共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
为了改进完全混合反应器(continuous stirring tank reactor, CSTR)厌氧消化处理鸡粪的启动效果,通过逐级提高进料鸡粪浓度的方法在CSTR中进行中温(36 °C)厌氧消化的启动实验,实验分为2个步骤:污泥适应性驯化和消化能力提升,即通过间歇添加2%浓度鸡粪的方法驯化活性污泥;利用逐级提高进料鸡粪浓度(2.1%、3.2%和5.2%)的方法提高污泥消化能力。结果表明:通过逐级提升进料鸡粪浓度的方法能够驯化出处理一定浓度鸡粪的活性污泥,当进料鸡粪浓度达到5. 2%时,CSTR进料有机负荷(organic loading rate, OLR)、总固体含量(total solid, TS)去除率和产沼气量分别达到1.5 g·(L·d)-1、60%和1 L·(L·d)-1,甲烷体积分数稳定在(65±3)%左右,总氨氮浓度最高达到1 200 mg·L-1,没有出现氨抑制的现象,污泥活性随进料鸡粪浓度提升而逐步得到驯化,从而成功启动反应器正常运行。为CSTR厌氧消化处理高氮基质启动提供了新的方法,具有重要的理论和实践意义。 相似文献
3.
颗粒污泥接种UASB反应器处理木糖醇废水试验研究 总被引:1,自引:0,他引:1
采用颗粒污泥接种UASB厌氧反应器处理木糖醇生产废水,对废水进行预调配后,由电控柜控制间歇进水.试验结果表明在进水COD为3~5g/L,COD容积负荷在2.70~4.64 kg/(m3·d)的范围时,有机污染物的去除率可稳定地保持在76%~88%,对厌氧出水再进行普通活性污泥法好氧后处理,出水COD可达到100 ms/L以下,稳定地达到国家要求的废水一级排放标准. 相似文献
4.
采用上流式厌氧污泥床(UASB)反应器,以精对苯二甲酸(PTA)废水为处理对象,研究了中温条件下反应器的启动、颗粒污泥的形态和产甲烷活性及微生物群落结构。实验结果表明:采用逐渐提高进水负荷和减少水力停留时间的运行方法,历时近200 d,可实现UASB 反应器的启动。此时,反应器对COD的去除率保持在80%以上,对应的容积负荷也达到4.0 kg·(m3·d)-1以上。反应器内污泥实现颗粒化,颗粒污泥的体积平均粒径为416.53 μm,产甲烷活性为121.2 mL·(g·d)-1 (以VSS计)。颗粒污泥表面存在大量菌胶团,杆菌和丝状菌镶嵌其中。菌胶团有助于微生物的聚集,加速污泥颗粒化过程。Syntrophorhabdus是降解PTA废水中苯类污染物的重要微生物,占细菌量的27.4%,而Methanosaeta则是主要的产甲烷菌,占古细菌总量的67.3%。该研究可为UASB 处理PTA废水的启动提供依据。 相似文献
5.
6.
中温条件下,采用浓缩消化一体化反应器处理污泥,考察稳定运行阶段投配率、搅拌和容积负荷对反应器的运行效果的影响。研究结果表明,投配率在10%~20%之间,排泥的含水率有所降低,之后随着投配率的增加,排泥含水率急剧升高;投配率由10%至30%增加过程中,排泥有机物(VS)的去除率和产气量也呈上升的趋势,投配率由30%再增加时,VS的去除率和产气量急剧下降。搅拌对排泥的含水率影响较小,但能够提高VS去除率和产气量。随着进泥容积负荷的增大,反应器排泥含水率逐渐增大;随着容积负荷在一定范围内的增加, VS去除率也随之提高。 相似文献
7.
接种厌氧消化污泥EGSB反应器的快速启动 总被引:1,自引:0,他引:1
对接种市政消化污泥的EGSB反应器的启动进行实验研究以寻求快速启动EGSB反应器的有效方法。接种厌氧消化污泥EGSB反应器的成功启动仅需要46d。在整个启动期保持适当的液体上升流速是非常重要的。启动初期,高液体上升流速能够将悬浮污泥冲出反应器,使适合聚集的微生物留在反应器内。接下来需要降低进水流量和液体上升流速以利于构建稳定的微生态系统,使高活性颗粒污泥尽快形成。然后适当提高液体上升流速能保持污水与微生物的良好接触,促进颗粒污泥内外高效传质,形成更加稳定高效的微生物群落结构。为尽快形成高活性颗粒污泥,保证产甲烷菌的最佳营养需求是关键,可通过考虑进水基质、微量营养元素和硫化物来提高其活性。 相似文献
8.
