首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Ogawa passive O3 samplers were used in a 13-week study (June 1-September 1, 1999) involving 11 forested and mountaintop sites in north-central Pennsylvania. Four of the sites were collocated with TECO model 49 O3 analyzers. A significant correlation (p < 0.0001) was found for 24-hr average weekly O3 concentrations between the two methodologies at the four sites with collocated monitors. As expected, there were positive relationships between increasing elevation of the sites and increasing O3 concentrations. No O3 exposure patterns were found on a west-to-east or south-to-north basis; however, the area known for lower O3 exposures within a smaller subsection of the study area showed consistently lower O3 exposures. Preliminary results regarding relationships of symptom responses within O3-sensitive bioindicators are also presented with black cherry (Prunus serotina, Elirli.) and common milkweed (Asclepias syriaca, L.) showing clear evidence of increasing injury with increasing O3 exposures. Due to the extremely dry conditions encountered in north-central Pennsylvania during the 1999 growing season, O3-induced symptoms were sporadic and quite delayed until late-season rains during the latter portion of the observation period.  相似文献   

2.
The crowns of five canopy dominant black cherry (Prunus serotina Ehrh.), five white ash (Fraxinus americana L.), and six red maple (Acer rubrum L.) trees on naturally differing environmental conditions were accessed with scaffold towers within a mixed hardwood forest stand in central Pennsylvania. Ambient ozone concentrations, meteorological parameters, leaf gas exchange and leaf water potential were measured at the sites during the growing seasons of 1998 and 1999. Visible ozone-induced foliar injury was assessed on leaves within the upper and lower crown branches of each tree. Ambient ozone exposures were sufficient to induce typical symptoms on cherry (0-5% total affected leaf area, LAA), whereas foliar injury was not observed on ash or maple. There was a positive correlation between increasing cumulative ozone uptake (U) and increasing percent of LAA for cherry grown under drier site conditions. The lower crown leaves of cherry showed more severe foliar injury than the upper crown leaves. No significant differences in predawn leaf water potential (psi(L)) were detected for all three species indicating no differing soil moisture conditions across the sites. Significant variation in stomatal conductance for water vapor (g(wv)) was found among species, soil moisture, time of day and sample date. When comparing cumulative ozone uptake and decreased photosynthetic activity (P(n)), red maple was the only species to show higher gas exchange under mesic vs. drier soil conditions (P < 0.05). The inconsistent differences in gas exchange response within the same crowns of ash and the uncoupling relationship between g(wv) and P(n) demonstrate the strong influence of heterogeneous environmental conditions within forest canopies.  相似文献   

3.
Field studies were conducted during 2003 and 2004 from early June to the end of August, at 20 sites of lower or higher elevation within north-central Pennsylvania, using seedlings of black cherry (Prunus serotina, Ehrh.) and ramets of hybrid poplar (Populus maximowiziixtrichocarpa). A linear model was developed to estimate the influence of local environmental conditions on stomatal conductance. The most significant factors explaining stomatal variance were tree species, air temperature, leaf vapor pressure deficit, elevation, and time of day. Overall, environmental factors explained less than 35% of the variation in stomatal conductance. Ozone did not affect gas exchange rates in either poplar or cherry. Ozone-induced foliar injury was positively correlated with cumulative ozone exposures, expressed as SUM40. Overall, the amount of foliar injury was better correlated to a flux-based approach rather than to an exposure-based approach. More severe foliar injuries were observed on plants growing at higher elevations.  相似文献   

4.
Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O3; non-filtered air: 98% ambient O3; charcoal-filtered air: 50% ambient O3) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons.During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data,ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (< 34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures.  相似文献   

