首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
U.S. Department of Energy (US DOE) remediation responsibilities include the Hanford site in Washington State. Cleanup is governed by the Tri‐Party Agreement (TPA) between the US DOE as the responsible party and the U.S. Environmental Protection Agency and Washington State Department of Ecology as joint regulators. In 2003, the US DOE desired to implement a “Risk‐Based End State” (RBES) policy at Hanford, with remediation measures driven by acceptable risk standards using exposure scenarios based on the 1999 Hanford Comprehensive Land‐Use Plan. Facing resistance from regulators and stakeholders, the US DOE solicited public input on its policy. This led to a Hanford Site End State Vision in 2005 and a commitment that the TPA would continue to control remediation. This article describes how regulator and public participation modified RBES to an end‐state vision. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
US Department of Energy (US DOE) responsibilities for its former national atomic weapons complex include remediation of the Rocky Flats facility near Denver, Colorado. In 1993, the site's primary mission shifted from “production'' of plutonium components for atomic weapons to cleanup of extensive radioactive and chemical contamination representing the legacy of production activities. Remediation was governed by the agreements between the US DOE as the responsible party and the US Environmental Protection Agency and the state of Colorado as joint regulators. In 1995, the Rocky Flats Future Use Working Group issued its final report, recommending among other features that long‐term cleanup reduce contamination levels to background. This article describes the circumstances that led the US DOE to complete the Rocky Flats cleanup more quickly and makes comparisons to the situation at the US DOE's Hanford site. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
The Formerly Utilized Sites Remedial Action Program (FUSRAP) covers inactive commercial, federal, and university facilities that once supported activities of the Manhattan Project or Atomic Energy Commission. Current responsibilities, established by a Memorandum of Understanding (MOU), are split between the U.S. Department of Energy (US DOE) and the U.S. Army Corps of Engineers. The MOU distinguishes between facilities remediated before 1997 (“completed” sites) and those where remediation remained to be completed at that time. This article evaluates activities conducted at completed sites with regard to considerations for long‐term stewardship, which is defined by the US DOE as all activities necessary to protect human health and the environment after remediation is considered complete. Experience with these FUSRAP sites provides “lessons learned” for the requirements of satisfactory long‐term stewardship. © 2007 Wiley Periodicals, Inc.  相似文献   

4.
The U.S. Department of Energy's (US DOE's) responsibilities for its former national nuclear weapons complex include remediation of the Hanford Site in Washington State. In 1989, the site's primary mission shifted from nuclear weapons material production to cleanup of the extensive radioactive and chemical contamination that represented the production legacy. Cleanup is governed by the Tri‐Party Agreement (TPA), between the US DOE, as responsible party, and the U.S. Environmental Protection Agency and Washington State Department of Ecology, as joint regulators. Nearly 20 years have passed since the TPA was signed, but the Hanford remediation is expected to require decades longer. This article covers the cleanup progress to date and challenges that remain, particularly from millions of gallons of highly radioactive liquid wastes and proposals to bring new wastes to Hanford. © 2008 Wiley Periodicals, Inc.  相似文献   

5.
The U.S. Department of Energy's (US DOE's) environmental challenges include remediation of the Hanford Site in Washington State. The site's legacy from nuclear weapons “production” activities includes approximately 80 square miles of contaminated groundwater, containing radioactive and other hazardous substances at levels above drinking water standards. In 1998, the U.S. General Accounting Office (US GAO), the auditing arm of Congress, concluded that groundwater remediation at Hanford should be integrated with a comprehensive understanding of the “vadose zone,” the soil region between the ground surface and groundwater. The US DOE's Richland Operations Office adjusted its program in response, and groundwater/vadose‐zone efforts at Hanford have continued to develop since that time. Hanford provides an example of how a federal remediation program can be influenced by reviews from the US GAO and other organizations, including the US DOE itself. © 2008 Wiley Periodicals, Inc.  相似文献   

6.
Based on actual project experiences over the past decade, execution strategies for remediation projects have varied significantly. For example, the overlap between the assessment and cleanup phases can range from none (for projects that complete assessment activities before starting the cleanup) to almost half of the assessment duration (for projects that may be under pressure to show progress at the site). This article quantifies the relationship between remediation project execution strategies, project definition components, and remediation project cost and schedule performance. By relating project outcomes to indicators that can be monitored early in the project cycle, project teams may be able to correct problems before they affect the ultimate performance of the remediation project.  相似文献   

