habitat, and no spatial autocorrelation. We used two population viability models to evaluate the ecological consequences of spatial uncertainty for landscapes with different properties. Spatial uncertainty produced larger variation among predictions of a spatially explicit model than those of a spatially implicit model. Spatially explicit model predictions of final female population size varied most among landscapes with enough clustered habitat to allow persistence. In contrast, predictions of population growth rate varied most among landscapes with only enough clustered habitat to support a small population, i.e., near a spatially mediated extinction threshold. We conclude that spatial uncertainty has the greatest effect on persistence when the amount and arrangement of suitable habitat are such that habitat capacity is near the minimum required for persistence. 相似文献
20.
Gavin Shaddick Haojie Yan Danielle Vienneau 《Environmental and Ecological Statistics》2013,20(4):553-570
Ambient concentrations of many pollutants are associated with emissions due to human activity, such as road transport and other combustion sources. In this paper we consider air pollution as a multi-level phenomenon on a continental scale within a Bayesian hierarchical model. We examine different scales of variation in pollution concentrations ranging from large scale transboundary effects to more localised effects which are directly related to human activity. Specifically, in the first stage of the model, we isolate underlying patterns in pollution concentrations due to global factors such as underlying climate and topography, which are modelled together with spatial structure. At this stage measurements from monitoring sites located within rural areas are used which, as far as possible, are chosen to reflect background concentrations. Having isolated these global effects, in the second stage we assess the effects of human activity on pollution in urban areas. The proposed model was applied to concentrations of nitrogen dioxide measured throughout the EU for which significant increases are found to be associated with human activity in urban areas. The approach proposed here provides valuable information that could be used in performing health impact assessments and to inform policy. 相似文献