5.
While researchers have linked acute (less than 12-hr) ambient O3, PM2.5, and CO concentrations to a variety of adverse health effects, few studies have characterized short-term exposures to these air pollutants, in part due to the lack of sensitive, accurate, and precise sampling technologies. In this paper, we present results from the laboratory and field evaluation of several new (or modified) samplers used in the "roll-around" system (RAS), which was developed to measure 1-hr O3, PM2.5, and CO exposures simultaneously. All the field evaluation data were collected during two sampling seasons: the summer of 1998 and the winter of 1999. To measure 1-hr O3 exposures, a new active O3 sampler was developed that uses two nitrite-coated filters to measure O3 concentrations. Laboratory chamber tests found that the active O3 sampler performed extremely well, with a collection efficiency of 0.96 that did not vary with temperature or relative humidity (RH). In field collocation comparisons with a reference UV photometric monitor, the active O3 sampler had an effective collection efficiency ranging between 0.92 and 0.96 and a precision for 1-hr measurements ranging between 4 and 6 parts per billion (ppb). The limits of detection (LOD) of this method were 9 ppb-hr for the chamber tests and approximtely 16 ppb-hr for the field comparison tests. PM2.5 and CO concentrations were measured using modified continuous monitors--the DustTrak and the Langan, respectively. A size-selective inlet and a Nafion dryer were placed upstream of the DustTrak inlet to remove particles with aerodynamic diameters greater than 2.5 microm and to dry particles prior to the measurements, respectively. During the field validation tests, the DustTrak consistently reported higher PM2.5 concentrations than those obtained by the collocated 12-hr PM2.5 PEM samples, by approximately a factor of 2. After the DustTrak response was corrected (correction factor of 2.07 in the summer and 2.02 in the winter), measurements obtained using these methods agreed well with R2 values of 0.87 in the summer and 0.81 in the winter. The results showed that the DustTrak can be used along with integrated measurements to measure the temporal and spatial variation in PM2.5 exposures. Finally, during the field validation tests, CO concentrations measured using the Langan were strongly correlated with those obtained using the reference method when the CO levels were above the LOD of the instrument [approximately 1 part per million (ppm)].  相似文献   

6.
The responses of ramets of hybrid poplar (Populus spp.) (HP) clones NE388 and NE359, and seedlings of red maple (Acer rubrum, L.) to ambient ozone (O(3)) were studied during May-September of 2000 and 2001 under natural forest conditions and differing natural sunlight exposures (sun, partial shade and full shade). Ambient O(3) concentrations at the study site reached hourly peaks of 109 and 98 ppb in 2000 and 2001, respectively. Monthly 12-h average O(3) concentrations ranged from 32.3 to 52.9 ppb. Weekly 12-h average photosynthetically active radiation (PAR) within the sun, partial shade and full shade plots ranged from 200 to 750, 50 to 180, and 25 to 75 micromol m(-2) s(-1), respectively. Ambient O(3) exposure induced visible foliar symptoms on HP NE388 and NE359 in both growing seasons, with more severe injury observed on NE388 than on NE359. Slight foliar symptoms were observed on red maple seedlings during the 2001 growing season. Percentage of total leaf area affected (%LAA) was positively correlated with cumulative O(3) exposures. More severe foliar injury was observed on plants grown within the full shade and partial shade plots than those observed on plants grown within the sun plot. Lower light availability within the partial shade and full shade plots significantly decreased net photosynthetic rate (Pn) and stomatal conductance (g(wv)). The reductions in Pn were greater than reductions in g(wv), which resulted in greater O(3) uptake per unit Pn in plants grown within the partial shade and full shade plots. Greater O(3) uptake per unit Pn was consistently associated with more severe visible foliar injury in all species and/or clones regardless of differences in shade tolerance. These studies suggest that plant physiological responses to O(3) exposure are likely complicated due to multiple factors under natural forest conditions.  相似文献   

7.
Six years (1978-1983) of ozone monitoring data from sites located within six forested areas were examined. Areas that experienced the lowest to the highest ozone exposures were located in (1) northern New England/New York and upper Great Lakes, (2) New York/Pennsylvania/Maryland, (3) southeastern/southern, and (4) New Jersey pinelands. In general, higher ozone concentrations were observed in 1978, 1980 and 1983 as compared to the other three years examined. Ozone concentrations varied considerably within the areas. Recommendations for additional ozone monitoring sites are made. A concentrated effort should be made to examine ozone monitoring data from subsequent years (1984, 1985, and 1986) to explore whether the 6-year period 1978 through 1983 is representative of the annual variability of ozone concentrations over eastern forested areas. To better understand the relationship between ozone exposure and possible forest effects, we recommend that the temporal distributions of elevated ozone concentrations over a growing season be examined. The occurrence of elevated ozone levels during specific growth periods during a season may be an important aspect that biologists may wish to explore.  相似文献   

