首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 500 毫秒
1.
魏红  赵江娟  景立明  钮金芬  付冉  董雯 《环境科学》2023,44(12):6811-6822
采用NaHCO3活化荞麦皮生物炭,优化得到生物炭0.25N-BC[m(NaHCO3):m(荞麦皮)=0.25:1],通过SEM、BET、XRD、Raman、FTIR和XPS等方法进行表征,分析NaHCO3对生物炭理化性质的影响,探究其对非离子型碘代X射线造影剂碘帕醇(IPM)的吸附性能和机制.结果表明,与荞麦皮生物炭相比(BC),NaHCO3活化生物炭的结构缺陷程度更高(比表面积和孔体积分别由480.40 m2·g-1和0.29 cm3·g-1增至572.83 m2·g-1和0.40 cm3·g-1,ID/IG是BC的1.22倍),表面含碳和含氧官能团数量发生显著变化,极性增强[(N+O)/C由0.15增至0.24],能够有效吸附IPM,0.25N-BC对IPM最大吸附量达到74.94 mg·g-1,是BC (7.88 mg·g-1)的9.51倍.拟二级吸附动力学和Langmuir、Freundlich等温线模型可很好地拟合0.25N-BC对IPM的吸附,吸附过程主要以化学吸附和单层、非均质多层吸附为主;孔隙填充、氢键、π—π和n—π相互作用是0.25N-BC吸附IPM的主要机制.对比不同碱[KOH、Na2CO3、NaHCO3、KHCO3和Ca (HCO32]活化荞麦皮生物炭对IPM的吸附,0.25N-BC吸附效率高,达到吸附平衡时间短,能有效去除实际水体(二沉池出水和湖水)中IPM的残留,并具有良好的循环使用性能,吸附-解吸3次后对IPM的去除率仍保持在74.91%.研究表明NaHCO3活化荞麦皮生物炭是一种绿色有效,可持续去除含碘有机物的优良吸附剂.  相似文献   

2.
采用响应曲面法优化了KOH改性污泥生物炭(SB-KOH)的制备条件,研究了各因素之间对生物炭吸附性能的交互影响,并且探讨了KOH强化生物炭吸附能力的机制.同时,研究了吸附时间、吸附温度及pH对SB-KOH吸附Pb(Ⅱ)的影响,探讨其吸附机理.结果表明:KOH浸渍浓度是最显著因素,较高浸渍浓度有利于提高SB-KOH的吸附性能;增加KOH浸渍浓度和升高热解温度可以协同提高SB-KOH的吸附性能;最佳制备条件为2.5 mol·L-1的KOH浸渍浓度、7 h的浸渍时间、631 ℃的热解温度和44 min的热解时间.KOH改性后的污泥生物炭表面粗糙, 比表面积增大,微孔数量增加,SB-KOH的比表面积为141.22 m2·g-1,是原污泥生物炭(SB,5.93 m2·g-1)的24倍,改性后的生物炭碱性提高、K元素含量增加.SB-KOH吸附Pb(Ⅱ)是以化学吸附为主的多分子层混合吸附,膜扩散是主要的速率控制步骤,增加溶液pH、提高温度可促进吸附.吸附机制涉及矿物沉淀(Qmp)、离子交换(Qie)、含氧官能团的络合(Qoc)和金属π键结合(Q),不同吸附机理的贡献顺序为:Qmp(143.5 mg·g-1)>Qie(39.67 mg·g-1)>Qoc(8.56 mg·g-1)>Q(1.65 mg·g-1),KOH改性强化了生物炭对Pb(Ⅱ)的矿物沉淀和离子交换吸附量.本研究丰富了KOH改性污泥生物炭的制备理论,阐明了SB-KOH吸附Pb(Ⅱ)吸附机理及其影响的主要机制.  相似文献   

3.
利用共沉淀和水热法于生物炭(BC250、BC350、BC450、BC550和BC650)负载CuFeO2,得到的复合材料对水中四环素(TC)具有较好的去除效果.CuFeO2与BC450质量比为2 :1的CuFeO2改性生物炭(CuFeO2/BC450=2 :1)对TC的吸附性能最强.TC于CuFeO2/BC450=2 :1的吸附符合颗粒内扩散模型,表明吸附是界面和孔隙扩散控制的过程.在中性pH、298 K下,CuFeO2/BC450=2 :1对TC的Langmuir最大吸附量为82.8 mg ·g-1,远大于BC450的13.7 mg ·g-1和CuFeO2的14.8 mg ·g-1.热力学结果表明,CuFeO2/BC450=2 :1对TC的吸附是自发和吸热过程.随pH增加,CuFeO2/BC450=2 :1对TC的吸附去除呈先增加后降低的趋势,中性条件时效果最佳.CuFeO2/BC450=2 :1对TC的强吸附得益于CuFeO2负载对材料孔隙结构的改善、比表面积的增大和表面官能团、电荷属性的改变.研究结果为净化抗生素污染提供了一种高效的磁性吸附剂.  相似文献   

