首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
利用双室微生物燃料电池处理模拟废水的产电特性研究   总被引:1,自引:1,他引:1  
本实验通过研究电池的启动过程、阳极有机物降解率和阴极Cu2+的去除率,评价了微生物燃料电池(microbial fuel cell,MFC)的产电和处理废水性能.以模拟糖蜜废水作为阳极基质,模拟电镀废水作阴极电子受体,建立简单的双室微生物燃料电池.结果表明在外电阻为800Ω的情况下,电池得到最大电压417.00 mV,从极化曲线上获得最大输出功率密度44.17mW.m-2,内阻为293Ω.电池在第五周期时,COD去除率也达到最高47.31%.在第四周期内,Cu2+最大的去除率为59.76%.综上所述,MFC在处理有机废水和电镀废水方面具有可行性.  相似文献   

2.
微生物燃料电池(MFC)作为一种生物电化学技术,可以将餐厨垃圾中的有机废物转化为电能。采用双室微生物燃料电池装置,以不同组分的餐厨垃圾作为阳极底物,分析对比了各反应器中有机物的去除效果和产电性能。以溶解性化学需氧量(SCOD)、总有机碳(TOC)和氨氮的去除率为参数,分析了MFC对不同组分餐厨垃圾的处理效果。并通过电压变化情况分析了不同有机组分对MFC产电特性的影响。结果表明:MFC对果皮类和蔬菜类SCOD的去除效果较好,去除率分别为86.46%和89.08%。然而对米面类和混合类的处理效果不佳。果皮类、蔬菜类和混合类的TOC去除率分别为83.87%、73.72%和34.63%,米面类TOC含量仍较高。MFC对各组分中氨氮的去除率均高于90%。MFC运行过程中最大输出电压的大小为混合类>果皮类>蔬菜类>米面类。混合类产生的最大面积电流密度和面积功率密度分别为1 036 mA/m2和623 m W/m2。该研究为餐厨垃圾的处置与资源化提供了学术参考。  相似文献   

3.
固定化微生物法处理氨氮废水   总被引:15,自引:0,他引:15  
通过固定消化菌处理氨氮废水和研究,着重从凝胶颗粒的机械强度、缩水性能、化学稳定性微生物活性等4个方面来选择包埋剂。结果表明海藻酸钠、卡拉胶、聚惭烯醇和丙烯酰胺是较理想的微生物载体。在选用丙烯酰胺凝胶颗粒固定硝化菌的氨氮废水处理工艺中,用正交试验与实验方法列出了影响氨氮去除率诸因素主次顺序,依次为PH值,颗普重量、丙烯酰胺量、菌体量。交得出丙烯酰胺含量12.5%,包埋菌体含量5%、颗粒重量4gPH值  相似文献   

4.
污泥压滤废水经厌氧消化后仍具高COD与高氨氮的特点,C/N比严重失调,属于典型的高氨氮废水。采用生物膜-活性污泥组合工艺(IFAS)处理污泥压滤废水的厌氧消化液,运行方式为好氧/缺氧反复交替,并向废水中添加磷源。系统运行稳定后,系统进水ρ(COD)为900~1 000 mg/L、ρ(NH3-N)为240~400 mg/L,COD、氨氮去除率分别达88.34%、96.53%。出水各指标达到污水处理厂的接收标准。IFAS系统有利于硝化菌的附着,同时向废水中添加磷源有利于活性污泥与生物膜的增长。  相似文献   

5.
刘润  安立超 《环境工程》2014,32(9):40-44
以普通的絮状污泥为接种污泥,保持COD不变,通过逐渐提高进水氨氮浓度,同时缩短沉淀时间,在SBR反应器中快速培养出具有短程硝化特性的好氧颗粒污泥。结果表明:保持ρ(COD)为300 mg/L,将进水ρ(NH+4-N)从50 mg/L逐渐提高至500 mg/L,沉淀时间从40 min逐渐缩短至2 min,并控制曝气量为200 L/h,pH值为8.0,温度为30℃,在第50天成功培养出了粒径为1.0~2.0 mm,SVI为20.1 mL/g的好氧颗粒污泥。在ρ(NH+4-N)为500 mg/L,碳氮比为3∶5时,对氨氮和COD去除率分别达到了90%和99%,亚硝态氮的积累率达到了92%,出水COD和氨氮均达到了理想的去除效果。  相似文献   