8.
Ambient concentrations of ozone (O(3)) and carbon dioxide (CO(2)) were measured at locations from the forest floor to the top of the canopy in a deciduous forest at the Moshannon State Forest in northcentral Pennsylvania. O(3) concentrations were measured from May-September for three years (1993-1995) while CO(2) concentrations were measured only during July and August of 1994. O(3) concentrations increased steadily during the day at all locations, peaking during the middle to late afternoon hours. O(3) concentrations then steadily declined to their lowest point, just before dawn. Vertical O(3) concentration gradients varied seasonally and among years. However, O(3) concentrations were highest within the forest canopy and lowest at the forest floor, with an average difference of approximately 13%. Differences in O(3) concentrations between the canopy and forest floor were greatest at night. O(3) concentrations were slightly higher at locations within the canopy than above the canopy. CO(2) concentrations were consistenly higher near the forest floor and were higher above the canopy than within the canopy. CO(2) concentrations were higher at night than during the day at all locations, especially near the forest floor.  相似文献   

9.
Mature beech trees (Fagus sylvatica) grown at two different altitudes in the Bavarian forest were compared with young beech trees grown at nearby field sites or in phytotrons for their macroscopic and physiological responses to different ozone (O(3)) exposures. Cumulative O(3) exposure expressed as the sum of hourly mean concentrations above the canopy ranged between 100 and 150 microl l(-1) h, with the vertical O(3) profiles at the higher altitude site being enhanced by 30%. O(3) profiles at all sites were reduced by up to 20% with increasing depth within and beneath the canopy. The leaf discoloration that developed in the absence of premature leaf loss was similar in the sun foliage of mature and young trees (including plant grown in the phytotron). Injury became apparent at low O(3) exposures, expressed as accumulated hourly means over a threshold of 40 nl l(-1) (AOT40 <3.5 microl l(-1) h) at the lower site in both the mature trees and the young beech at the field site, but only occurred when AOT40 values reached 7 microl l(-1) h at the upper site, and 6 microl l(-1) h in the phytotrons. However, the association between injury and O(3) exposure was improved when cumulative ozone uptake to sun leaves was the ozone index, used with values of about 3 mmol m(-2) resulting in visible injury in both mature and young beech growing in phytotrons. Under high ozone exposure levels of inositol were lowered, whilst concentrations of lignin-like materials were enhanced in mature beech. Similar responses were observed in young beech grown in phytotrons. As the sun foliage was affected by only a small and variable extent each year, the seasonal O(3) impact at high altitude did not appear to pose an acute risk to mature beech trees.  相似文献   

10.
11.
Growth of white oak (Quercus alba L.) trees was examined, using tree-ring analysis, at three sites near a small, remote coal-fired power plant in central Pennsylvania, USA. Forests immediately adjacent to the power plant have been subjected to power plant emissions since the power plant initiated operation in 1954. However, localized, ground-level fumigations have been gradually reduced over the years due to a series of construction projects resulting in increased stack heights. Comparisons of growth were made among the white oaks growing at the three close-in sites, as well to the growth of white oak at three control sites located 10-50 km from the power plant, during periods of differing stack heights. White oak exhibited reduced growth at two of the close-in sites during the time period when historical ground-level air pollution exposures were assumed to be greatest due to low stack heights. White oak growth at the third close-in site was not substantially reduced during this time period. In 1976, taller stacks were implemented at the power plant to reduce local, ground-level concentrations of air pollutants. The recovery of tree growth at the two close-in affected sites, and increased synchronous growth responses from 1976-85 among all three close-in sites, indicates that implementation of taller stacks in 1976 reduced ground-level pollutant levels to such dosages that growth was not impaired at any site. Also, growth rates after 1976 were comparable to the growth rates of the white oaks growing on the control sites. A possible interacting factor was a severe drought that occurred in the mid-1960s in central Pennsylvania.  相似文献   