7.
The U.S. Department of Energy (US DOE) remediation responsibilities include its Idaho National Laboratory. In 1989, the U.S. Environmental Protection Agency placed the Idaho site on its National Priority List for environmental cleanup. The site's contamination legacy from operations included inactive reactors and other structures, spent nuclear fuel, high‐level liquid radioactive wastes, calcined radioactive wastes, and transuranic wastes. Documents governing cleanup include a 1995 Settlement Agreement between the US DOE and the US Navy as responsible parties, and the State of Idaho. The Subsurface Disposal Area contains buried transuranic wastes, lies above the East Snake River Plain Aquifer, and could be the “site's most nettlesome cleanup issue,” according to an outside observer. This article describes the technical and legal difficulties that have been encountered in remediating this area. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
Many public agencies and private entities are faced with assessing the risks to humans from contamination on their lands. The United States Department of Energy (US DOE) and Department of Defense are responsible for large holdings of contaminated land and face a long‐term and costly challenge to assure sustainable protectiveness. With increasing interest in the conversion of brownfields to productive uses, many former industrial properties must also be assessed to determine compatible future land uses. In the United States, many cleanup plans or actions are based on the Comprehensive Environmental Responsibility, Compensation, and Liability Act, which provides important but incomplete coverage of these issues, although many applications have tried to involve stakeholders at multiple steps. Where there is the potential for exposure to workers, the public, and the environment from either cleanup or leaving residual contamination in place, there is a need for a more comprehensive approach to evaluate and balance the present and future risk(s) from existing contamination, from remediation actions, as well as from postremediation residual contamination. This article focuses on the US DOE, the agency with the largest hazardous waste remediation task in the world. Presented is a framework extending from preliminary assessment, risk assessment and balancing, epidemiology, monitoring, communication, and stakeholder involvement useful for assessing risk to workers and site neighbors. Provided are examples of those who eat fish, meat, or fruit from contaminated habitats. The US DOE's contaminated sites are unique in a number of ways: (1) huge physical footprint size, (2) types of waste (mixed radiation/chemical), and (3) quantities of waste. Proposed future land uses provide goals for remediation, but since some contamination is of a type or magnitude that cannot be cleaned up with existing technology, this in turn constrains future land use options, requiring an iterative approach. The risk approaches must fit a range of future land uses and end‐states from leave‐in‐place to complete cleanup. This will include not only traditional risk methodologies, but also the assessment and surveillance necessary for stewards for long‐term monitoring of risk from historic and future exposure to maintain sustainable protectiveness. Because of the distinctiveness of DOE sites, application of the methodologies developed here to other waste site situations requires site‐specific evaluation © 2007 Wiley Periodicals, Inc.  相似文献   

9.
We examined site‐specific advisory board (SSAB) minutes and local newspaper coverage of the Fernald, Hanford, Idaho, Oak Ridge, Rocky Flats, and Savannah River sites of the U.S. Department of Energy (US DOE) in order to determine the importance of risk‐related issues related to remediation and other forms of environmental management. About one‐third of SSAB issues were risk‐related, and these were disproportionately major issues at meetings. The media focused on risks associated with remediation and other forms of waste management. The analysis implies that contractors and government officials need to establish and maintain communications with advisory panels and accentuate these contacts well in advance of contemplated new actions. © 2008 Wiley Periodicals, Inc.  相似文献   

