首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
模拟酸雨对福州平原水稻田温室气体排放的影响   总被引:4,自引:0,他引:4  
农田生态系统是温室气体的重要排放源,研究酸雨对水稻田温室气体排放及其综合增温潜势的影响,对我国酸雨背景下农田生态系统固碳减排具有重要的现实意义.本文以福州平原水稻田为研究区,通过模拟酸雨探讨其对水稻田CO_2、CH_4和N_2O排放通量及其综合增温潜势的影响.结果表明:模拟酸雨并未显著改变早、晚稻田CO_2、CH_4和N_2O排放的季节变化规律,但降低了其排放通量.与对照组相比,pH=4.5酸雨作用下,早稻田CO_2、CH_4和N_2O平均排放通量依次降低11.54%、133.33%和22.22%,晚稻田CO_2和N_2O平均排放通量依次降低39.53%、156.00%,而CH_4平均排放通量与对照组差异不显著;pH=3.5酸雨作用下,早稻田CO_2、CH_4和N_2O平均排放通量分别降低10.82%、75.00%、54.00%,晚稻田平均排放通量分别降低17.32%、20.00%和197.67%.综合增温潜势表明,CO_2的增温潜势显著高于CH_4和N_2O,是稻田生态系统中温室效应的主要温室气体,在pH=4.5和pH=3.5的酸雨作用下,早、晚稻田生态系统温室气体综合增温潜势均降低.  相似文献   

2.
人类活动引起的大气温室气体浓度增加是气候变暖的主要原因,全球变暖已经成为了当今人类社会所面临的严峻挑战,应对气候变暖的关键是减少温室气体排放和增加生态系统碳汇,由于生物炭特有的理化和生物学特性,将其施入土壤被认为是一种有前景的减排增汇措施.因此进行生物炭对土壤温室气体排放的影响研究对于减缓温室效应和实现“碳中和”具有重要意义.通过综述生物炭对土壤温室气体排放影响的长短期效应及其影响机制,发现生物炭添加对土壤温室气体排放的影响因生物炭原料类型、热解温度、添加量、土壤和植被类型的不同而不同.此外,因老化时间、老化方式和培养方法的不同,老化生物炭对土壤温室气体的减排效应可能增强或减弱甚至消失.同时,在总结现有研究不足的基础上,对未来生物炭影响土壤温室气体排放研究的方向和重点进行了分析和展望,提出了今后应加强CO2、 N2O和CH4排放影响的同步研究、减排与固碳效应的同步研究、不同老化方式生物炭和不同培养方法的联合研究和利用13C和15N示踪技术从过程层次上揭示影响机制.  相似文献   

3.
刘舒乐  严薇  高庆先  马占云 《环境科学》2023,44(12):6692-6699
准确评价甲烷(CH4)的温室效应是制定有效减排路径的基础.首次采用新提出的、针对短寿命气候污染物(SLCP)设计的气候指标GWP-star (GWP*)对中国畜牧业CH4排放的温室效应进行定量评价,并与常用的GWP指标评价结果相比较.结果表明,GWP的视角下我国畜牧业CH4排放的温室效应持续增加.因此,畜牧业实现碳中和需要完全消除排放,或以增加碳汇、增加资源化利用的形式抵消每年稳定的CH4排放.在GWP*的视角下,2015~2019年间畜牧业CH4排放的温室效应较20年前有所减少,降低的热量相当于从20年前的大气中减少2.1×104万t CO2的热量,畜牧业只需每年有效降低0.3%的CH4排放则可在短期内实现自身碳中和.在中国畜牧业持续采取有效减排措施的情况下,采用GWP*的标准制定减排目标比用GWP制定的减排目标更早达到,但选择GWP还是GWP*需要综合考虑评价的目的、评价的时间尺度和实际可操作性.  相似文献   

