首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secondary Ion Mass Spectrometry (SIMS) is used to study atmospheric particle production by an industrial source responsible for the acid precipitation phenomenon. A sampling network has been put in place at Rouyn-Noranda to collect local aerosols with cascade impactors. Aerosols have also been collected in the plume of the most important source of SO2 in Quebec. Instruments have been developed and constructed to collect these samples. A multi-analytical technique approach permits physico-chemical analysis of individual aerosol: SIMS using a 1 μm ion probe and Scanning Electron Microscopy (SEM) coupled with an X-ray analyzer (EDAX) perform micro-analysis, whereas bulk analysis is provided by a SIMS using a 200 μm Argon ion probe. Devices used for localization of microparticles permit manipulation of samples without damaging them and allow analysis of individual aerosol particles with a SIMS after analysis with SEM-EDAX. Laser Microprobe Mass Analysis (LAMMA) is also possible. Negative and positive mass spectra, obtained with a SIMS-Ar+, have been analyzed with a multivariate statistical technique. Relations between these mass spectra and specific conditions existing during sampling have been determined.  相似文献   

2.
The removal and mechanism of Cu2+ and Cd2+ from aqueous single-metal solutions were investigated by using a novel biosorbent from waste-activated sludge. A series of adsorption experiments was designed to disclose the effects of the key factors on the adsorption capacity of the biosorbent for the metal ions. The mass ratio of the biosorbent to metal ion was optimized as 2 to balance the adsorption capacity and the removal efficiency. A right shaking speed (150 r/min) not only ensured enough contact frequency between the sorbent and the adsorbate but also reduced the mass transfer resistance. The natural pH value (about 5.5) of the metal solutions benefited a high adsorption capacity of the biosorbent and avoided the consumption of acid or base for pH adjustment. The adsorption reactions belonged to the endothermic process between 15 and 45 °C. As the scanning electron microscopy (SEM) images showed, the meshy structure with long chains and many branches was ideal for the biosorbent to quickly capture the metal ions. The energy-dispersive X-ray (EDX) spectra confirmed that the adsorbed metal ions lay in the precipitates of the adsorption reactions. According to the FTIR analyses, the functional groups responsible for Cu2+ adsorption majorly consisted of O–H, N–H, COOH, CONH2, and the groups containing sulfur and phosphorus, while those for Cd2+ adsorption contained O–H, N–H, COOH, and CONH2. The differences in the responsible functional groups explained the phenomenon that the adsorption capacity of the biosorbent for Cu2+ was higher than that for Cd2+.  相似文献   

3.
Characteristics of atmospheric aerosols in Kyoto, Japan and Seoul, Korea were investigated using particle-induced X-ray emission (PIXE), elemental analysis system (EAS) and ion chromatograph (IC). Atmospheric aerosols were collected into fine and coarse fractions using a two-stage filter pack sampler in Kyoto and Seoul in winter of 1998. PIXE was applied to analyze the middle and heavy elements with atomic number greater than 14 (Si), and EAS was applied to analyze the light elements such as H, C and N. The total mass concentration in Seoul was about two times higher than in Kyoto and the concentration of Ca, Si, and Ti that are mainly originated from soil were remarkably higher in Seoul. During an Asian dust storm event, the concentration of soil components increased dramatically and amounted to about 15 times higher than average concentration. The fine/coarse ratios of NH4+, NO3, and SO42− were extremely high in both sites. The fact that nearly 70% of fine particles in both Kyoto and Seoul consist of the light elements (N, C, and H) suggests the importance of light elements measurement. Good mass closure for fine particles with light element data was achieved.  相似文献   

4.
In order to study ion clustering in air mixed with CH3CN, laboratory experiments were performed using an ion source coupled to a mass spectrometer. The study of the positive ions H+(CH3CN)m (H2O)n and the determination of their equilibrium constants lead to a better understanding of cluster formation processes with atmospheric trace gases.  相似文献   

