共查询到20条相似文献,搜索用时 15 毫秒
1.
A former chlorofluorocarbon manufacturing facility in northern New Jersey was purchased for redevelopment as a warehousing/distribution center as part of the New Jersey Department of Environmental Protection's Brownfields redevelopment initiative. Soil and groundwater at the site were impacted with dense nonaqueous‐phase liquids (chlorinated organic compounds) and light nonaqueous‐phase liquids (petroleum hydrocarbons). The initial remedial strategy (excavation and offsite disposal) developed by prior site owners would have been cost‐prohibitive to the new site owners and made redevelopment infeasible. Mixed remedial technologies were employed to reduce the cost of remediation while meeting regulatory contaminant levels that are protective of human health and the environment. The most heavily impacted soils (containing greater than 95 percent of the contaminant mass) were excavated and treated onsite by the addition of calcium oxide and lime kiln dust coupled with physical mixing. Treated soils were reused onsite as part of the redevelopment. Residual soil and groundwater contamination was treated via in situ injections of emulsified oil to enhance anaerobic biodegradation, and emulsified oil/zero‐valent iron to chemically reduce residual contaminants. Engineering (cap) and administrative (deed restriction) controls were used as part of the final remedy. The remedial strategy presented in this article resulted in a cost reduction of 50 percent of the initial remedial cost estimate. © 2008 Wiley Periodicals, Inc. 相似文献
2.
Dora Sheau‐Yun Chiang Everett W. Glover Jeff Peterman Joseph Harrigan Bill DiGuiseppi David S. Woodward 《补救:环境净化治理成本、技术与工艺杂志》2008,19(1):19-37
1,4‐Dioxane entered the environment as a result of historic leaks and spills in the production area at an industrial facility in the southeastern coastal plain. The areal extent of the 1,4‐dioxane plume is several hundred acres and is largely contained on the site. Land use adjacent to the plant property is primarily undeveloped (wetlands or woods) or industrial, with a small area of mixed land use (commercial/residential) to the southwest and north. The surficial aquifer is a relatively simple hydrogeologic system with well‐defined boundaries and is comprised of a 50‐ to 70‐foot‐thick deposit of alluvial/fluvial sand and gravel that overlies an aquitard in excess of 100 feet thick. A groundwater flow model, developed and calibrated using field‐measured data, was used for the fate‐and‐transport modeling of 1,4‐dioxane. The flow‐and‐transport model, combined with the evaluation of other site geochemical data, was used to support the selection of monitored natural attenuation (MNA) as the proposed groundwater remedy for the site. Since the active sources of contamination have been removed and the modeling/field data demonstrated that the plume was stable and not expanding, the proposed MNA approach was accepted and approved by the regulatory agency for implementation in 2004. Subsequent accumulated data confirm that concentrations in the 1,4‐dioxane plume are declining as predicted by the fate‐and‐transport modeling. © 2008 Wiley Periodicals, Inc. 相似文献
3.
Chlorinated solvents such as tetrachloroethene (perchloroethene, PCE) and trichloroethene (TCE) have been extensively used in various industrial applications for many years. Because neither are typically consumed through their various uses, they are often released to the environment through industrial application or disposal. Once released, PCE and TCE tend to migrate downward into groundwater, where they persist. In the current case study, cheese whey was used as a groundwater amendment to facilitate the reductive dechlorination of a chlorinated solvent plume underlying an auto dealer/repair shop in Harris County, Texas. From September 2010 to January 2014, over 32,000 gallons of cheese whey were injected into the subsurface resulting in a marked reduction in oxidation–reduction potential (ORP) and nitrate concentrations, coupled with an increase in ferrous iron concentrations. Statistical trend analyses indicate the primary contaminants, PCE and TCE, as well as the daughter product cis‐1,2‐dichloroethene (cDCE), all exhibited a positive response, as evidenced by statistically decreasing trends, and/or reversal in concentration trends, subsequent to cheese whey injections. Maximum concentrations of PCE and TCE in key test wells decreased by as much as 98.97 percent and 99.17 percent, respectively. In addition, the bacterial genus Dehalococcoides, capable of complete reduction of PCE to non‐toxic ethene, was found to be more abundant in the treatment area, as compared to background concentrations. Because cheese whey is a by‐product of the cheese making process, the cost of the product is essentially limited to transport. This study demonstrates cheese whey to be an effective groundwater amendment at a cost which is orders of magnitude lower than popular industry alternatives. 相似文献
4.