4.
Plant communities play an important role in the C-sink function of peatlands. However, global change and local perturbations are expected to modify peatland plant communities, leading to a shift from Sphagnum mosses to vascular plants. Most studies have focused on the direct effects of modification in plant communities or of global change (such as climate warming, N fertilization) in peatlands without considering interactions between these disturbances that may alter peatlands' C function. We set up a mesocosm experiment to investigate how Greenhouse Gas (CO2, CH4, N2O) fluxes, and dissolved organic carbon (DOC) and total dissolved N (TN) contents are affected by a shift from Sphagnum mosses to Molinia caerulea dominated peatlands combined with N fertilization. Increasing N deposition did not alter the C fluxes (CO2 exchanges, CH4 emissions) or DOC content. The lack of N effect on the C cycle seems due to the capacity of Sphagnum to efficiently immobilize N. Nevertheless, N supply increased the N2O emissions, which were also controlled by the plant communities with the presence of Molinia caerulea reducing N2O emissions in the Sphagnum mesocosms. Our study highlights the role of the vegetation composition on the C and N fluxes in peatlands and their responses to the N deposition. Future research should now consider the climate change in interaction to plants community modifications due to their controls of peatland sensitivity to environmental conditions.  相似文献   

5.
为探究生物炭对干旱地区膜下滴灌玉米农田生态系统温室气体排放和碳足迹的影响.设置不同施用量的生物炭处理[0(CK)、15(C15)、30(C30)和45 t ·hm-2(C45)],连续2 a监测覆膜滴灌条件下一次性施用秸秆生物炭后玉米农田生态系统土壤温室气体(CO2、N2O和CH4)排放的季节变化及其综合增温潜势,利用生命周期评估法估算农业生产活动引起的碳排放量,并进行碳足迹的分析.施用生物炭当年的作物生长季土壤CO2累积排放量比CK下降17.6%~24.7%,N2O累积排放量下降71.1%~110.4%,综合增温潜势降低19.5%~25.9%.生物炭施用后第2 a作物生长季的CO2累积排放量比CK减少19.2%~40.6%,N2O累积排放量减少38.7%~46.7%,综合增温潜势减少19.7%~40.5%.连续2 a处理C15和C30均不同程度增加了CH4累积吸收量,而处理C45显著降低了CH4累积吸收量.C15和C45分别为生物炭施用当年和翌年单位产量碳足迹最少的处理,其单位产量碳足迹较CK分别降低10.1%和26.2%.土壤温室气体排放量对玉米农田生态系统碳足迹贡献率最大(38.1%~59.2%),其次为氮肥生产(19.8%~33.4%),而后为电能生产(6.7%~8.8%)和地膜覆盖(4.4%~7.4%).生物炭对生态系统碳足迹贡献率为5.7%~13.8%.施用30 t ·hm-2生物炭对农田生态系统减排固碳增产效果更好.改善生物炭制作工艺及运输途径、提高氮肥利用效率和发展节水节能灌溉技术,是减少旱区农田生态系统碳足迹的重要途径.  相似文献   

6.
Although estuarine tidal marshes are important contributors to the emission of greenhouse gases into the atmosphere, the relationship between carbon dioxide(CO_2), methane(CH_4)emission, and environmental factors, with respect to estuarine marshes, has not been clarified thoroughly. This study investigated the crucial factors controlling the emission of CO_2 and CH_4from a freshwater marsh and a brackish marsh located in a subtropical estuary in southeastern China, as well as their magnitude. The duration of the study period was November 2013 to October 2014. Relevant to both the field and incubation experiments, the CO_2 and CH_4emissions from the two marshes showed pronounced seasonal variations. The CO_2 and CH_4emissions from both marshes demonstrated significant positive correlations with the air/soil temperature(p 0.01), but negative correlations with the soil electrical conductivity and the pore water/tide water Cl-and SO_4~(2-)(p 0.01). The results indicate no significant difference in the CO_2 emissions between the freshwater and brackish marshes in the subtropical estuary, whereas there was a difference in the CH_4 emissions between the two sites(p 0.01). Although future sea-level rise and saltwater intrusion could reduce the CH_4 emissions from the estuarine freshwater marshes, these factors had little effect on the CO_2 emissions with respect to an increase in salinity of less than 5‰. The findings of this study could have important implications for estimating the global warming contributions of estuarine marshes along differing salinity gradients.  相似文献   