5.
A thermal/optical carbon analyzer (TOA), normally used for quantification of organic carbon (OC) and elemental carbon (EC) in PM2.5 (fine particulate matter) speciation networks, was adapted to direct thermally evolved gases to an electron impact quadrupole mass spectrometer (QMS), creating a TOA-QMS. This approach produces spectra similar to those obtained by the Aerodyne aerosol mass spectrometer (AMS), but the ratios of the mass to charge (m/z) signals differ and must be remeasured using laboratory-generated standards. Linear relationships are found between TOA-QMS signals and ammonium (NH4+), nitrate (NO3?), and sulfate (SO42-) standards. For ambient samples, however, positive deviations are found for SO42-, compensated by negative deviations for NO3?, at higher concentrations. This indicates the utility of mixed-compound standards for calibration or separate calibration curves for low and high ion concentrations. The sum of the QMS signals across all m/z after removal of the NH4+, NO3?, and SO42- signals was highly correlated with the carbon content of oxalic acid (C?H?O?) standards. For ambient samples, the OC derived from the TOA-QMS method was the same as the OC derived from the standard IMPROVE_A TOA method. This method has the potential to reduce complexity and costs for speciation networks, especially for highly polluted urban areas such as those in Asia and Africa.

Implications: Ammonium, nitrate, and sulfate can be quantified by the same thermal evolution analysis applied to organic and elemental carbon. This holds the potential to replace multiple parallel filter samples and separate laboratory analyses with a single filter and a single analysis to account for a large portion of the PM2.5 mass concentration.  相似文献   

6.
Molecular cluster ions are produced throughout the troposphere by radon isotopes and cosmic rays, causing the slight electrical conductivity (σ) of atmospheric air. In a field campaign at the Weybourne Atmospheric Observatory on the Norfolk coast of the UK (52°57′23′′N 1°7′40′′E), aerosol size spectra were obtained simultaneously with σ measurements and background radioactivity, from 11th to 17th May 2004. σ varied with wind direction, from the modulation of the total aerosol number concentration Z rather than changes in ion production from radioactivity. σ was at its greatest when the air originated over the sea. Cluster ion properties were deduced using the σ data and the ion balance equation. The ion mobility μ decreased as Z decreased, corresponding to an increase in average cluster ion size. Using the attachment timescale of ions to aerosol as the typical time during which the ions can grow, negative ion growth occurred at ∼3 nm hr−1. Aerosol concentration changes modulate the time in which the ions can grow and the availability of condensable vapour.  相似文献   

7.
Fast pyrolysis of chicken manure produced two biooils (Fractions I and II) and a residual char. All four materials were analyzed by chemical methods, 13C and 1H Nuclear Magnetic Resonance Spectrometry (13C and 1H NMR), and Fourier Transform Infrared Spectrosphotometry (FTIR). The char showed the highest C content and the highest aromaticity. Of the two biooils Fraction II was higher in C, yield and calorific value but lower in N than Fraction I. The S and ash content of the two biooil fractions were low. The Cross Polarization Magic Angle Spinning (CP-MAS) 13C NMR spectrum of the initial chicken manure showed it to be rich in cellulose, which was a major component of sawdust used as bedding material. Nuclear Magnetic Resonance (NMR) spectra of the two biooils indicated that Fraction I was less aromatic than Fraction II. Among the aromatics in the two biooils, we were able to tentatively identify N-heterocyclics like indoles, pyridines, and pyrazines. FTIR spectra were generally in agreement with the NMR data. FTIR spectra of both biooils showed the presence of both primary and secondary amides and primary amines as well as N-heterocyclics such as pyridines, quinolines, and pyrimidines. The FTIR spectrum of the char resembled that of the initial chicken manure except that the concentration of carbohydrates was lower.  相似文献   

