首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article discusses a project demonstrating the successful use of a novel horizontal biobarrier approach to protect a fractured limestone aquifer from continuing contamination while passive bioremediation of the overlying clay till source area is in progress. The emplacement of the biobarrier has significantly reduced the concentrations of chlorinated ethenes and dechlorination activity in the limestone aquifer, promoting complete reductive dechlorination of the trichloroethene plume. The biobarrier strategy has thus met the challenge of protecting the limestone from the overlying overburden. Direct GeoProbe injections performed in the source area, which consist of a clay till overburden, have also reduced the contaminant concentrations in the clay till due to enhanced dechlorination activity; however, repeat injections may be required to address the areas of the till in which the injectate has not yet been distributed. The time frame for remediating the source area in the till is expected to be on the order of a decade. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
Enhanced biodegradation of creosote-contaminated soil   总被引:2,自引:0,他引:2  
Bioremediation, a viable option for treatment of cresote-contaminated soil, can be enhanced by the use of surfactant. A study was conducted to investigate the effect of a non-ionic surfactant, Triton X-100, on biodegradation of creosote-contaminated soil. Abiotic soil desorption experiments were performed to determine the kinetics of release of selected polynuclear aromatic hydrocarbon (PAH) compounds. Respirometric experiments were also conducted to evaluate the effect of nonionic surfactant on biodegradation. The N-Con system respirometer was used to monitor the oxygen uptake by the microorganisms. The abiotic experiments results indicated that the addition of surfactant to soil/water systems increased the desorption of PAH compounds. It was also observed that the desorption rate of PAH compounds depended on their molecular weight. The 3- and 4-ring PAH compounds showed higher and faster desorption rates than the 5- and 6-ring PAHs. The respirometric experiments indicated that an increase in soil contamination level from 112.5 to 771.8 mg/kg showed an increase in oxygen uptake. But for a soil contamination level of 1102.5 mg/kg, the oxygen uptake was similar to the contamination level of 771.8 mg/kg. This might be due to toxicity by the surfactant or the solubilized PAHs at high concentration or interference with contaminant transport into the cell or to reversible physical-chemical interferences with the activity of enzymes involved in the PAH degradation. The increase in PAH availability to the microorganisms in the aqueous phase produced an increase in oxygen consumption that is proportional to the biodegradation of organic compounds.  相似文献   

3.
The influence of a new aeration system on the biopile performance was investigated. The purpose was to increase biodegradation efficiency by optimising airflow through the pile. During a 1-month field trial, the performance of a new system using two perforated vertical pipes with wind-driven turbines was compared with that of a standard pile configuration with two horizontal perforated pipes. Both piles were composed of a similar mix of diesel-contaminated soils, woodchips, compost and NPK fertiliser. Hydrocarbons were recovered using solvent extraction, and determined both gravimetrically and by gas chromatography. Total heterotrophs, pH and moisture content were also assessed. Air pressure measurements were made to compare the efficiency of suction in the pipes. Results at the end of the experiment showed that there was no significant difference between the two piles in the total amount of hydrocarbon biodegradation. The normalised degradation rate was, however, considerably higher in the new system than in the standard one, suggesting that the vertical venting method may have improved the efficiency of the biological reactions in the pile. The pressure measurements showed a significant improvement in the suction produced by the new aeration system. However, many factors other than the airflow (oxygen supply) may influence and limit the biodegradation rates, including moisture content, age of contaminants and the climatic conditions. Additional experiments and modelling need to be carried out to explore further the new aeration method and to develop criteria and guidelines for engineering design of optimal aeration schemes in order to achieve maximum biodegradation in biopiles.  相似文献   

4.
The mathematical formulations in a one-dimensional compartment model of the biodegradation of organic landfill components are described. The model is designed to switch between anaerobic and aerobic conditions, depending on the local oxygen concentration. The model also includes the effect of environmental factors, such as moisture content, pH, and temperature, on reaction rates. The model includes not only biodegradation processes for carbon compounds (acetate, CO2, CH4), but also for nitrogen compounds involved in nitrification and denitrification due to their significance in landfills. Two example runs to simulate anaerobic and aerobic waste were conducted for a single landfill unit cell by changing the organic content and diffusion coefficient.  相似文献   