7.
Aquaculture ponds are dominant features of the landscape in the coastal zone of China.Generally,aquaculture ponds are drained during the non-culture period in winter.However,the effects of such drainage on the production and flux of greenhouse gases(GHGs)from aquaculture ponds are largely unknown.In the present study,field-based research was performed to compare the GHG fluxes between one drained pond(DP,with a water depth of 0.05 m)and one undrained pond(UDP,with a water depth of 1.16 m)during one winter in the Min River estuary of southeast China.Over the entire study period,the mean CO_2flux in the DP was(0.75±0.12)mmol/(m~2·hr),which was significantly higher than that in the UDP of(-0.49±0.09)mmol/(m~2·hr)(p0.01).This indicates that drainage drastically transforms aquaculture ponds from a net sink to a net source of CO_2in winter.Mean CH_4and N_2O emissions were significantly higher in the DP compared to those in the UDP(CH_4=(0.66±0.31)vs.(0.07±0.06)mmol/(m~2·hr)and N_2O=(19.54±2.08)vs.(0.01±0.04)μmol/(m~2·hr))(p0.01),suggesting that drainage would also significantly enhance CH_4and N_2O emissions.Changes in environmental variables(including sediment temperature,p H,salinity,redox status,and water depth)contributed significantly to the enhanced GHG emissions following pond drainage.Furthermore,analysis of the sustained-flux global warming and cooling potentials indicated that the combined global warming potentials of the GHG fluxes were significantly higher in the DP than in the UDP(p0.01),with values of739.18 and 26.46 mg CO_2-eq/(m~2·hr),respectively.Our findings suggested that drainage of aquaculture ponds can increase the emissions of potent GHGs from the coastal zone of China to the atmosphere during winter,further aggravating the problem of global warming.  相似文献   

8.
CH4和CO2是大气中主要的温室气体,研究我国城市生活垃圾处理过程中二者的排放情况,对制订温室气体减排政策和应对气候变化有着至关重要的意义. 利用IPCC(政府间气候变化专门委员会)提供的废弃物处理排放CH4和CO2的计算方法,对1979—2011年我国城市生活垃圾处理CH4和CO2排放量(不含港澳台数据)进行统计分析. 结果表明:①2011年我国城市生活垃圾人均清运量为0.46 t,比2000年增加了53.3%. ②1979—2011年,我国城市生活垃圾处理仍以填埋为主,焚烧和堆肥处理方式相对较少,但近年来焚烧处理量呈逐年增加趋势,其中2011年焚烧处理量是2001年的16.8倍. ③我国城市生活垃圾处理产生的CH4和CO2排放量均呈逐年增长趋势,至2011年,二者分别达到7 024.03×104 (以CO2当量计,下同)和706.22×104 t;其中,2011年CH4排放量是1990年的20.0倍,CO2排放量是2001年的16.8倍. ④城市生活垃圾产生的温室气体排放具有明显的地域特性,其中华东地区CH4和CO2排放总量高达2 570.98×104 t;西北地区最小,仅为482.3×104 t. 该差异与城市发展规模、人们生活习惯和城市化进程等影响因子紧密相关.   相似文献   

9.
河流CO2与CH4排放研究进展   总被引:1,自引:0,他引:1  
王晓锋  袁兴中  陈槐  何奕忻  罗珍  刘恋  何宗苡 《环境科学》2017,38(12):5352-5366
河流作为连接海-陆两大碳库的主要通道,其水-气界面二氧化碳(CO_2)与甲烷(CH_4)排放构成全球碳循环的重要环节,对全球气候变暖的贡献不容小觑.明确河流水体CO_2与CH_4产排过程、时空特征以及控制因素是认识河流生态学功能以及其对变化环境响应的重要内容.基于当前河流CO_2与CH_4排放研究进展,构建河流碳排放动力学概念框架(内源代谢、陆源输入),并从全球尺度、区域尺度、流域尺度综述了河流碳排放时空变异性特征以及存在的研究不足.在理解碳排放动力学概念框架和时空变异特征的基础上,构建了河流CO_2与CH_4动力学控制因子分层框架(内部因子:有机质、温度、营养盐;外部因子:水文、地貌、人类活动),深入探讨了河流碳排放的关键影响因素.最后,根据当前研究中存在的不足,提出河流碳排放应将纳入区域陆地碳平衡过程,今后研究重点应包括流域尺度上河流CO_2与CH_4内源产生与陆源输入相对贡献的量化研究、不同界面CO_2与CH_4产生与排放过程研究、高时空分辨率的监测数据的补充以及变化环境与人类活动干扰下河流碳排放的响应过程等,为理解河流生态学过程及生态系统功能提供基础,同时为我国进一步深入开展相关研究提供借鉴.  相似文献   