8.
The molecular structures of four unknown bioaccumulating halogenated compounds, C10H6N2Br3Cl3, C10H6N2Br4Cl2, C10H6N2Br5Cl, and C10H6N2Br6 were characterized using isotope exchange positive chemical ionization (IE-PCI) mass spectrometry (MS) and identified by comparison to synthesized standards. NH3 and ND3 were used as reagent gases for the IE-PCI-MS experiment. The shift in mass of the quasimolecular ion between the NH3 and ND3 PCI obtained spectra indicated the number of exchangeable hydrogens attached to the two nitrogen atoms in C10H6N2Br4Cl2, and thus the type of amines present (primary, secondary, or tertiary). 19 compounds (13 amines of varying degree of substitution; six containing no nitrogen) were used as reference compounds and controls in the experiment to validate the IE-PCI technique. The results of the IE-PCI-MS indicated the presence of two tertiary amine functional groups. The molecular structures of the four hexahalogenated compounds were then proposed to be 1,1'-dimethyl-3,3',4,-tribromo-4',5,5'-trichloro-2,2'-bipyrrole, 1,1'-dimethyl-3,3',4,4'-tetrabromo-5,5'-dichloro-2,2'-bipyrrole, 1,1'-dimethyl-3,3',4,4',5-pentabromo-5'-chloro-2,2'-bipyrrole, and 1,1'-dimethyl-3,3',4,4',5,5'-hexabromo-2,2'-bipyrrole and subsequently synthesized. Comparison of retention times and electron capture negative ionization (ECNI) full scans on various gas chromatography (GC) columns between the synthesized bipyrroles and the corresponding unknown compounds in biota indicated that three of the unknown compounds--possible marine natural products--were the proposed halogenated dimethyl bipyrroles. The placement of the halogen atoms on the fourth compound, C10H6N2Br3Cl3 could not be unequivocally determined since the synthesized standard could not be fully characterized.  相似文献   

9.
Abstract

False positive responses on an atrazine (6‐chloro‐N‐ethyl‐N'‐(l‐methylethyl)‐1, 3, 5‐triazine‐2, 4‐diamine) immunoassay kit were investigated to explain possible causes for these occurences. Ground water samples were evaluated with the immunoassay kit and positive responses (>0.20 μg L‐1) were confirmed using gas chromatography/mass spectrometry (GC/MS). Non‐confirming samples (false positives) were analyzed for seven additional compounds on GC. Resulting GC/MS and GC analyses showed that 70% of the false positives could be attributed to two compounds. Prometon (6‐methoxy‐N,N'‐bis(l‐methylethyl)‐1, 3, 5‐triazine‐2, 4‐diamine) was responsible for the majority (64%) of the false positive responses The atrazine metabolite, deethylatrazine (2‐chloro‐4‐amino‐6‐isopropylamino‐1, 3, 5‐triazine), was responsible for the other 6% of the false positives measured. Unattributed false positives (30%) were probably due to an overestimation of pesticide concentrations in the kit's lower detection range.  相似文献   

10.
《Chemosphere》1986,15(5):607-617
A method for the quantitative determination of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) in ambient air is described in detail. High-volume sampling of 1000 m3 air using a glass fiber filter and polyurethane foam as collection media allows to detect femtogram/m3 amounts, when negative ion chemical ionization mass spectrometry is used as detection method.  相似文献   

11.
Severe eutrophication of surface water has been a major problem of increasing environmental concern worldwide. In the present study, economic plant annual ryegrass (Lolium multiflorum) was grown in floating mats as an economic plant-based treatment system to evaluate its potential after ion implantation for removing nutrients in simulated eutrophic water. The specific weight growth rate of L. multiflorum with ion implantation was significantly greater than that of the control, and the peroxidase, nitrate reductase, and acid phosphatase activities of the irradiated L. multiflorum were found to be greater than those plants without ion implantation. Higher total nitrogen (TN) and total phosphorus (TP) removal efficiencies were obtained for the L. multiflorum irradiated with 25 keV 5.2?×?1016 N+ ions/cm2 and 30 keV 4.16?×?1016 N+ ions/cm2, respectively (p?L. multiflorum itself was directly responsible for 39–49 and 47–58 % of the overall N and P removal in the experiment, respectively. The research results suggested that ion implantation could become a promising approach for increasing phytoremediation efficiency of nutrients from eutrophic water by L. multiflorum.  相似文献   