5.
In the 1960s, trichloroethene (TCE) was used at what is now designated as Installation Restoration Program Site 32 Cluster at Vandenberg Air Force Base to flush missile engines prior to launch and perhaps for other degreasing activities, resulting in releases of TCE to groundwater. The TCE plume extends approximately 1 kilometer from the previous launch facilities beyond the southwestern end of the site. To limit further migration of TCE and chlorinated degradation by‐products, an in situ, permeable, reactive bioremediation barrier (biobarrier) was designed as a cost‐effective treatment technology to address the TCE plume emanating from the source area. The biobarrier treatment would involve injecting carbon‐based substrate and microbes to achieve reductive dechlorination of volatile organic compounds, such as TCE. Under reducing conditions and in the presence of certain dechlorinating microorganisms, TCE degrades to nontoxic ethene in groundwater. To support the design of the full‐scale biobarrier, a pilot test was conducted to evaluate site conditions and collect pertinent design data. The pilot test results indicated possible substrate delivery difficulties and a smaller radius of influence than had been estimated, which would be used to determine the final biobarrier well spacing. Based on these results, the full‐scale biobarrier design was modified. In January 2010, the biobarrier was implemented at the toe of the source area by adding a fermentable substrate and a dechlorinating microbial culture to the subsurface via an injection well array that spanned the width of the TCE plume. After the injections, the groundwater pH in the injection wells continued to decrease to a level that could be detrimental to the population of Dehalococcoides in the SDC‐9TM culture. In addition, 7 months postinjection, the injection wells could not be sampled due to fouling. Cleaning was required to restore their functions. Bioassay and polymerase chain reaction analyses were conducted, as well as titration tests, to assess the need for biobarrier amendments in response to the fouling issues and low pH. Additionally, slug tests were performed on three wells to evaluate possible localized differences in hydraulic conductivity within the biobarrier. Based on the test results, the biobarrier was amended with sodium carbonate and inoculated a second time with SDC‐9TM. The aquifer pH was restored, and reductive dechlorination resumed in the treatment zone, evidenced by the reduction in TCE and the increase in degradation products, including ethene. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
7.
This paper presents the results of laboratory investigation conducted to determine the variation of geotechnical properties of synthetic municipal solid waste (MSW) at different phases of degradation. Synthetic MSW samples were prepared based on the composition of MSW generated in the United States and were degraded in bioreactors with leachate recirculation. Degradation of the synthetic MSW was quantified based on the gas composition and organic content, and the samples exhumed from the bioreactor cells at different phases of degradation were tested for the geotechnical properties. Hydraulic conductivity, compressibility and shear strength of initial and degraded synthetic MSW were all determined at constant initial moisture content of 50% on wet weight basis. Hydraulic conductivity of synthetic MSW was reduced by two orders of magnitude due to degradation. Compression ratio was reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. Direct shear tests showed that the fresh and degraded synthetic MSW exhibited continuous strength gain with increase in horizontal deformation, with the cohesion increased from 1 kPa for fresh MSW to 16–40 kPa for degraded MSW and the friction angle decreased from 35° for fresh MSW to 28° for degraded MSW. During the triaxial tests under CU condition, the total strength parameters, cohesion and friction angle, were found to vary from 21 to 57 kPa and 1° to 9°, respectively, while the effective strength parameters, cohesion and friction angle varied from 18 to 56 kPa and from 1° to 11°, respectively. Similar to direct shear test results, as the waste degrades an increase in cohesion and slight decrease in friction angle was observed. Decreased friction angle and increased cohesion with increased degradation is believed to be due to the highly cohesive nature of the synthetic MSW. Variation of synthetic MSW properties from this study also suggests that significant changes in geotechnical properties of MSW can occur due to enhanced degradation induced by leachate recirculation.  相似文献   