4.
改性生物吸附剂具有更好的重金属离子去除能力,成为近年来研究热点.本研究通过向菌株拉乌尔菌Raoultella sp. X13生长培养基中添加特定盐获得改性吸附剂,并研究了其镉离子(Cd2+)吸附特性.研究结果表明,相比原始菌体X13,经KCl、K2SO4、KH2PO4、(NH42SO4和NH4Cl改进的生长培养基制备的吸附剂提高了对Cd2+吸附效果.其中,NH4Cl改性的拉乌尔菌Raoultella sp. X13(命名为R5-1)对Cd2+吸附能力显著增加,达66.40 mg·g-1,增加了47.30%.这一显著变化主要依赖于生长代谢引起的细胞表面结构变化.Cd2+吸附特性研究结果表明生物吸附过程受溶液pH、初始金属浓度和接触时间的影响.Langmuir等温线模型和伪二级动力学模型更加符合吸附剂R5-l对Cd2+的吸附数据. FTIR分析表明R5-l表面存在多种功能位点并可能参与金属离子的结合,例如—OH,—CH2,N—H, —COO,磷酸盐或硫酸盐等官能团.模拟实验结果表明吸附剂R5-l可以有效修复废水中多种金属离子.因此,本研究获得的改性吸附剂R5-l可以作为重金属Cd2+的潜在微生物修复剂,并为高效,简便,环保地制备改性吸附剂提供一定的参考.  相似文献   

5.
以农林废弃物荞麦皮为原料制备生物炭(BBC),采用XRD、Raman、N2吸附/脱附、FTIR和XPS方法对BBC进行表征,研究其对奥硝唑(Ornidazole,ONZ)的吸附性能及机理.结果表明,热解温度在400~800 ℃, BBC的得炭率为24.5%~34%;温度升高,BBC的芳香性和稳定性增加(H/C由0.047降低至0.013),比表面积和孔容升高,对ONZ的吸附率增加.采用不同动力学和吸附等温线模型对不同热解温度BBC吸附ONZ的过程进行模拟,吸附过程符合准二级动力学模型和Langmuir吸附等温线模型,表明BBC对ONZ的吸附为单层吸附.其中热解温度为800 ℃时的BBC(BBC-800)对ONZ的吸附效果最好,最大吸附量达到27.12 mg?g-1.初始pH为3.02~11.03,对BBC-800吸附ONZ的影响不大;共存离子(Na+、NH4+、CO32-、HCO3-和SO42-)对吸附过程有一定促进作用; 腐殖酸(HA)抑制吸附效果, 5.0 g?L-1时ONZ的吸附率由97.15%下降至56.86%. FTIR、N2吸附/脱附和XPS分析结果表明, BBC-800对ONZ的吸附机制主要包括孔隙扩散,生物炭表面与ONZ分子间的氢键、π-π和p-π共轭作用. BBC-800能够有效去除实际水体(污水厂二沉池出水、湖水)中ONZ的残留. 吸附-解吸3次循环实验表明,BBC-800仍具有较好的吸附性能, 对ONZ的吸附容量为14.10 mg?g-1. 研究结果对荞麦皮的资源化及奥硝唑类药物的有效去除具有重要参考价值.  相似文献   

6.
污泥基吸附剂被广泛用于水和土壤中各种污染物的治理,是资源化利用的有效途径.以酸性矿山废水(AMD)污泥为骨料,玉米秸秆为还原剂,膨润土为载体,采用固相还原法制备污泥复合材料,并比较了不同原料配比和不同煅烧温度制备的复合材料吸附As (Ⅴ)的性能,探究了溶液pH、吸附剂投加量和竞争离子等对材料吸附As (Ⅴ)的影响,使用SEM-EDS、XRD、FT-IR、BET和XPS等分析技术对材料性能进行表征,探讨其吸附机制.结果表明,在900℃时AMD污泥:玉米秸秆:膨润土=2 :1 :1制备出的材料吸附As (Ⅴ)效果最好,材料表面生成大量Fe3O4、Fe2 O3和Fe0颗粒.该材料对As (Ⅴ)的吸附符合准二级动力学模型和Freundlich吸附等温模型,最大吸附容量为164.5mg ·g-1,比原始AMD污泥提高了4.4倍.静电吸附、含氧官能团络合作用、铁氧化层的吸附和Fe0释放出Fe2+/Fe3+形成Fe (OH)2/Fe (OH)3,与砷酸盐的共沉淀等是复合材料吸附As (Ⅴ)的主要作用机制.  相似文献   