A former dry‐cleaning site in Jackson, Tennessee, has undergone remediation to treat dense nonaqueous‐phase liquid (trichloroethene [TCE] and tetrachloroethene [PCE]) contamination in the subsurface. The dry cleaning operation closed in 1977. In 2002, a series of injections were made at the site consisting of corn syrup, vegetable oils, and Simple Green®. In 2004, approximately 200 cubic yards of contaminated soil were excavated, and the bottom of the excavation was covered with sodium lactate. In 2009, the site was characterized using proprietary electrical resistivity imaging (ERI; commercially available as Aestus GeoTrax SurveysTM). Follow‐up confirmation soil borings targeted anomalies detected via the geophysical work. The results indicate an extremely electrically conductive (less than 1 ohm‐m) vadose zone downgradient from the injection wells, and extremely electrically resistive areas (greater than 10,000 ohm‐m) in the phreatic zone near the injection area. The sample data indicate that the electrically resistive anomalous zones contain moderate to high concentrations of undegraded dry‐cleaning compounds. Electrically conductive anomalous zones are interpreted to be areas of biological activity generated by the amendments injected into the subsurface based on the extreme conductivity values detected, the chemical composition (i.e., PCE degradates are present), and the dominant vadose‐zone location of the conductive zones. © 2012 Wiley Periodicals, Inc. 相似文献
5.
Bioventing—the injection of air into the vadose zone to increase microbial activity—is a commonly used, proven technology for remediating volatile organic compounds present in the vadose zone. Passive systems driven by wind or solar power are both more cost‐effective and sustainable than conventional systems. Such a passive system is being applied successfully to remediate a site impacted with total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and xylenes (BTEX) in soil. Bioventing technology was approved by the regulatory agency as an interim remedial action to remove chemicals of concern (COCs) in the vadose zone. A bioventing pilot study was conducted to evaluate the effectiveness of COC removal and collect parameters for full‐scale design and implementation. To evaluate the potential to use wind‐driven bioventing technology, two mobile weather stations were installed at the site and monitored for one month for a wind speed study. Based on the pilot‐test data and wind speed research, 12‐inch diameter funnel/vane 360‐degree wind collectors were designed as passive wind‐driven air‐injection devices and connected to existing monitoring wells. The measured air velocity ranged from 20 to 110 feet per minute during the start‐up and the first three months of operation and maintenance. Monitoring indicated a 20 percent oxygen delivery and greater than 90 percent reduction in COC concentrations, demonstrating a successful sustainable remediation with no power requirement and minimal operation and maintenance. © 2012 Wiley Periodicals, Inc. 相似文献
6.
Carmen A. Lebrón Timothy McHale Robroy Young Dale Williams Matthew G. Bogaart David W. Major Michaye L. McMaster Ian Tasker Naji Akladiss 《补救:环境净化治理成本、技术与工艺杂志》2007,17(2):5-17
An Interstate Technology and Regulatory Council (ITRC) forum was recently held that focused on six case studies in which bioremediation of dense nonaqueous‐phase liquids (DNAPLs) was performed; the objective was to demonstrate that there is credible evidence for bioremediation as a viable environmental remediation technology. The first two case studies from the forum have been previously published; this third case study involves a pilot‐scale demonstration that investigated the effects of biological activity on enhancing dissolution of an emplaced tetrachloroethene (PCE) DNAPL source. It used a controlled‐release test cell with PCE as the primary DNAPL in a porous media groundwater system. Both laboratory tests and a field‐scale pilot test demonstrated that bioaugmentation can stimulate complete dechlorination to a nontoxic end product and that the mass flux from a source zone increases when biological dehalorespiration activity is enhanced through nutrient (electron donor) addition and bioaugmentation. All project goals were met. Important achievements include demonstrating the ability to degrade a PCE DNAPL source to ethene and obtaining significant information on the impacts to the microbial populations and corresponding isotope enrichments during biodegradation of a source area. © 2007 Wiley Periodicals, Inc. 相似文献
7.