8.
The direct application of surfactants to petroleum-contaminated soil has been proposed as a mechanism to increase the bioavailability of insoluble compounds. Solubilization of hydrophobic compounds into the aqueous phase appears to be a significant rate limiting factor in petroleum biodegradation in soil. Nonionic surfactants have been developed to solubilize a variety of compounds, thus increasing the desorption of contaminants from the soil. In this study, laboratory scale land treatment scenarios were used to monitor the bioremediation of petroleum contaminated soils. In efforts to achieve the lowest levels of residual petroleum hydrocarbons in the soil following biotreatment, 0.5 and 1.0% (volume/weight) surfactant was blended into soils under treatment. Two soil types were studied, a high clay content soil and a sandy, silty soil. In both cases, the addition of surfactant (Adsee 799®, a blend of ethoxylated fatty acids, Witco Corporation) stimulated biological activity as indicated by increased heterotropbic colony forming units per gram of soil. However, the increased activity was not correlated with removal of petroleum hydrocarbons. The results suggest that the application of surfactants directly to the soil for the purpose of solubilizing hydropbobic compounds was not successful in achieving greater levels of petroleum hydrocarbon removal.  相似文献   

9.
Contamination of the environment with toxic metals, such as lead (Pb), represents a serious concern for human health. Most of the studies on Pb stabilization were performed using various phosphorus-containing amendments that can reduce Pb mobility and bioavailability by the sorption and precipitation of new, stable pyromorphite-type minerals, presenting very low solubility and bioaccessibility. However, the presence of competing ions, such as zinc (Zn), can reduce stabilization efficacy. The role of chemical composition on the stability of immobilization products of Pb and Zn by the addition of hydroxyapatite (HAP) or fluoroapatite (FAP) has been examined in this paper. In this analysis we used a theoretical criterion which is based on calculation of the ion–ion interaction potential, representing the main term of the cohesive energy of the matrix/pollutant system. It has been demonstrated that the stability of the HAP matrix decreases and that the stability of the FAP matrix increases with the Pb immobilization in the presence of Zn. The results of this analysis point out FAP as an advantageous amendment for the immobilization of Pb in the presence of Zn.  相似文献   

10.
In 1995 the University of Tennessee's Waste Management Research and Education Institute and Canon Inc. began an analysis of the extent to which remediation firms and research centers have implemented bioremediation strategies, particularly for the cleanup of trichloroethylene (TCE) in soil and groundwater. The research involved the mailing of surveys to a select, representative group of environmental professionals involved in TCE cleanup activities. The survey was divided into two parts. Part I gathered cost information for TCE cleanup, using both bioremediation and “conventional” cleanup technologies. Part II asked the survey recipients to relate their opinions on the use of nonindigenous microorganisms for bioremediation, especially their assessment of the effectiveness, reliability, safety, and predictability of this approach. The results of this survey are discussed in this article.  相似文献   

11.
Residues reclaimed from a municipal solid waste (MSW) landfill were characterized for the concentrations of a number of heavy metals. The residue fractions analyzed included a fine fraction (<0.425 mm), an intermediate fraction (>0.425 and <6.3 mm) and a fraction consisting of paper products that could ultimately degrade to a smaller size. The intermediate fraction appeared to be organic in nature, while the fine fraction was more soil-like. In general, the metal concentrations were greatest in the intermediate fraction and lowest in the fine fraction. The effect of sample age on the elemental content was also investigated. The concentrations of several elements were greater in older samples (sample approximately 8 years in age) when compared to newer samples (sample approximately 3 years in age). Limitations associated with the land application of residual soil (composed of the fine and intermediate fractions) were assessed by comparing measured concentrations to regulatory threshold values. In general, most metal concentrations were below regulatory thresholds for use in unrestricted settings. At the concentrations measured, however, several elements might limit reuse options, depending on which regulatory threshold serves as a benchmark. Elevated concentrations of arsenic presented the greatest limitation with respect to common US thresholds while elevated cadmium concentrations presented the greatest limitation when compared to UK thresholds. The source of the arsenic was determined to be the waste, not the cover soil.  相似文献   