10.
Greenhouse gas(GHG) emissions from oil and gas systems are an important component of the GHG emission inventory. To assess the carbon emissions from oilfield-produced water under atmospheric conditions correctly, in situ detection and simulation experiments were developed to study the natural release of GHG into the atmosphere in the Shengli Oilfield,the second largest oilfield in China. The results showed that methane(CH4) and carbon dioxide(CO2) were the primary gases released naturally from the oilfield-produced water.The atmospheric temperature and release time played important roles in determining the CH4 and CO2emissions under atmospheric conditions. Higher temperatures enhanced the carbon emissions. The emissions of both CH4 and CO2from oilfield-produced water were highest at 27°C and lowest at 3°C. The bulk of CH4 and CO2was released from the oilfield-produced water during the first release period, 0–2 hr, for each temperature, with a maximum average emission rate of 0.415 g CH4/(m3·hr) and 3.934 g CO2/(m3·hr), respectively. Then the carbon emissions at other time periods gradually decreased with the extension of time. The higher solubility of CO2 in water than CH4 results in a higher emission rate of CH4 than CO2over the same release duration. The simulation proved that oilfield-produced water is one of the potential emission sources that should be given great attention in oil and gas systems.  相似文献   

11.
氮输入对沼泽湿地碳平衡的影响   总被引:14,自引:7,他引:7  
张丽华  宋长春  王德宣 《环境科学》2006,27(7):1257-1263
以小叶章沼泽化草甸为对象,利用静态箱-气相色谱法,在三江平原进行野外原位试验,研究氮输入对沼泽湿地碳平衡及其各分量的影响.氮素输入后,沼泽湿地生态系统总初级生产力提高,生物量增大,分别比对照处理增加了10%和26.8%.同时,CH4和生态系统呼吸CO2排放量提高,而生态系统CO2净交换(NEE)和净碳(CO2和CH4都转化成对应的碳)交换降低,CO2、CH4和NEE的季节变化动态未改变.2004年整个生长季氮输入处理的CO2和CH4排放量分别比对照处理升高了34%和145%,NEE和净碳交换分别降低了70%和81.6%,但整个生长季2个处理仍然表现为碳的净吸收.氮输入没有改变沼泽湿地碳“汇”的功能,只是减弱了其作为碳“汇”的功能.  相似文献   

12.
Biochar addition to agricultural soil has been suggested to mitigate climate change through increased biogenic carbon storage and reduction of greenhouse gas emissions. We measured the fluxes of N2O, CO2, and CH4 after adding 9 t ha?1 biochar on an agricultural soil in Southern Finland in May 2009. We conducted these measurements twice a week for 1.5 months, between sowing and canopy closure, to capture the period of highest N2O emissions, where the potential for mitigation would also be highest. Biochar addition increased CH4 uptake (96% increase in the average cumulative CH4 uptake), but no statistically significant differences were observed in the CO2 and N2O emissions between the biochar amended and control plots. Added biochar increased soil water holding capacity by 11%. Further studies are needed to clarify whether this may help balance fluctuations in water availability to plants in the future climate with more frequent drought periods.  相似文献   