A Before‐ After Control‐ Impact Paired (BACIP) model was used to evaluate the effectiveness of phytoremediation treatment on reduction of bentazon concentrations in shallow groundwater at a study site in Louisiana. Two different statistical approaches were made to evaluate the impact to this test site from the remediation program through time. Data were evaluated by Bayesian analysis of variance test methods. Data sets were unique in that the control data used for impact evaluation, as compared to before and after data, were compiled from groundwater upgradient monitoring wells existing prior to remediation. The statistical model supports the hypothesis that the phytoremediation program has positively impacted groundwater at the study site. © 2006 Wiley Periodicals, Inc. 相似文献
8.
Contaminants from dry‐cleaning sites, primarily tetrachloroethene (PCE), trichloroethene (TCE), cis‐dichloroethene (cis‐DCE), and vinyl chloride (VC), have become a major concern because of the limited funds and regulatory programs to address them. Thus, natural attenuation and its effectiveness for these sites needs to be evaluated as it might provide a less costly alternative to other remediation methods. In this research, data from a site in Texas were analyzed and modeled using the Biochlor analytical model to evaluate remediation times using natural attenuation. It was determined that while biodegradation and source decay were occurring at the site, the resulting attenuation rates were not adequate to achieve cleanup in a reasonable time frame without additional source remediation or control strategies. Cleanup times exceeded 100 years for all constituents at the site boundary and 800 years at the source for PCE, assuming cleanup levels of 0.005 mg/L for PCE and TCE and 0.07 mg/L and 0.002 mg/L for cis‐DCE and VC, respectively. © 2005 Wiley Periodicals, Inc. 相似文献
9.
Patrick J. Evans Ian Lo Allen E. Moore William J. Weaver William F. Grove Hassan Amini 《补救:环境净化治理成本、技术与工艺杂志》2008,18(2):9-25
The former Bermite site north of Los Angeles, California, was used to manufacture various explosives and related products containing energetic compounds, including perchlorate. Remediation of perchlorate in site soil and groundwater is being conducted to meet regulatory requirements and allow planned redevelopment activities to proceed. The general approach to perchlorate remediation of shallow soil at the site includes excavation of affected soils followed by ex situ bioremediation. Glycerin was chosen for use as an electron donor because of its stability, safety, low cost, and regulatory acceptance. However, full‐scale bioremediation operation with glycerin initially resulted in inconsistent results despite consistent perchlorate biodegradation observed in treatability study microcosms. To eliminate the inconsistency and optimize the biotreatment process, additional studies were performed in the field on parallel tracks to determine crucial factor(s) that influenced inconsistent breakdown of perchlorate in site soils. Total Kjeldahl nitrogen (TKN) was determined to be a significant factor limiting perchlorate biodegradation. The addition of di‐ammonium phosphate (DAP) resulted in the consistent and complete perchlorate removal, generally within two weeks of incubation with a median destruction rate of about 200 μg/kg/day. Soil processing rates were gradually increased over the year, and, by the summer, approximately 2,000 to 2,500 tons of soil were being processed per day with a total of approximately 160,000 tons processed by the end of July. The total unit treatment cost for the process is about approximately $35/ton. The glycerin‐DAP process is playing a major role in the remediation of this 1,000‐acre former industrial site. © 2008 Wiley Periodicals, Inc. 相似文献
10.