12.
Solid waste management (SWM) facilities are crucial for environmental management and public health in urban regions. Due to the waste management hierarchy, one of the greatest challenges that organizations face today is to figure out how to diversify the treatment options, increase the reliability of infrastructure systems, and leverage the redistribution of waste streams among incineration, compost, recycling, and other facilities to their competitive advantage region wide. Systems analysis plays an important role for regionalization assessment of integrated SWM systems, leading to provide decision makers with break-through insights and risk-informed strategies. This paper aims to apply a minimax regret optimization analysis for improving SWM strategies in the Lower Rio Grande Valley (LRGV), an economically fast growing region in the US. Based on different environmental, economic, legal, and social conditions, event-based simulation in the first stage links estimated waste streams in major cities in LRGV with possible solid waste management alternatives. The optimization analysis in the second stage emphasizes the trade-offs and associated regret evaluation with respect to predetermined scenarios. Such optimization analyses with multiple criteria have featured notable successes, either by public or private efforts, in diverting recyclables, green waste, yard waste, and biosolids from the municipal solid waste streams to upcoming waste-to-energy, composting, and recycling facilities. Model outputs may link prescribed regret scenarios in decision making with various scales of regionalization policies. The insights drawn from the system-oriented, forward-looking, and preventative study can eventually help decision-makers and stakeholders gain a scientific understanding of the consequences of short-term and long-term decisions relating to sustainable SWM in the fast-growing US-Mexico borderland.  相似文献   

13.
We studied the biochemical and anaerobic degradation characteristics of 29 types of materials to evaluate the effects of a physical composition classification method for degradable solid waste on the computation of anaerobic degradation parameters, including the methane yield potential (L0), anaerobic decay rate (k), and carbon sequestration factor (CSF). Biochemical methane potential tests were conducted to determine the anaerobic degradation parameters of each material. The results indicated that the anaerobic degradation parameters of nut waste were quite different from those of other food waste and nut waste was classified separately. Paper was subdivided into two categories according to its lignin content: degradable paper with lignin content of <0.05 g g VS?1, and refractory paper with lignin content >0.15 g g VS?1. The L0, k, and CSF parameters of leaves, a type of garden waste, were similar to those of grass. This classification method for degradable solid waste may provide a theoretical basis that facilitates the more accurate calculation of anaerobic degradation parameters.  相似文献   

14.
This study investigated the feasibility of using fresh activated sewage sludge as inoculum for the microbial valorization of segregated municipal solid waste and evaluated the quality of organic soil amendment generated. Organic fraction of municipal solid waste, which consisted of vegetative (vegetable, fruit and flower) wastes was seeded with activated sewage sludge and processed by rapid aerobic microbial treatment. Efficacy of microbial valorization process and quality of final product were assessed by physico-chemical analysis. Suitability of final product was assessed with regard to heavy metal content, pesticide residues, microbiological quality and phytotoxicity. Quality of the soil amendment generated was compared with the control product generated with a commercial microbial inoculum. Phytotoxicity experiments indicated the stimulatory effect of sewage sludge seeded soil amendment on plant growth but inhibition was observed in closed growth test due to the evolution of gaseous phytotoxic agents. The study suggests that segregated municipal solid waste can be effectively valorized with activated non-dewatered sewage sludge as inoculum and the quality of soil amendment generated was comparable to compost intended for unrestricted applications.  相似文献   