13.
Understanding the effects of warming on greenhouse gas(GHG, such as N_2O, CH_4 and CO_2 )feedbacks to climate change represents the major environmental issue. However, little information is available on how warming effects on GHG fluxes in farmland of North China Plain(NCP). An infrared warming simulation experiment was used to assess the responses of N_2O, CH_4 and CO_2 to warming in wheat season of 2012–2014 from conventional tillage(CT) and no-tillage(NT) systems. The results showed that warming increased cumulative N_2O emission by 7.7% in CT but decreased it by 9.7% in NT fields(p 0.05). Cumulative CH_4 uptake and CO_2 emission were increased by 28.7%–51.7% and 6.3%–15.9% in both two tillage systems,respectively(p 0.05). The stepwise regressions relationship between GHG fluxes and soil temperature and soil moisture indicated that the supply soil moisture due to irrigation and precipitation would enhance the positive warming effects on GHG fluxes in two wheat seasons.However, in 2013, the long-term drought stress due to infrared warming and less precipitation decreased N_2O and CO_2 emission in warmed treatments. In contrast, warming during this time increased CH_4 emission from deep soil depth. Across two years wheat seasons, warming significantly decreased by 30.3% and 63.9% sustained-flux global warming potential(SGWP) of N_2O and CH_4 expressed as CO_2 equivalent in CT and NT fields, respectively. However, increase in soil CO_2 emission indicated that future warming projection might provide positive feedback between soil C release and global warming in NCP.  相似文献   

14.
废弃物的农业资源化是当前研究的热点之一,但将其应用于环境效应评价还鲜见报道.通过实验测定,探讨了秸秆及秸秆分别配施石膏渣、生物炭、炉渣对福州茉莉园碳排放及其综合增温潜势的影响.结果表明:与对照相比,施加秸秆CH_4排放通量提高了20.05%;与秸秆处理相比,秸秆配施石膏渣和秸秆配施生物炭不同程度地提高了CH_4排放通量,而秸秆配施炉渣的CH_4排放通量则有所降低.与对照相比,施加秸秆CO_2排放通量提高了30.45%;与秸秆处理相比,秸秆配施石膏渣提高了CO_2排放通量,而秸秆配施生物炭和秸秆配施炉渣的CO_2排放通量均有所降低.CO_2对茉莉园碳排放和综合增温潜势贡献较大,碳排放和综合增温潜势均表现为秸秆配施石膏渣秸秆秸秆配施生物炭秸秆配施炉渣对照,秸秆处理的碳排放和增温潜势较对照分别提高了30.42%和30.18%,秸秆配施石膏渣较秸秆处理提高了碳排放和综合增温潜势,而秸秆配施生物炭和秸秆配施炉渣的碳排放和综合增温潜势均有所降低.从温室气体综合增温潜势来看,秸秆配施生物炭或炉渣可作为茉莉园固碳减排的有效配套措施.  相似文献   

15.

Tropical peatlands in the Peruvian Amazon exhibit high densities of Mauritia flexuosa palms, which are often cut instead of being climbed for collecting their fruits. This is an important type of forest degradation in the region that could lead to changes in the structure and composition of the forest, quality and quantity of inputs to the peat, soil properties, and greenhouse gas (GHG) fluxes. We studied peat and litterfall characteristics along a forest degradation gradient that included an intact site, a moderately degraded site, and a heavily degraded site. To understand underlying factors driving GHG emissions, we examined the response of in vitro soil microbial GHG emissions to soil moisture variation, and we tested the potential of pneumatophores to conduct GHGs in situ. The soil phosphorus and carbon content and carbon-to-nitrogen ratio as well as the litterfall nitrogen content and carbon-to-nitrogen ratio were significantly affected by forest degradation. Soils from the degraded sites consistently produced more carbon dioxide (CO2) than soils from the intact site during in vitro incubations. The response of CO2 production to changes in water-filled pore space (WFPS) followed a cubic polynomial relationship with maxima at 60–70% at the three sites. Methane (CH4) was produced in limited amounts and exclusively under water-saturated conditions. There was no significant response of nitrous oxide (N2O) emissions to WFPS variation. Lastly, the density of pneumatophore decreased drastically as the result of forest degradation and was positively correlated to in situ CH4 emissions. We conclude that recurrent M. flexuosa harvesting could result in a significant increase of in situ CO2 fluxes and a simultaneous decrease in CH4 emissions via pneumatophores. These changes might alter long-term carbon and GHG balances of the peat, and the role of these ecosystems for climate change mitigation, which stresses the need for their protection.