Matthew Alexander 《补救:环境净化治理成本、技术与工艺杂志》2020,30(2):25-35
In situ bioremediation was selected in the Record of Decision (ROD) as the remedial technology for a 29‐acre dilute, acidic and aerobic, chlorinated solvent plume (principally trichloroethylene [TCE] and 1,1‐dichloroethylene) for a Superfund site located in central New Jersey. Implementation of the remedy at full‐scale began in late 2010, using reductive dechlorination and bioaugmentation, and treatment has continued steadily over the last 9 years. The amendments injected include electron donor and alkaline (bicarbonate) buffer solution and, once anaerobic aquifer conditions became established, a bioaugmentation culture. Amendment injections occurred in multilevel injection wells (IWs), to maintain control over the vertical interval of amendment delivery. The areal coverage of the plume has been reduced by 59% based on the 10 µg/L TCE isocontour and the contaminant mass has been reduced by 79% through the 9 years of treatment. Lessons learned from this project include the need for bioaugmentation in the acidic aquifer and an efficient and effective manner of well construction and amendment injection using multiscreen single casing IWs and packer systems. Additional lessons learned include differences in longevity of the electron donor amendment versus the bicarbonate neutralization additive, and the need for varied amendment delivery techniques (IWs, direct injection, horizontal well installation) in selected lower permeable zones to attain treatment. 相似文献
11.
Paul B. Hatzinger M. Casey Whittier Martha D. Arkins Chris W. Bryan William J. Guarini 《补救:环境净化治理成本、技术与工艺杂志》2002,12(2):69-86
Perchlorate has been identified as a water contaminant in 14 states, including California, Nevada, New Mexico, Arizona, Utah, and Texas, and current estimates suggest that the compound may affect the drinking water of as many as 15 million people. Biological treatment represents the most‐favorable technology for the effective and economical removal of perchlorate from water. Biological fluidized bed reactors (FBRs) have been tested successfully at the pilot scale for perchlorate treatment at several sites, and two full‐scale FBR systems are currently treating perchlorate‐contaminated groundwater in California and Texas. A third full‐scale treatment system is scheduled for start‐up in early 2002. The in‐situ treatment of perchlorate through addition of specific electron donors to groundwater also appears to hold promise as a bioremediation technology. Recent studies suggest that perchlorate‐reducing bacteria are widely occurring in nature, including in groundwater aquifers, and that these organisms can be stimulated to degrade perchlorate to below the current analytical reporting limit (< 4 μg/l) in many instances. In this article, in‐situ and ex‐situ options for biological treatment of perchlorate‐contaminated groundwater are discussed and results from laboratory and field experiments are presented. © 2002 Wiley Periodicals, Inc. 相似文献
12.
A common industrial solvent additive is 1,4‐dioxane. Contamination of dissolved 1,4‐dioxane in groundwater has been found to be recalcitrant to removal by conventional, low‐cost remedial technologies. Only costly labor and energy‐intensive pump‐and‐treat remedial options have been shown to be effective remedies. However, the capital and extended operation and maintenance costs render pump‐and‐treat technologies economically unfeasible at many sites. Furthermore, pump‐and‐treat approaches at remediation sites have frequently been proven over time to merely achieve containment rather than site closure. A major manufacturer in North Carolina was faced with the challenge of cleaning up 1,4‐dioxane and volatile organic compound–impacted soil and groundwater at its site. Significant costs associated with the application of conventional approaches to treating 1,4‐dioxane in groundwater led to an alternative analysis of emerging technologies. As a result of the success of the Accelerated Remediation Technologies, LLC (ART) In‐Well Technology at other sites impacted with recalcitrant compounds such as methyl tertiarybutyl ether, and the demonstrated success of efficient mass removal, an ART pilot test was conducted. The ART Technology combines in situ air stripping, air sparging, soil vapor extraction, enhanced bioremediation/oxidation, and dynamic subsurface groundwater circulation. Monitoring results from the pilot test show that 1,4‐dioxane concentrations were reduced by up to 90 percent in monitoring wells within 90 days. The removal rate of chlorinated compounds from one ART well exceeded the removal achieved by the multipoint soil vapor extraction/air sparging system by more than 80 times. © 2005 Wiley Periodicals, Inc. 相似文献
13.