15.
The primary biodegradability of polyethylene (PE) films containing different percentages of cornstarch (0–50%) and other additives (prooxidant, oxidized polyethylene) was tested using four species of earthworms (Eisenia fetida, Lumbricus terrestris, Aporectodea trapezoides, Aporectodea tuberculata), three species of cockroaches (Periplaneta americana, Blaberus sp.,Blattella germanica), termites (Reticulotermes flavipes), sowbugs (Porcellio laevis), and crickets (Acheta domesticus). These studies were conducted to elucidate the potential role of soil macroinvertebrates in degrading starch/PE biodegradable plastics. The results of the macroinvertebrate bioassays indicate that crickets, cockroaches, and sowbugs consumed starch-containing PE films most readily. In addition, the degree to which the films were attacked and consumed was directly related to the starch content of the film. Films with oxidized polyethylene and those containing prooxidant (vegetable oil and a transition metal catalyst) were also consumed. None of the four species of earthworms tested or the termites showed any activity toward the starch/polyethylene films. These results have important implications for determining the fate of novel plastic formulations which claim to be biodegradable in natural environments. Studies such as these, coupled with studies on microbial degradation, will help provide the type of information needed to assess the environmental fate of biodegradable starch/PE plastics and fill the voids in the scientific database regarding this rapidly developing field.  相似文献   

16.
In this study, a factorial‐designed experiment of biostimulated trichloroethene (TCE) dechlorination in fractured bedrock aquifers using microcosms evaluated several potential biostimulants (i.e., nutrients, vitamins, and sterile groundwater). Substantial cost savings and resource efficiency can be provided by this approach because: factorial designs require relatively few microcosms per factor; the interpretation of the observations can proceed largely by common sense, simple arithmetic, and computer graphics; the observations can indicate promising directions for further experimentation and causative relationships; and designs can be suitably augmented when a more in‐depth exploration is needed. TCE degradation was evaluated using three methods of data analysis: (1) analysis of covariance (ANCOVA) between biotic and abiotic treatment trend‐line slopes; (2) calculation of biodegradation half‐life; and (3) effects screening by model fitting. Microcosm preparation with crushed rock in groundwater was found to more closely match the previously observed field rates than the preparation with only groundwater. Injection of nutrient and vitamin mixtures was made into microcosms that were previously aged to obtain consistent conditions, and the TCE concentration measured after incubating for 45 days. Comparison of results indicated that the nutrient mixture slows or inhibits the degradation of TCE compared to the sterile groundwater; however, the vitamin mixture offsets and nearly compensates for the inhibitory effect of the nutrient mixture. It is recommended that this factorial experiment be augmented with additional studies of individual or groups of compounds from the vitamin mixture using this methodology to isolate and identify the specific factor or interaction responsible for the inhibitory compensation. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Most of the standardized biodegradation tests used to assess the ultimate biodegradation of environmentally degradable polymers are based solely on the determination of net evolved carbon dioxide. However, under aerobic conditions, it has to be considered that heterotrophic microbial consortia metabolize carbon substrates both to carbon dioxide and in the production of new cell biomass. It is generally accepted that in the relatively short term, 50% of the carbon content of most organic substrates is converted to CO2, with the remaining carbon being assimilated as biomass or incorporated into humus. The latter is particularly important when the metabolism of the organic matter occurs in a soil environment. A straightforward relationship between the free-energy content of a carbon substrate (expressed as the standard free-energy of combustion) and its propensity for conversion to new microbial biomass rather than mineralization to CO2 has been established. This can potentially lead to underestimation of biodegradation levels of test compounds, especially when they consist of carbon in a fairly low formal oxidation state and relatively high free-energy content. In the present work, the metabolism of different kind of carbon substrates, especially in soil, is reviewed and compared with our own experimental results from respirometric tests. The results show that conversion of highly oxidized materials, such as the commonly used reference materials, cellulose or starch, to CO2 may be significantly overestimated. The addition of glucosidic material to soil leads to greatly increased respiration and is accompanied by a very low conversion to biomass or humic substances. In contrast, relatively less oxidized substrates metabolize more slowly to give both CO2 and biomass to an extent which may be significantly underestimated if glucosidic materials are used as the reference. The need for an overall carbon balance taking into account both the carbon immobilized as biomass and that volatized as CO2 must be considered in standard respirometric procedures for assessing the biodegradability of slowly degrading macromolecules.  相似文献   