  相似文献   

16.
畜禽粪肥在贮存阶段养分损失严重,是CO_2、CH_4、NH_3和N_2O等大气污染物的重要排放来源.本文采用室内培养方法,研究了添加黄土、秸秆、生物炭和膨润土对猪粪贮存过程中氨气及温室气体排放的影响.结果表明,添加10%用量的生物炭和膨润土处理的CO_2累积排放量与不添加任何添加物的猪粪对照相比分别降低了15.4%和20.9%,N_2O累积排放量分别降低了19.8%和37.6%.添加膨润土处理的NH_3损失量显著增加,但添加生物炭和膨润土处理的综合温室效应与猪粪对照相比均显著降低.添加10%秸秆处理的CH_4和NH_3累积排放量分别较猪粪对照降低了56.8%和95.8%,但其综合温室效应与对照相比差异不显著.模拟黄土垫圈过程添加黄土处理的氨气及温室气体累积排放量均显著降低,综合温室效应显著低于其他处理(p0.05).可见,黄土垫圈是保蓄粪肥碳、氮养分的有效措施,猪粪贮存阶段添加少量生物炭、膨润土对于减少粪肥综合温室效应具有积极作用.  相似文献   

17.
Carbon dioxide capture and permanent storage (CCS) is one of the most frequently discussed technologies with the potential to mitigate climate change. The natural target for CCS has been the carbon dioxide (CO2) emissions from fossil energy sources. However, CCS has also been suggested in combination with biomass during recent years. Given that the impact on the earth's radiative balance is the same whether CO2 emissions of a fossil or a biomass origin are captured and stored away from the atmosphere, we argue that an equal reward should be given for the CCS, independent of the origin of the CO2. The guidelines that provide assistance for the national greenhouse gas (GHG) accounting under the Kyoto Protocol have not considered CCS from biomass (biotic CCS) and it appears that it is not possible to receive emission credits for biotic CCS under the first commitment period of the Kyoto Protocol, i.e., 2008–2012. We argue that it would be unwise to exclude this GHG mitigation alternative from the competition with other GHG mitigation options. We also propose a feasible approach as to how emission credits for biotic CCS could be included within a future accounting framework.  相似文献   

18.
The climate impact from the useof peat for energy production in Sweden hasbeen evaluated in terms of contribution toatmospheric radiative forcing. This wasdone by attempting to answer the question`What will be the climate impact if onewould use 1 m2 of mire for peatextraction during 20 years?'. Two differentmethods of after-treatment were studied:afforestation and restoration of wetland.The climate impact from a peatland –wetland scenario and a peatland –forestation – bioenergy scenario wascompared to the climate impact from coal,natural gas and forest residues.Sensitivity analyses were performed toevaluate which parameters that areimportant to take into consideration inorder to minimize the climate impact frompeat utilisation. In a `multiple generationscenario' we investigate the climate impactif 1 Mega Joule (MJ) of energy is produced every yearfor 300 years from peat compared to otherenergy sources.The main conclusions from the study are:?The accumulated radiative forcing from the peatland – forestation – bioenergy scenario over a long time perspective (300 years) is estimated to be 1.35 mJ/m2/m2 extraction area assuming a medium-high forest growth rate and medium original methane emissions from the virgin mire. This is below the corresponding values for coal 3.13 mJ/ m2/ m2 extraction area and natural gas, 1.71 mJ/ m2/ m2 extraction area, but higher than the value for forest residues, 0.42 mJ/ m2/ m2 extraction area. A `best-best-case' scenario, i.e. with high forest growth rate combined with high `avoided' methane (CH4) emissions, will generate accumulated radiative forcing comparable to using forest residues for energy production. A `worst-worst-case' scenario, with low growth rate and low `avoided' CH4 emissions, will generate radiative forcing somewhere in between natural gas and coal.?The accumulated radiative forcing from the peatland – wetland scenario over a 300-year perspective is estimated to be 0.73 –1.80 mJ/ m2/ m2 extraction area depending on the assumed carbon (C) uptake rates for the wetland and assuming a medium-high methane emissions from a restored wetland. The corresponding values for coal is 1.88 mJ/ m2/ m2 extraction area, for natural gas 1.06 mJ/ m2/ m2 extraction area and for forest residues 0.10 mJ/ m2/ m2 extraction area. A `best-best-case' scenario (i.e. with high carbon dioxide CO2-uptake combined with high `avoided' CH4 emissions and low methane emissions from the restored wetland) will generate accumulated radiative forcing that decreases and reaches zero after 240 years. A `worst-worst-case' (i.e. with low CO2-uptake combined with low `avoided' CH4 emissions and high methane emissions from the restored wetland) will generate radiative forcing higher than coal over the entire time period.?The accumulated radiative forcing in the `multiple generations' – scenarios over a 300-year perspective producing 1 MJ/year is estimated to be 0.089 mJ/ m2 for the scenario `Peat forestation – bioenergy', 0.097 mJ/ m2 for the scenario `Peat wetland with high CO2-uptake' and 0.140 mJ/ m2 for the scenario `Peat wetland with low CO2-uptake'. Corresponding values for coal is 0.160 mJ/ m2, for natural gas 0.083 mJ/ m2 and for forest residues 0.015 mJ/ m2. Using a longer time perspective than 300 years will result in lower accumulated radiative forcing from the scenario `Peat wetland with high CO2-uptake'. This is due to the negative instantaneous forcing that occurs after 200 years for each added generation.?It is important to consider CH4 emissions from the virgin mire when choosing mires for utilization. Low original methane emissions give significantly higher total climate impact than high original emissions do.?Afforestation on areas previously used for peat extraction should be performed in a way that gives a high forest growth rate, both for the extraction area and the surrounding area. A high forest growth rate gives lower climate impact than a low forest growth rate.?There are great uncertainties related to the data used for emissions and uptake of greenhouse gases in restored wetlands. The mechanisms affecting these emissions and uptake should be studied further.  相似文献   