Residual tetrachloroethene (PCE) contamination at the former Springvilla Dry Cleaners site in Springfield, Oregon, posed a potential risk through the vapor intrusion, direct contact, and off‐site beneficial groundwater uses. The Oregon Department of Environmental Quality utilized the State Dry Cleaner Program funds to help mitigate the risks posed by residual contamination. After delineation activities were complete, the source‐area soils were excavated and treated on‐site with ex situ vapor extraction to reduce disposal costs. Residual source‐area contamination was then chemically oxidized using sodium permanganate. Dissolved‐phase contamination was subsequently addressed with in situ enhanced reductive dechlorination (ERD). ERD achieved treatment goals across more than 4 million gallons of aquifer impacted with PCE concentrations up to 7,800 micrograms per liter prior to remedial activities. The ERD remedy introduced electron donors and nutrient amendments through groundwater recirculation and slug injection across two aquifers over the course of 24 months. Adaptive and mass‐targeted strategies reduced total remedy costs to approximately $18 per ton within the treatment areas. © 2010 Wiley Periodicals, Inc. 相似文献
14.
Re‐evaluation of treatment approach for a site contaminated with Freon‐113 and 1,1,1‐trichloroethane
Sreenivas Kota Charles W. Trione Kenneth J. Goldstein James Y. Wang 《补救:环境净化治理成本、技术与工艺杂志》2003,13(4):17-27
This study demonstrates a remedial approach for completing the remediation of an aquifer contaminated with 1,1,2‐trichlorotrifluoroethane (Freon‐113) and 1,1,1‐trichloroethane (TCA). In 1987, approximately 13,000 pounds of Freon‐113 were spilled from a tank at an industrial facility located in the state of New York. The groundwater remediation program consisted of an extraction system coupled with airstripping followed by natural attenuation of residual contaminants. In the first phase, five recovery wells and an airstripping tower were operational from April 1993 to August 1999. During this time period over 10,000 pounds of CFC‐13 and 200 pounds of TCA were removed from the groundwater and the contaminant concentrations decreased by several orders of magnitude. However, the efficiency of the remediation system to recover residual Freon and/or TCA reduced significantly. This was evidenced by: (1) low levels (< 10 ppb) of Freon and TCA captured in the extraction wells and (2) a slight increase of Freon and/or TCA in off‐site monitoring wells. A detailed study was conducted to evaluate the alternative for the second‐phase remediation. Results of a two‐year groundwater monitoring program indicated the contaminant plume to be stable with no significant increase or decrease in contaminant concentrations. Monitored geochemical parameters suggest that biodegradation does not influence the fate and transport of these contaminants, but other mechanisms of natural attenuation (primarily sorption and dilution) appear to control the fate and transport of these contaminants. The contaminants appear to be bound to the soil matrix (silty and clay units) with limited desorption as indicated by the solid phase analyses of contaminant concentrations. Results of fate and transport modeling indicated that contaminant concentrations would not exceed the action levels in the wells that showed a slight increase in contaminant concentrations and in the downgradient wells (sentinel) during the modeled timeframe of 30 years. This feasibility study for natural attenuation led to the termination of the extraction system and a transaction of the property, resulting in a significant financial benefit for the original site owner. © 2003 Wiley Periodicals, Inc. 相似文献
15.