18.
A potting experiment was carried out to determine the effects of soil amendments containing polysaccharides and earthworms on a land application system for the purification of animal waste water. The following soil amendments were used: purified Konjak powder (KP, powder containing glucomannan made from the root system of devil's tongue, Amorphophalus rivieri Dur.), crystallized cellulose (CC), and a mixture of the two (MX). These soil amendments were added to the pots, and then Chrysanthemum corondria were planted in the earthworm pots (A pots), the nonearthworm pots (B pots), and the control pots (C pots); the first two plots received primary-treated animal waste water, and the other one received tap water. The following items were then measured: pH, electrical conductivity, chemical oxygen demand (CODMn), total nitrogen (TN), total phosphorus, the volume of drained water from each pots, the height and dry matter weight of plants, and the water permeability into the soil. The MX-A pots, i.e., the pots containing both soil amendments and earthworms, gave good results, especially for water permeability, plant growth, the purification of CODMn, and TN. These results suggest that the presence of soil amendments and earthworms may enhance the improvement of water quality in land application systems using vegetation. Received: December 9, 1998 / Accepted: February 8, 2000  相似文献   

19.
Biodegradability under composting conditions is assessed by test methods, such as ASTM D 5338-92, based on the measurement of CO2 released by test materials when mixed with mature compost and maintained in a controlled composting environment. However, in real composting, biodegradation occurs in fresh waste. To clarify this point, the biodegradation of paper and of a starch-based biodegradable thermoplastic material, Mater-Bi ZI01U, was followed by measuring the weight loss of samples introduced either into a mature compost or into a synthetic waste. The weight loss in mature compost was higher at the beginning but tended to decrease; in synthetic waste a first lag phase was followed by an exponential phase. Complete degradation of paper was noticed simultaneously in the two substrates (after 25 days). The bulkier Mater-Bi samples were fully degraded after 20 days in fresh waste, but after 45 days in mature compost. Therefore, the test methods using mature compost as a substrate can possibly underestimate the biodegradation rate occurring in fresh waste, i.e., in real composting plants, and have to be considered as conservative test methods. The test procedure described in this paper seems very suitable as a screening method to verify the compostability of plastic materials in a composting environment.  相似文献   

20.
Phytoremediation is an emerging technique that can be used to economically remediate sites contaminated with trace elements and/or man‐made organic contaminants. This technique was used on Pearl Harbor (Oahu, Hawaii) dredged material (PHDM) containing polycyclic aromatic hydrocarbons (PAHs) and some heavy metals. The dredged material was first amended with a high‐calcium soil (Waialua Mollisol) and a biosolids‐based compost at different proportions to yield varying salinity levels. A mixture that yielded an electrical conductivity (EC, a measure of salinity) of the saturated paste extract of 15 to 20 dS/m was identified and used to evaluate the salt tolerance of five plant species. Relative germination and one‐month‐old biomass indicated that common bermuda grass (Cynodon dactylon), seashore paspalum (Paspalum vaginatum), beach pea (Vigna marina), and cow pea (Vigna unguiculata) can produce at least 40 percent of biomass of the control at an EC of approximately 18 dS/m, suggesting the four plants are relatively salt tolerant. In contrast, Desmodium intortum either did not germinate or died within two weeks after germination at the same salinity level. A subsequent greenhouse experiment, using mixtures of the PHDM (0 or 25 percent dry weight), organic amendments (10 percent leucaena green manure or biosolids‐based compost), and a Mollisol (65 or 90 percent dry weight) in 6‐liter pots containing 4 kilograms of material yielded the following results: (1) A combination of transplanted seashore paspalum, seeded bermuda grass, and seeded beach pea was effective in taking up sodium (Na), thereby reducing salinity and making the medium more amenable to diversified microbes and plants, which may be effective PAH degraders; (2) total PAH concentration was reduced by about 30 percent after three months of active plant growth, but degradation of individual PAH members varied significantly, however; (3) leguminous green manure, as a soil amendment, was more effective than compost for use in bio‐ and/or phytoremediations; and (4) soil amendments, when applicable, could supplement living plants in reducing organic contaminants, such as PAHs. © 2002 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号