垂直折流厌氧污泥床(VBASB)反应器的研究 总被引:2,自引:1,他引:2
本项研究的目的在于开发一种具有广泛适应性的高效率厌氧处理新工艺。VBASB将厌氧接触法(ACP)、厌氧滤器(AF)和升流式厌氧污泥床(UASB)组合在一个单元体反应器中,兼有三者的功能。立式套筒结构迫使料液垂直折流,内筒和中筒处于全混合状态,发挥ACP的优势,外筒下部的污泥层和顶部的三相分离器,发挥UASB的优势,外筒的中上部设置填料层,发挥AF的优势。通过进料泵和回流泵,在管道中使进水和升温用的蒸汽与回流料液充分混合并用以控制反应pH值和温度。用有效容积为25m~3的VBASB反应器处理酒精废醪的结果为:当进水COD平均为45g/l,SS平均为18g/l时,在55℃高温发酵下,正常运行的COD容积负荷为17kg/m~3·d,最高达到26~29kg/m~3·d,COD去除率平均为95%。研究结果证明,VBASB比AF和UASB对商SS有机废水的厌氧处理有更好的适应性,在进水SS高达18g/l时仍可保持高COD容积负荷和高COD去除率的厌氧处理。 相似文献
9.
研究以厌氧颗粒污泥接种的复合式厌氧折流板反应器(HABR)启动:在HABR中直接接种厌氧颗粒污泥,以退浆废水为试验进水,在系统水力停留时间为168 h,中温(32±1) ℃,进水pH值6.5~8,碱度适当偏高条件下,进入反应器废水COD浓度由1 800 mg/L逐渐提高到13 520 mg/L,运行60 d后系统COD去除率最低为45%,并且保持稳定,出水pH值和碱度相对比较稳定,污泥明显呈颗粒状,反应器启动完成。反应器可以在短时间内重新启动,污泥活性很快得到恢复。 相似文献
10.
EGSB反应器处理米酒废水的启动方法研究 总被引:8,自引:3,他引:8
米酒厂废水由洗米、制曲用大豆蒸煮和酒蒸馏 3道工序中所排出的废水组成 ,是一种典型的高浓度有机废水。在采用EGSB反应器对其进行处理时 ,以处理啤酒废水的 UASB反应器中的颗粒污泥作为接种污泥可以实现快速启动。启动过程中 ,容积负荷的提高幅度以每次 2~ 3 kg COD/( m3· d)为宜 ,同时要保持出水的 p H维持在 8以上 ;为了防止酸化 ,应当适当地在进水中投加碱剂。采用 EGSB反应器在中温条件下处理该废水时 ,容积负荷可以达到 2 0 kg COD/( m3· d) ,COD去除率在 70 %以上。 相似文献
11.
对接种市政消化污泥的EGSB反应器的启动进行实验研究以寻求快速启动EGSB反应器的有效方法.接种厌氧消化污泥EGSB反应器的成功启动仅需要46 d.在整个启动期保持适当的液体上升流速是非常重要的.启动初期,高液体上升流速能够将悬浮污泥冲出反应器,使适合聚集的微生物留在反应器内.接下来需要降低进水流量和液体上升流速以利于构建稳定的微生态系统,使高活性颗粒污泥尽快形成.然后适当提高液体上升流速能保持污水与微生物的良好接触,促进颗粒污泥内外高效传质,形成更加稳定高效的微生物群落结构.为尽快形成高活性颗粒污泥,保证产甲烷菌的最佳营养需求是关键,可通过考虑进水基质、微量营养元素和硫化物来提高其活性. 相似文献
12.
利用自行研制的城镇生活垃圾与污水厂污泥一体化处理反应器对厨余垃圾好氧堆肥和污水处理厂污泥厌氧消化进行了实验研究,结果表明,在环境温度8~17.2℃的条件下,垃圾仓温度范围为17.2~50℃,堆肥垃圾含水率由(91.0±1.8)%降为(85.1±5.2)%,pH维持在5.92~7.40之间,VS/TS由0.78±0.06降为0.60±0.12,垃圾蛋白酶活性在第15天后维持在153.5~347.5 U/g DW。污泥仓温度主要范围为25~35℃,排泥含水率由(99.2±0.3)%降为(96.0±1.5)%,pH维持在6.77~6.97之间,VS/TS由0.66±0.07下降为0.44±0.11。污泥仓日均产气量为(44.7±8.6)L,其中甲烷平均体积分数为(61.32±4.68)%,污泥蛋白酶活性在第4天后稳定在0.98~1.78 U/mL之间。一体化反应器实现了厨余垃圾与污水厂污泥在同一反应器中集中处理,并利用垃圾堆肥时产生的热量为污泥浓缩消化提供温度条件。 相似文献
13.