19.
The reduction of carbon dioxide (CO2) emissions may be quite expensive and it is necessary to consider reduction measures for other anthropogenic greenhouse gases, such as methane (CH4) and nitrous oxide (N2O) as well. Their contribution to the total GHG emission from Finland is about 15–20%. In Finland most of the CH4 emissions are due to waste management, agriculture and burning processes. N2O emissions originate from burning processes, agriculture, industry and atmospheric deposition of nitrogen. The cost-effective reduction of the Finnish GHG emissions has been studied with the EFOM-ENV model, which is a quasi-dynamic linear energy system optimisation model. The target function to be minimised is the total discounted cost for the modelled system. In this study the model has been expanded to cover all well-known anthropogenic CO2, CH4 and N2O sources and reduction measures. The results indicate it is economic to reduce the emissions of CO2, CH4 and N2O in Finland. It is profitable to exploit the economic reduction potential of CH4 and N2O, because then the abatement of CO2 emissions does not need to be as extensive as when the reduction is aimed only at CO2 emissions. The inclusion of CH4 and N2O decreases the annual reduction costs about 20% in the year 2010.  相似文献   

20.
中国城镇污水处理厂温室气体排放时空分布特征   总被引:5,自引:2,他引:5  
城镇污水处理厂由于运行过程中能够大量产生二氧化碳(CO_2)、甲烷(CH_4)和氧化亚氮(N_2O),而被视为重要的人为温室气体释放源.采用基于污染物削减量的排放因子法建立了2014年中国城镇污水处理厂温室气体(CO_2、CH_4和N_2O)排放清单,并分析温室气体排放的时空分布和影响因素.结果表明,2014年中国城镇污水处理厂温室气体排放总量(以CO_2-eq计)为7 348.60 Gg,CO_2、CH_4和N_2O排放量分别为6 054.57 Gg、27.47 Gg(769.08 Gg,以CO_2-eq计)和1.98 Gg(524.95 Gg,以CO_2-eq计);各省份间排放量差异明显,华东地区排放量较高,西北地区排放量较低,西藏几乎没有排放,2005~2014年这10年间中国通过城镇污水处理厂排放的温室气体总量增长了229.4%,CO_2、CH_4和N_2O的涨幅分别为217.9%、217.9%和520.3%;地区经济的发展水平和污水处理量与当地城镇污水厂温室气体释放量相关性最大,人均蛋白质供应量与城镇污水厂N_2O产生量密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号