12.
Chongqing, a city with a population of >2.5 million, constitutes the biggest industrial and commercial centre in southwest China. Recent industrialization has led to an increasing air pollutant problem which is exacerbated by the topography and prevailing climate of the region. To date, interest has remained firmly focused on the levels of traditional air pollutants (sulphur dioxide [SO2], oxides of nitrogen [NOx], smoke and suspended particulate matter [SPM]), with little attention paid to photochemical oxidants such as ozone (O3). This paper reports the first assessment of ambient O3 levels in southwest China. Measurements were made in and around Chongqing using a combination of UV-absorption (at a site located in the northern sector of the city) and passive samplers (at 20 sites located in and around the city) between 1993 and 1996. The 7-h daily mean O3 concentrations ranged between 2 and 16 ppb (x10(9)) during the winter months, increasing to 18-41 ppb during the summer (June-August), when peak hourly mean O3 concentrations of 93 ppb were attained. Ozone exposures across the region commonly approached (or exceeded) UN-ECE and WHO short-term guidelines for the protection of crops. In addition, controlled chamber studies, in which 11 cultivars of Chinese crops commonly grown in the Chongqing region were screened for relative O3 sensitivity, indicated the potential for subtle effects on the growth of a number of crop plants, if ambient O3 levels continue to rise in the region. Employing ozone exposures somewhat higher than those experienced in the field, several cultivars of commonly grown Chinese cereal, vegetable and salad crops were found to be sensitive to O3 in terms of growth, but this was not always associated with the appearance of visible symptoms of injury and, in contrast to what was generally expected, only three species showed significant O3-induced reductions in root:shoot partitioning. There is a clear and urgent need for a comprehensive study of ambient air quality and its impact on crops and natural vegetation in this, as in other, rapidly developing regions of China.  相似文献   

13.
We conducted a multi-pollutant exposure study in Baltimore, MD, in which 15 non-smoking older adult subjects (> 64 years old) wore a multi-pollutant sampler for 12 days during the summer of 1998 and the winter of 1999. The sampler measured simultaneous 24-hr integrated personal exposures to PM2.5, PM10, SO4(2-), O3, NO2, SO2, and exhaust-related VOCs. Results of this study showed that longitudinal associations between ambient PM2.5 concentrations and corresponding personal exposures tended to be high in the summer (median Spearman's r = 0.74) and low in the winter (median Spearman's r = 0.25). Indoor ventilation was an important determinant of personal PM2.5 exposures and resulting personal-ambient associations. Associations between personal PM2.5 exposures and corresponding ambient concentrations were strongest for well-ventilated indoor environments and decreased with ventilation. This decrease was attributed to the increasing influence of indoor PM2.5 sources. Evidence for this was provided by SO4(2-) measurements, which can be thought of as a tracer for ambient PM2.5. For SO4(2-), personal-ambient associations were strong even in poorly ventilated indoor environments, suggesting that personal exposures to PM2.5 of ambient origin are strongly associated with corresponding ambient concentrations. The results also indicated that the contribution of indoor PM2.5 sources to personal PM2.5 exposures was lowest when individuals spent the majority of their time in well-ventilated indoor environments. Results also indicate that the potential for confounding by PM2.5 co-pollutants is limited, despite significant correlations among ambient pollutant concentrations. In contrast to ambient concentrations, PM2.5 exposures were not significantly correlated with personal exposures to PM2.5-10, PM2.5 of non-ambient origin, O3, NO2, and SO2. Since a confounder must be associated with the exposure of interest, these results provide evidence that the effects observed in the PM2.5 epidemiologic studies are unlikely to be due to confounding by the PM2.5 co-pollutants measured in this study.  相似文献   

14.
Concentrations of air pollutants were monitored during the May November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric acid vapor (HNO3), nitrous acid vapor (HNO2), ammonia (NH3), sulfur dioxide (SO2), particulate nitrate (NO3-), ammonium (NH4+), and sulfate (SO4(2-)); and (3) passive samplers for O3, HNO3 and NO2. Elevated concentrations of O3 (seasonal means 41-71 ppb), HNO3 (seasonal means 0.4-2.9 microg/m3), NH3 (seasonal means 1.6-4.5 microg/m3), NO3 (1.1-2.0 microg/m3) and NH4+ (1.0-1.9 microg/m3) were determined. Concentrations of other pollutants were low. With increasing elevation and distance from the pollution source area of O3, NH3 and HNO3 concentrations decreased. Ammonia and NH4+ were dominant N pollutants indicating strong influence of agricultural emissions on forests and other ecosystems of the Sequoia National Park.  相似文献   