6.
7.
以剩余污泥为阳极底,糖蜜废水为基质,Ag Cl废水为阴极电子受体,构建了双室微生物燃料电池(Two-chamber Microbial Fuel Cell,简称MFCs),并研究了电池的产电特性、库仑效率及金属去除率.结果表明:Ag+不仅可以作为阴极电子受体,而且还能稳定产电,外电阻为1000Ω时,获得的最大电压为514.5 m V,最大功率密度为65.82 m W·m-2.在阴极实现了对废水中Ag+的去除,最大去除率可达71.6%,而且Ag+浓度为2000 mg·L-1时,回收金属银单质质量为197.66 g.在阳极对废水的处理效果也很显著,库仑效率最高为2.66%,COD去除率最大为81.22%.  相似文献   

8.
PSB活性污泥法处理含酚废水的研究   总被引:3,自引:0,他引:3  
将光合细菌(PSB)固定于活性污泥上经驯化培养后,在好氧条件下处理含酚废水,可明显地提高去酚能力,并可减少菌体流失,抗冲击力强,对温度、pH值适应范围广。通过动态试验证明,该法是处理含酚废水的一种有效的新途径。  相似文献   

9.
探讨了ICZs-活性污泥生物系统在控制污泥膨胀过程中的影响因素及其处理效果。3个月的实验结果表明:当ICZs预反应段的条件控制在溶解氧小于0.06mg/L,pH为7-7.6时,该生物系统能够有效控制污泥膨胀。ICZs-活性污泥生物系统具有高效去除污染物的能力。BOD5,COD和TSS总去除率的平均值分别高于97%,80%及90%,其中仅ICZs段在预处理时间为20min时就能去除49.0%-62.  相似文献   

10.
对活性污泥处理含铬废水进行了试验研究,探讨了活性污泥用量,废水酸度,接触时间,温度等条件对除铬效果的影响。结果表明:在废水pH值=3-10,Cr^3 ≤20mg/L范围内,按铬与活性污泥重量比为1/600投加活性污泥,去除率可达95%以上,处理后可达排放标准。  相似文献   

11.
废水同步生物处理与生物燃料电池发电研究   总被引:17,自引:10,他引:17  
尤世界  赵庆良  姜珺秋 《环境科学》2006,27(9):1786-1790
利用厌氧活性污泥作为接种体成功地启动了空气阴极生物燃料电池(ACMFC),110h的接种产生了0.24V的电压;以乙酸钠和葡萄糖作底物分别产生了0.38V和0.41V电压(外电阻1 000Ω),最大功率密度分别达到146.56 mW/m2和192.04mW/m2,表明有机废水可以用来发电;同时,乙酸钠和葡萄糖的去除率分别为99%和87%,表明燃料电池可以处理废水.二者的电子回收率均在10%左右,主要是由于阴极对氧气分子的透过作用引起的微生物好氧呼吸导致电子损失.  相似文献   

12.
文章选用具有较强选择性和吸附性的13X沸石和活性炭作为吸附材料,以人工配置的含氨氮废水模拟实际废水,分别以溶液pH值、吸附时间、初始浓度和投加顺序等作为影响因素,通过实验来系统地考察所选材料对废水中氨氮的去除技术参数。结果表明:所选材料具有较好、较稳定的吸收效果,在其他条件一定的情况下,13X沸石在pH值为中性,吸附时间为40 min时对氨氮的去除率最大,达87.9%。且在相同实验条件下,先投放活性炭再投放沸石去除氨氮的效果较好,比先投放沸石然后投放活性炭的效果高出25%左右。  相似文献   