14.
研究了臭氧预处理对剩余污泥特性及厌氧消化的影响,考察了臭氧投加量对污泥特性的影响,并进行了预处理后污泥厌氧消化产气的实验。结果表明,当臭氧处理时间为15 min时,污泥上清液中SCOD含量达到最高为1 006.08 mg·L-1,较未处理污泥提高了420.85%。污泥上清液中蛋白质和多糖含量在臭氧处理时间为10 min时达到最高。氨氮的含量在15 min时达到最大值。三维荧光结果显示随着臭氧投加量的增加污泥中的富里酸类物质有不同程度的减少,在臭氧处理时间为20 min时富里酸类物质减少量最为明显。显微镜和扫描电镜结果显示随着臭氧投加量的增加污泥中的微生物细胞结构受到了不同程度破坏。厌氧消化结果显示当臭氧处理时间为10 min时,污泥产甲烷率达到最高为318.39 mL·(g·VS)-1,较空白对照组提高了396.00%。 相似文献
15.
污泥溶胞破解是提高污泥厌氧消化产气量的重要手段。实验比较了热预处理、碱预处理、热碱预处理以及电化学热处理4种破解方法对市政污泥厌氧消化产气量的优化效果,通过分析比较沼气累积产量、日产气量、日产气速率和CH4在沼气中的含量占比等指标得出实验结果和结论。结果表明,不同的破解方法对市政污泥厌氧消化产气量的优化程度是不同的,其中,电化学预处理破解方式的沼气累积产量最多,为648 L·kg-1(以VS计),同时其CH4在沼气中的含量也最多,从5 d后的56.2%一直持续上升到40 d后的64.8%,表明该种方式对于市政污泥厌氧消化产气量的优化是较为理想的。 相似文献
16.
采用耐酸驯化的厌氧消化污泥处理餐厨垃圾,在酸性条件下(pH=4.5),对实验装置容积负荷从1.0 kg VS/(m3·d)分9次逐级增加到5.0 kg VS/(m3·d)的过程进行了跟踪监测,并较深入地研究了驯化污泥代谢活性和处理效果。实验结果表明,pH 4.5的耐酸厌氧消化污泥,最佳投加负荷约为4.5 kg VS/(m3·d),此负荷下容积产气率,CH4含量平均值均达最大,分别为1.68 m3/(m3·d),75.0%。耐酸厌氧消化装置持续增料运行46 d,产甲烷菌仍能保持较高的活性,其COD去除率范围为40.4%~75.0%,仍能保持pH 7.2时处理效果的65.0%~91.8%,表明在低pH、低碱度下实现稳定的产甲烷过程是可行的。 相似文献
17.
耐酸厌氧消化污泥处理餐厨垃圾 总被引:1,自引:0,他引:1
采用耐酸驯化的厌氧消化污泥处理餐厨垃圾,在酸性条件下(pH=4.5),对实验装置容积负荷从1.0kgVS/(m3·d)分9次逐级增加到5.0kgVS/(m3·d)的过程进行了跟踪监测,并较深入地研究了驯化污泥代谢活性和处理效果。实验结果表明,pH4.5的耐酸厌氧消化污泥,最佳投加负荷约为4.5kgVS/(m3·d),此负荷下容积产气率,CH4含量平均值均达最大,分别为1.68m3/(m3·d),75.0%。耐酸厌氧消化装置持续增料运行46d,产甲烷菌仍能保持较高的活性,其COD去除率范围为40.4%-75.0%,仍能保持pH7.2时处理效果的65.0%-91.8%,表明在低pH、低碱度下实现稳定的产甲烷过程是可行的。 相似文献
18.
采用强化循环高效厌氧反应器(SCAR)处理生活污水研究反应器的启动过程和运行特性。在低接种污泥量、回流比R=0.5、HRT为16 h条件下经过65 d完成反应器启动,系统出水COD稳定在约80 mg·L-1,VFA浓度约240 mg·L-1,颗粒污泥性状良好,微生物活性增强。SCAR反应器对污染物的去除受水力停留时间和反应器外回流比影响,微生物生化反应时间和在反应器中的空间分布状态共同决定着反应器的运行效果。SCAR反应器脱氮作用明显,实验条件下反应器对总氮的去除主要是通过反硝化作用实现。 相似文献