Field trials with inorganic fertilizer (nitrogen, phosphorus, and potassium) nutrients were simulated in the greenhouse to remediate hydrocarbon‐polluted soils from a spill site in the Niger Delta, Nigeria. Samples of the polluted soils taken from two depths were displayed in a randomized complete block (RCB) design and treated with 10–100 g of (NH4)2SO4, KH2PO4, and KCl. The agronomic addition of the chemical nutrients was found to enhance the concentrations of nitrate‐nitrogen, phosphate‐phosphorus, and potassium in the soils. Pretreated nitrate‐nitrogen content ranged from 432 to 590 mg/kg in the polluted samples (with a control at 522 mg/kg), while posttreatment concentrations were 3,285 ± 154 mg/kg and 3,254 ± 159 mg/kg for surface and subsurface soils, respectively. © 2007 Wiley Periodicals, Inc. 相似文献
16.
The migration of biogeochemical gradients is a useful framework for understanding the evolution of biogeochemical conditions in groundwater at waste sites contaminated with metals and radionuclides. This understanding is critical to selecting sustainable remedies and evaluating sites for monitored natural attenuation, because most attenuation mechanisms are sensitive to geochemical conditions, such as pH and redox potential. Knowledge of how gradients in these parameters evolve provides insights into the behavior of contaminants with time and guides characterization, remedy selection, and monitoring efforts. An example is a seepage basin site at the Savannah River Site in South Carolina where low‐level acidic waste has seeped into groundwater. The remediation of this site relies, in part, on restoring the natural pH of the aquifer by injecting alkaline solutions. The remediation will continue until the pH upflow of the treatment zone increases to an acceptable value. The time required to achieve this objective depends on the time it takes the trailing pH gradient, the gradient separating the plume from influxing natural groundwater, to reach the treatment zone. Predictions of this length of time will strongly influence long‐term remedial decisions. © 2008 Wiley Periodicals, Inc. 相似文献
17.
Over the past 20 years, significant time and money have been spent on better understanding and successfully applying bioremediation in the field. The results of these efforts provide a deeper un‐derstanding of aerobic and anaerobic microbial processes, the microbial species and environ‐mental conditions that are desirable for specific degradation pathways, and the limitations that may prevent full‐scale bioremediation from being successfully applied in heterogeneous subsur‐face environments. Numerous substrates have been identified as effective electron donors to stimulate anaerobic dechlorination of chlorinated ethenes, but methods of delivering these sub‐strates for in situ bioremediation (direct‐push injections, slug injections, high‐pressure injections, fracture wells, etc.) have yet to overcome the main limitation of achieving contact between these substrates and the contaminants. Therefore, although it is important (from a full‐scale remedia‐tion standpoint) to select an appropriate, low‐cost substrate that can be supplied in sufficient quantity to promote remediation of a large source area and its associated plume, it is equally im‐portant to ensure that the substrate can be delivered throughout the impacted plume zone. Failure to achieve substrate delivery and contact within the chlorinated solvent plume usually re‐sults in wasted money and limited remediation benefit. Bioremediation is a contact technology that cannot be effectively implemented on a large scale unless a method for rapidly delivering the low‐cost substrate across the entire source and plume areas is utilized. Unfortunately, many cur‐rent substrate delivery methods are not achieving sitewide distribution or treatment of the sorbed contaminant mass that exists in the organic fraction of a soil matrix. The following discussion sum‐marizes substrate delivery using an aggressive groundwater recirculation approach that can achieve plumewide contact between the contaminants and substrate, thus accelerating dechlori‐nation rates and shortening the overall remediation time frame. © 2006 Wiley Periodicals, Inc. 相似文献
18.