13.
14.
探讨了不同改性阳极对微生物燃料电池(microbial fuel cell,MFC)产电性能及其对MFC处理难降解废水能力的影响.以单室空气阴极为基础,利用0.1 g电气石、质量分数75%二氧化锰/埃洛石纳米管(manganese bioxide/halloysite nanotube,MnO_2/HNT)和多壁碳纳米管-羧基(multi-walled carbon nanotube-carboxyl,MWCNT-COOH)对MFC阳极进行修饰.结果表明,不同改性阳极的MFC对含精对苯二甲酸(purified terephthalic acid,PTA)废水的去除率均高于70%,且化学需氧量(chemical oxygen demand,COD)去除率在79%以上.相较于其他几种改性阳极,以MWCNT-COOH改性材料作阳极的MFC产生的最大输出电压最高,获得的最大功率密度最高,分别为529 mV和252.73 mW·m~(-2).  相似文献   

15.
以花生壳为原料,分别使用程序控温法和微波法制备生物质活性炭.采用高分辨电子扫描电镜(SEM)和氮吸脱附曲线对花生壳活性炭进行了表征.结果表明,微波法制备的花生壳活性炭比表面积大于程序控温法制备的花生壳活性炭比表面积,且微波法制备活性炭成本远低于程序控温法.将制得的两种活性炭和商用活性炭分别辅助微波处理氨氮废水,确定了生物质活性炭辅助微波处理氨氮废水的最佳条件.初步讨论了活性炭辅助微波处理氨氮废水的机理.  相似文献   

16.
微生物燃料电池(MFC)利用微生物催化剂将其代谢能直接转化为电能,具有原料广泛、反应条件温和、清洁高效等优点。目前该领域仍处于实验阶段,研究用于污水处理的MFC的性能及其影响因素,对其实际应用有重要的指导意义。本研究以厌氧活性污泥为菌源,醋酸钠为底物,考察影响微生物燃料电池(MFC)处理模拟有机废水的主要因素及处理效果。结果表明:该MFC在产电的同时净化废水,其输出功率密度、产电量与初始COD呈函数关系,混合菌群可降低反应初期溶解氧对COD去除率和pH的影响。  相似文献   

17.
剩余污泥为底物的微生物燃料电池处理含铜废水   总被引:3,自引:3,他引:3  
以剩余污泥作为阳极底物,CuSO4溶液为阴极溶液构建了双室有膜微生物燃料电池(microbial fuel cell,MFC),研究了MFC的启动,污泥的降解,Cu2+的去除和阴极还原产物的性质.结果表明,Cu2+可作MFC的阴极电子受体,在外电路电阻为1 000 Ω,Cu2+浓度为6 400 mg/L的条件下获得的稳...  相似文献   

18.
构建了一种基于升流式厌氧污泥床反应器(UASB)的微生物燃料电池(MFCs),利用UASB高效去除COD能力及连续进样方式,获得稳定电能输出。考察了水力停留时间、进液方式、电极材料、离子交换膜种类、溶液离子强度等因素对于MFCs性能的影响。实验结果表明:在水力停留时间6h、连续进液、高纯石墨板电极以及均相阳离子交换膜条件下,连续运行3个月,放电功率稳定在145mW/m^2,开路电压0.78V,放电电流最高可达321mA/m^2。  相似文献   

19.
以数学软件matlab内嵌的SimuLink工具箱为研究工具,结合国际水协( IWA)提出的活性污泥一号模型(ASM1)对欧盟科学技术合作计划(COST)提供的AO标准工艺流程建立数学模型并加以模拟,将模拟结果和COST提供的标准模拟结果进行比较,在各级反应器内的两者结果基本匹配,认为模型的建立、模拟结果合理可靠,基于该工艺模型的拓展模型和变型可进一步为实际工艺的设计与运行提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号