7.
通过简易的高温煅烧和共沉淀方法成功制备出pg-C3N4/BiOBr/Ag复合材料,通过XRD、SEM、TEM、XPS、UV-Vis、BET和光电流等检测手段对其进行表征,并探究了该复合材料在模拟可见光照射下对10 mg·L-1磺胺甲唑的降解效果.结果表明,当银单质的负载比例为5%时,pg-C3N4/BiOBr/Ag复合材料对磺胺甲唑的降解效果最佳.与pg-C3N4、BiOBr单体和二元复合材料pg-C3N4/BiOBr相比,pg-C3N4/BiOBr/Ag(5%)光催化降解磺胺甲唑的效果显著提升,在30 min内降解率几乎接近100%,反应速率常数(0.2101 min-1)是pg-C3N4/BiOBr的13.15倍.通过自由基猝灭实验,证明在光催化降解过程中,起主要作用的活性物质是空穴(h+)、超氧自由基(·O2-)和单线态氧(1O2),其中,超氧自由基(·O2-)贡献最大.对pg-C3N4/BiOBr/Ag进行多次循环实验,证明合成的材料具有良好的循环稳定性能,应用前景良好.  相似文献   

8.
邹震  许路  乔伟  唐茂森  金鹏康 《环境科学》2024,45(2):885-897
以椰壳和硼酸为原料,通过简单的一步热解法制备出新型硼掺杂椰壳介孔炭材料(B-CSC)用于水中四环素类污染物的高效吸附去除.系统研究了关键制备条件热解温度和硼碳质量比对其吸附性能的影响,使用比表面积及孔径分析仪(BET)、场发射扫描电镜(SEM)、X射线光子能谱仪(XPS)、拉曼光谱仪(Raman)以及Zeta电位仪(Zeta)对其微观结构及物化性质进行了表征分析.系统考察了初始pH值、不同金属阳离子以及不同背景水质条件对其吸附效果的影响.结合材料表征与相关分析等对其强化吸附机制进行了深入讨论与分析.结果表明,一步热解能够将硼掺入椰壳炭的表面及晶格,导致其拥有更大的比表面积和孔体积,引入硼的形态主要是H3BO3、B2O3、B和B4C.B-CSC对四环素的吸附量达到297.65 mg·g-1,是原始椰壳介孔炭(CSC)的8.9倍.同时,B-CSC对于水环境中常见污染物罗丹明B(RhB)、双酚A(BPA)和亚甲基蓝(MB)的吸附量分别高达372.65、255.24和147.82 mg·g-1.B-CSC对四环素的吸附过程是物理化学作用共同主导的,主要涉及液膜扩散、表面吸附、介孔与微孔内扩散和活性位点吸附,H3BO3是其主要吸附位点.吸附强化机制主要是硼掺杂降低了其碳网络的化学惰性,增强了其与四环素分子的π—π相互作用和氢键作用.  相似文献   

9.
岳薇  李大鹏  吴玲予  王璐  汤尧禹  朱企  黄勇 《环境科学》2022,43(10):4697-4705
为实现污水中磷和工业废弃物粉煤灰的资源化利用,通过表面沉淀法将纳米CaO2负载于粉煤灰(FA)表面以及孔隙中,制备出一种高效除磷的复合材料(CaO2@FA).结果表明,粉煤灰表面负载CaO2后,其具有更大的比表面积和孔隙率,比表面积增加至4.641 m2 ·g-1,总孔容增大至0.025 cm3 ·g-1;CaO2@FA对磷的吸附过程符合Langmuir等温吸附模型,其最大吸附容量为185.776 mg ·g-1(20℃),吸附机制为化学沉淀,主要是形成羟基磷酸钙.CaO2@FA复合材料对磷的富集效率显著高于粉煤灰,并随着投加量增加,对磷的富集效率增加.共存离子中HCO3-和CO32-对复合材料吸附磷有一定的负面作用.当CaO2@FA复合材料投加量为2.0 g ·L-1时,对生活污水中磷的富集率可达93%,回收沉淀物中的有效磷含量达到1.658 mg ·g-1.土壤改良实验表明,加入回收的沉淀物可使土壤中有效磷含量增加102.9%,该复合材料回收100 mg磷酸盐的运行成本则低至0.76元.  相似文献   

10.
对陶粒、石英砂和砾石这3种人工湿地基质材料进行了氨氮(NH4+-N)吸附特性研究.通过扫描电镜和BET比表面积分析仪对材料进行表征分析,发现陶粒表面相比石英砂和砾石更为粗糙,内部孔隙也较发达,陶粒(18.97 m2·g-1)比表面积高于石英砂和砾石.在纯氨氮溶液和模拟污水厂出水一级B标准的混合溶液中,3种基质对NH4+-N的吸附能力均表现为:陶粒>砾石>石英砂.陶粒对NH4+-N的饱和吸附容量在混合溶液中最大(63.55 mg·g-1).陶粒对NH4+-N的吸附过程符合伪二级动力学模型(在纯氨氮溶液中R2为0.99、在混合溶液中R2为0.98).在纯氨氮溶液中运用Freundlich和Langmuir模型对等温吸附试验结果进行拟合,发现Freundlich模型(R2=0.93)描述陶粒的吸附特性比Langmuir模型更为精确(R2为0.93),表明陶粒对NH4+-N的吸附为多层吸附.综上所述,陶粒的吸附容量较强,在混合溶液中吸附容量较纯氨氮溶液增大了31%,适用于作为人工湿地基质填料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号