Field‐scale pilot tests were performed to evaluate enhanced reductive dechlorination (ERD) of dissolved chlorinated solvents at a former manufacturing facility located in western North Carolina (the site). Results of the site assessment indicated the presence of two separate chlorinated solvent–contaminated groundwater plumes, located in the northern and southern portions of the site. The key chlorinated solvents found at the site include 1,1,2,2‐tetrachloroethane, trichloroethene, and chloroform. A special form of EHC® manufactured by Adventus Americas was used as an electron donor at this site. In this case, EHC is a pH‐buffering electron donor containing controlled release carbon and ZV Iron MicroSphere 200, a micronscale zero‐valent iron (ZVI) manufactured by BASF. Approximately 3,000 pounds of EHC were injected in two Geoprobe® boreholes in the saprolite zone (southern plume), and 3,500 pounds of EHC were injected at two locations in the partially weathered rock (PWR) zone (northern plume) using hydraulic fracturing techniques. Strong reducing conditions were established immediately after the EHC injection in nearby monitoring wells likely due to the reducing effects of ZV Microsphere 200. After approximately 26 months, the key chlorinated VOCs were reduced over 98 percent in one PWR well. Similarly, the key chlorinated solvent concentrations in the saprolite monitoring wells decreased 86 to 99 percent after initial increases in concentrations of the parent chlorinated solvents. The total organic carbon and metabolic acid concentrations indicated that the electron donor lasted over 26 months after injection in the saprolite aquifer. © 2009 Wiley Periodicals, Inc. 相似文献
19.
In situ treatability studies are being conducted to evaluate various in situ technologies to manage groundwater contamination at the NASA Marshall Space Flight Center in Huntsville, Alabama. The focus of these studies is to evaluate remediation options for contaminated (mostly aerobic) groundwater occurring within the basal portion of a clayey residuum called the rubble zone. The tension‐saturated media and unsaturated media lying above the rubble zone are also being treated where they make up a significant component of the contaminant mass. An in situ chemical reduction field pilot test was implemented (following bench‐scale tests) during July and August 2000. The test involved the injection of zero‐valent iron powder in slurry form, using the FeroxSM process patented by ARS Technologies, Inc. The pilot test focused on trichloroethene (TCE)‐contaminated groundwater within the rubble zone. Maximum pre‐injection concentrations of about 72,800 micrograms per liter (μg/l) were observed and no secondary sources are believed to exist beneath the area. The potential presence of unexploded ordnance forced an implementation strategy where source area injections were completed, as feasible, followed by overlapping injections in a down gradient alignment to create a permeable reactive zone for groundwater migration. Eight post‐injection rounds of groundwater performance monitoring were completed. The results are encouraging, in terms of predicted responses and decreasing trends in contaminant levels. © 2003 Wiley Periodicals, Inc. 相似文献
20.
Ralph J. Portier Javed Iqbal Caroline A. Metosh‐Dickey T. M. Davis 《补救:环境净化治理成本、技术与工艺杂志》2007,18(1):73-82
Soil moisture content and temperature in a contaminated soil biopile equipped with immobilized microbe bioreactors (IMBRs) were optimized during ex situ bioremediation at a creosote‐contaminated Superfund site. Efficiency of remediation during warm summer months without soil‐temperature and moisture optimization was compared with that of cold winter months when corrective measures were applied. Significant reduction (35 percent) in total polycyclic aromatic hydrocarbons (PAHs) was observed, compared to 3.97 percent without corrective measures (p < 0.05). Kinetic rates (KRs) for total PAH removal were significantly enhanced from 3.93 to 50.95 mg/kg/day. KRs for removal of high molecular mass four‐to‐six‐ring PAHs were also significantly enhanced from 70.29 mg/kg/day to 97.45 mg/kg/day ( p < 0.05). Bioremediation of two‐ and three‐ring PAHs increased significantly from 15 percent to 40 percent. Benzo[a]pyrene toxicity equivalent mass (BaPequiv) was significantly reduced by 48 percent with KR of 0.47 mg/kg/day as compared to 22 percent with KR of 0.14 mg/kg/day (p < 0.05). Soil moisture content was enhanced from 15.7 percent to 41.4 percent. © 2007 Wiley Periodicals, Inc. 相似文献