10.
The US Sustainable Remediation Forum (SURF) proposes a nine‐step process for conducting and documenting a footprint analysis and life‐cycle assessment (LCA) for remediation projects. This guidance is designed to assist remediation practitioners in evaluating the impacts resulting from potential remediation activities so that preventable impacts can be mitigated. Each of the nine steps is flexible and scalable to a full range of remediation projects and to the tools used by remediation practitioners for quantifying environmental metrics. Two fictional case studies are presented to demonstrate how the guidance can be implemented for a range of evaluations and tools. Case‐study findings show that greater insight into a study is achieved when the nine steps are followed and additional opportunities are provided to minimize remediation project footprints and create improved sustainable remediation solutions. This guidance promotes a consistent and repeatable process in which all pertinent information is provided in a transparent manner to allow stakeholders to comprehend the intricacies and tradeoffs inherent in a footprint analysis or LCA. For these reasons, SURF recommends that this guidance be used when a footprint analysis or LCA is completed for a remediation project. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
Current cost estimates for the assessment and remediation of environmental contamination at facilities operated by the U.S. Department of Energy (DOE) are based largely on assumptions, with a resulting high level of uncertainty. Therefore, consistent and reliable methods for estimating the uncertainty inherent in the estimates are of vital importance. This article presents an approach and format for estimating contingency in DOE's Environmental Restoration Program. The method involves an analysis of risk factors having a potential to affect the cost of the major elements in the estimate. Application of the contingency analysis to a project site is included in the discussion.  相似文献   

12.
The U.S. Department of Energy (DOE) is beginning major environmental restoration projects of both active and inactive sites throughout the United States. The problems at the sites include contaminated soils, groundwater and surface waters, structures, and old waste disposal areas. IT Corporation, under the direction of the Office of Independent Cost Estimating (OICE) for DOE, developed a list of environmental problems at the sites and probable cleanup technologies and techniques that could be used. Estimated unit costs were then developed for these cleanup technologies, using available data and references. Some procedures developed were common to many or all cleanup projects. These included site characterization, remedial investigation (RI), feasibility studies (FS), and the closure/post-closure phase. The article will focus on cost estimating of the closure/post-closure phase of a cleanup project. The cost data provided are for budget level or check estimates. Site-specific conditions as well as items peculiar to the environmental industry, such as governmental regulations and community relations, can influence both the cost and duration of a cleanup project.  相似文献   

13.
In 1994, the U.S. Department of Energy (DOE) initiated a contract reform program intended to strengthen oversight capabilities and encourage the creation of contract and incentive structures, which would effectively facilitate the treatment of onsite contamination and waste. The remedia‐tion and disposal of these legacy wastes is the core of the Department's environmental manage‐ment mission (Government Accountability Office [GAO], 2003). Despite a concerted effort toward achieving the goals of the reform, progress has been slow. Many projects continue to necessitate cost and time extensions above those originally agreed upon. Although the Department insti‐tuted an accelerated cleanup program in 2002, promising to shave some $50 billion and 35 years from its earlier cost and schedule projections, there have been delays in critical project areas that call into question the attainability of the proposed reductions (GAO, 2005). Numerous explana‐tions have been offered as to why achieving these goals has proven so difficult, many of which have concluded that flawed contracting practices are to blame. This article concludes that the root of the problem is much deeper and that the organizational criticisms aimed at DOE are as much a legacy as the waste itself. Although the focus of this article is on large former nuclear weapons sites, these types of contracting and organizational issues are often found at other gov‐ernment and private complex hazardous waste sites. © 2006 Wiley Periodicals, Inc.  相似文献   

14.
Groundwater monitoring at Department of Energy's (DOE's) Hanford Site is a large, expensive undertaking serving multiple purposes, including compliance with regulations and DOE orders, remediation efforts under CERCLA, and sitewide risk evaluations. Like most large Federal facilities, the monitoring program currently in place has evolved and grown overtime as new requirements were established and groups were assigned to address them. DOE and its regulators simultaneously awakened to the fact that there was a need to reevaluate the monitoring activities at Hanford, to better integrate the program, to avoid duplicative sampling, to improve everyone's understanding of the performance of the network, and to evaluate whether adequate data could be collected for lower cost. This paper describes the approch that was developed to guide the rethinking effort with direct and extensive involvement of DOE, EPA, Washington Department of Ecology, Indian Tribes, and DOE Contractors, and how this approach was applied to a large portion of the site. Both the human element of the process (cultural change), as well as some of the technical details associated with the effort, including a flexible application of EPA's data quality objectives process, are discussed.  相似文献   