15.
This 3-year study was designed to examine variation in plasma sex steroids, phallus size, and the standard error (S.E.) associated with these endpoints in juvenile alligators collected from 3 sites within the Kissimmee-Everglades drainage (Florida, USA) with varying concentrations of sediment organochlorine contaminants. We hypothesized that decreased plasma sex steroid concentrations and phallus size would be observed in the higher contaminant site when compared to the intermediate and lower contaminant sites. Furthermore, we hypothesized that greater S.E. associated with these endpoints would be observed for the populations from more contaminated sites. We found that differences existed with females from the higher contaminant site exhibiting lower plasma estradiol-17beta (E2) and testosterone (T) concentrations. Males from the higher contaminant site exhibited smaller phallus sizes than males from the intermediate and lower contaminant sites. Smaller phallus size in this case differed from that reported in Lake Apopka male alligators [Gen. Comp. Endocrinol. 116 (1999) 356] in that a significant positive relationship between body size and phallus size existed. No difference among sites was observed in plasma T for males. Lower S.E. was associated with E2 and T concentrations in females from the higher contaminant site and in phallus size in males from the higher contaminant site. This pattern was opposite to what we had hypothesized. We concluded that variation in plasma E2 and T concentrations, phallus size, and the S.E. associated with these endpoints exists among the 3 sites with the patterns matching the patterns of organochlorine contamination, although S.E. patterns were opposite to what was predicted.  相似文献   

16.
Ambient O3 exposures have reduced growth rates of tree genotypes in some areas of the United States. For characterizing O3 exposures in forested areas, data from primarily population-oriented sites have been used. It has been speculated that exposures calculated from population-oriented sites provide estimates greater than those that would actually be experienced in the majority of forested areas. Accordingly, we compared 1988 O3 data from three remote forested sites with data from several population-oriented monitoring sites in and around the mid? and southern Appalachian Mountains. The number of hours ≥0.08 ppm was lower at the remote forested sites than at the nearby population-oriented locations. In addition, we characterized the temporal variability of O3 exposures in forested regions of the United States and Canada for the period 1978-1988. We found that the years of highest O3 exposure in the eastern United States during 1978-1988 were 1978, 1980, 1983, and 1988, with 1988 being the worst year in four of seven eastern forest regions. In 1988, the Whiteface Mountain summit site (1483 m) experienced approximately 10 percent more hourly average concentrations ≥0.08 ppm than in the second highest O3 exposure year (i.e., 1979). Consistently throughout the 11-year period, the highest O3 exposures at the Whiteface Mountain site occurred during the late evening and early morning hours, with the result that the longterm 7-h (0900-1559h) exposure index could not distinguish those years in which the highest exposures occurred from those in which the lowest occurred. Similar to the Whiteface Mountain site, two high-elevation Shenandoah National Park sites experienced their highest O3 exposures in 1988. With the exception of 1986, the lower elevation site (Dickey Ridge) consistently experienced more frequent occurrences of hourly average concentrations ≥0.08 ppm than the higher elevation site (Big Meadows).  相似文献   

17.
During late summer of 1996 and 1997 we examined ozone-induced foliar injury in a plantation of 111 black cherry trees (ramets) comprising 15 clones originating from wild ortets growing in the Allegheny National Forest, Pennsylvania, and the Monongahela National Forest, West Virginia. The experimental plantation was a clonal seed orchard in Centre County, Pennsylvania, started in 1971 using ortet buds grafted onto seedling rootstocks of mixed origin. Clones differed significantly in severity of foliar injury symptoms (F=31.83, p<0.001). One clone (R-12) had significantly more foliar injury with >50% leaf area affected than other clones during both years. In contrast, clone R-14, which is from the same area in northcentral Pennsylvania as R-12, exhibited significantly less injury (LAA<6%). Although ambient O(3) concentrations were similar in both years, foliar injury was significantly greater (15.7%) in 1996 than in 1997 (9.9%). This is probably explained by lower stomatal conductance in 1997 caused by drier and hotter weather patterns in June and July of that year. Despite very different weather patterns and overall levels of injury in 1996 and 1997, mean clonal injury was significantly correlated between both years of assessment (r=0.92, p<0.001). Within tree crowns, foliage in lower and inner crown positions was significantly more injured than foliage in upper and exterior crown positions. There was no evidence of geographically based population differences in sensitivity to foliar O(3) injury. On the contrary, results demonstrate that wild genotypes of proximal geographic origin may differ greatly in sensitivity.  相似文献   