15.
Based on a review of hundreds of environmental restoration program optimization reviews, this article describes management tools found in successful and efficient remediation programs. Projects that consistently struggled to achieve their objectives were observed to be missing certain, or to have inadequately used, these tools. The tools are articulated as best practices because when they are present and actively used, project shortcomings were minimal. Priority objectives for site owners and project managers include improving efficiency and effectiveness through performance management, reducing resource usage and energy consumption, ensuring protectiveness, and reducing uncertainty in management decision making. Restoring environmental resources damaged by historic waste management practices began in earnest in the late 1960s and early 1970s with the broad recognition of the problems caused by environmental discharges and spills when wastes are not managed appropriately. Under new regulations, soil and groundwater remediation projects could be, and were, conducted within a defined framework. The number and variety of restoration projects that were launched resulted in a slew of projects progressing through the stages of characterization, decision, and cleanup, and more were added to the cleanup process each year. In the 1990s, the Department of Defense noted that many cleanup efforts were projected to incur substantial operational, maintenance, and monitoring costs for decades into the future. This was correctly perceived as an opportunity to optimize those systems and programs, minimize costs, and reduce health and environmental risks. The best practices outlined in this article address management tools that were identified in optimization efforts that led to effective and efficient environmental remediation projects. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
Natural remediation is moving toward the forefront as engineers clean groundwater at the Savannah River Site (SRS), a major Department of Energy (DOE) installation near Aiken, South Carolina. This article reviews two successful, innovative remediation methods currently being deployed: biosparging to treat chlorinated solvents and phytoremediation to address tritium in groundwater. The biosparging system reintroduces oxygen into the groundwater and injects nutrient compounds for in‐situ remediation. The system has greatly reduced the concentrations of trichloroethylene (TCE) and vinyl chloride in wells downgradient from a sanitary landfill (SLF). Phytoremediation is an emerging technology that promises effective and inexpensive cleanup of certain hazardous wastes. Using natural processes, plants can break down, trap and hold, or transpire contaminants. This article discusses the use of phytoremediation to reduce the discharge of tritium to an on‐site stream at SRS. © 2002 Wiley Periodicals Inc. *  相似文献   

17.
Expert software-based decision support is speeding the process of defining environmental hazards and identifying remedial responses for the U.S. Department of Energy's (DOE) hazardous waste cleanup projects throughout the United States. Pacific Northwest Laboratories' (PNL) Remedial Action Assessment System (RAAS), and associated Technology Information System (TIS), written for Macintosh computers (soon for PC-compatible computers), sort through an encyclopedic data base to help environmental engineers prepare the most appropriate remedial strategy. The system has been available to DOE and other U.S. government engineers since last year and will soon be commercially available.  相似文献   

18.
This article presents a database developed to determine the potential reuse of contaminated sites for primarily ecologically and culturally based activities. The database consists of 172 quantitative and qualitative measures of on‐site land suitability, ecological, cultural, and recreational value, and off‐site suitability, economic, and demographic information. Using sites owned by the U.S. Department of Energy (DOE) as a case study, the article evaluates the quality of available data and suggests ways of using it for planning ecologically sensitive remediation activities and future land use. This type of database can be developed and used by anyone who needs to select, review, or evaluate site remediation and future land use options. Also discussed are the challenges associated with compiling and using data that has been generated by many sources over several years. © 2003 Wiley Periodicals, Inc.  相似文献   

19.
Success of future environmental remediation projects depends on applying knowledge gained from completed projects. This article examines the trends in technology implementation, quantifies the impact of different remediation technologies on project costs and execution risks, and quantifies the economies of scale experienced by remediation projects. Actual project data from remediation projects conducted by the private sector and government organizations form the basis of the analysis.  相似文献   

20.
Probabilistic economic analysis, including uncertainty of probabilities and consequences of project risks, is not widely used in remediation projects. This article presents a project risk assessment (PRA) method to identify, quantify, and analyze risks in remediation projects. The suggested method is probabilistic and includes uncertainty analysis of input variables based on expert judgment. It was originally developed as a part of a sustainability assessment tool, but is viable as a stand‐alone tool for remediation projects. The method is applied to a case study: a former paint factory that is being redeveloped into a residential area. The PRA method is used for analyzing and comparing the project risks associated with four remediation options, all including excavation but with different degrees of onsite treatment. The result of the case study application shows which alternative has the lowest mean risk cost, the highest probability to have the lowest risk cost, and how the risk costs are distributed, but also, importantly, helps the user to prioritize between risk‐reduction measures. ©2015 Wiley Periodicals  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号