18.
From 1993 through 1998, Wedding or Graseby high-volume PM10 samplers were collocated with tapered element oscillating microbalance (TEOM) samplers at three sites at Owens Lake, CA. The study area is heavily impacted by windblown dust from the dry Owens Lake bed, which was exposed as a result of water diversions to the city of Los Angeles. A dichotomous (dichot) sampler and three collocated Partisol samplers were added in 1995 and 1999, respectively. U.S. Environmental Protection Agency (EPA) operating procedures were followed for all samplers, except for a Wedding sampler that was not cleaned for the purpose of this study. On average, the TEOM and Partisol samplers agreed to within 6%, and the dichot, Graseby, and Wedding samplers measured lower PM10 concentrations by about 10, 25, and 35%, respectively. Surprisingly, the "clean" Wedding sampler consistently measured the same concentration as the "dirty" Wedding sampler through 85 runs without cleaning. The finding that the Graseby and Wedding high-volume PM10 samplers read consistently lower than the TEOM, Partisol, and dichot samplers at Owens Lake is consistent with PM10 sampler comparisons done in other fugitive dust areas, and with wind tunnel tests showing that sampler cut points can be significantly lower than 10 microns under certain conditions. However, these results are opposite of the bias found for TEOM samplers in areas that have significant amounts of volatile particles, where the TEOM reads low due to the vaporization of particles on the TEOM's heated filter. Coarse particles like fugitive dust are relatively unaffected by the filter temperature. This study shows that in the absence of volatile particles and in the presence of fugitive dust, a different systematic bias of up to 35% exists between samplers using dichot inlets and high-volume samplers, which may cause the Graseby and Wedding PM10 samplers to undermeasure PM10 by up to 35% when the PM10 is predominantly from coarse particulate sources.  相似文献   

19.
Three-year-old Scots pine (Pinus sylvestris L.) seedlings were exposed to ambient or elevated ozone (O(3)) concentrations in open-air exposure fields in central Finland in 1995-97. Three different treatments were applied in 1996 and 1997: ambient air, elevated O(3) (1.3-1.5xambient) during the growing season (June-September) and elevated O(3) in March-September, i.e. the growing season including the springtime O(3) exposure. The ambient mean O(3) concentrations were 40% higher in springtime (March-May) compared to the concentrations during the growing seasons. Maximum O(3) concentrations were measured in April or early May, whereas a clear increase in the stomatal activity of the seedlings was observed by the middle of May. This suggests a low intake of O(3) by conifers despite the higher O(3) concentrations in spring. Stomatal conductance, and contents of chlorophyll and ribulosebisphosphate carboxylase/oxygenase (Rubisco) in current-year needles were not significantly affected by any O(3) treatment. Only a slight decrease in current-year shoot growth, slight increase in the abscission of 2-year-old needles and increased electron density of chloroplast stroma by springtime O(3) exposure suggest a rather small contribution of elevated springtime O(3) concentrations to total O(3) damage under current climatic conditions in Finland. However, the increases in springtime O(3) concentrations may enhance the cumulative effects of O(3) during long-term O(3) exposures.  相似文献   

20.
Maize (Zea mays, L.) plants were exposed intermittently to O(3), HF or both pollutants and the progression of foliar senescence was followed by measuring chlorophyll loss, membrane breakdown and changes in stomatal conductance. At concentrations insufficient to cause foliar symptoms (0.06 microl O(3) litre(-1) and 1.0 microg Fm(-3)), exposures to HF had little or no effect, whereas O(3) exposures accelerated the rate of senescence. The rapid rate of senescence produced by O(3) was moderated if the plants were also exposed to HF. Topical application of 6-benzyladenine (BA) prior to pollutant exposures delayed senescence in all plants and completely prevented the O(3)-induced acceleration of senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号