12.
The paper presents static secondary ion mass spectrometry (S-SIMS) analyses of aerosol particles, which have been collected on an insulating polycarbonate filter (nuclepore) using a two-stage streaker sampler. A method was developed to analyze one streaker sample in its entirety without the need of cutting the filter. The latter allows the analysis of the same sample set with complementary techniques. Simultaneous detection of low Z atomic ions (Z<11) together with mean Z atomic ions (11<Z<82) and molecular fragment ions (e.g. HSO4,NO2,NH4+) has shown to be feasible and has proven to be a major advantage of this technique. The large amounts of spectral data received were reduced by statistical clustering and were interpreted. A separate group of positive ions, e.g. Fe, K, Mn, Al, and Mg showed correlation with the PO2 ion in the negative mode and were identified as particle emission from the steel plant. Practical problems of sample introduction and spectral effects due to charge compensation were solved and will be discussed. Despite the lack of quantitative analysis, static SIMS can be used to determine the relative abundance of compounds present in the sample and the correlation between them. In addition, the technique has been proven to provide complementary information to particle induced X-ray emission results of the same sample.  相似文献   

13.
Monthly nitrogen isotopes of ammonium and nitrate in wet deposition in the city of Guangzhou, and the causes of their variability, are reported in this paper. Nitrate δ15N showed nearly constant values around zero in the dry season (October to April), but oscillating values from negative to positive in the rainy season (May to September). By contrast, ammonium δ15N displayed lower values during the rainy season than in the dry season. The rural area north of the city was considered as the prominent source of ammonium and nitrate in spring and early summer (May and June), as suggested by their concurrent negative isotopic trends and higher NH4+/NO3? ratios. From July to September, different dominating sources from the city, i.e., fossil fuel combustion for nitrate, and sewage and waste emission for ammonium, caused disparate δ15N trends of the two species, showing positive nitrate δ15N, but still negative ammonium δ15N. During the cool dry season, the high values of ammonium δ15N and concurrently low NH4+/NO3? ratios suggested the decrease in NH3 volatilization and relatively important thermogenic origin of ammonium, but the intermediate nitrate δ15N values around zero may be a result of a balanced emission of NOx from the city and the rural areas. The isotopic effects of chemical conversion of NOx to nitrate and washout of nitrate were ruled out as significant causes of nitrate δ15N variability, but ammonium washout, during which 15N is assumed to be preferentially removed, may partly contribute to the ammonium δ15N variability.  相似文献   

14.
Abstract

Two commercial formulations of Bacillus thuringiensis var. kurstaki (BTK), Foray® 48B and Thuricide® 48LV, were applied aerially over nine spray blocks in a hardwood forest in West Virginia in 1991. Droplet spectra and spray mass deposits were determined using water‐sensitive paper strips (WSPS), glass micro‐fiber filters (GMFFs), glass plates and castor oil. Mass deposits of BTK were also assessed on natural foliage by two bioassay methods, i.e., feeding of homogenized foliage containing a starch‐sucrose solution and force‐feeding bioassay of foliar extracts containing re‐dissolved protein precipitate. Deposits on canopy foliage and ground samplers were also assessed by total protein assay and enzyme‐linked immunosorbent assay (ELISA). Droplet spectra on the WSPS were different from those on castor oil. Droplets on horizontal ground WSPS were larger than those on vertical ground WSPS. WSPS placed at canopy level collected more droplets than those at ground level. The total protein deposits (ng/cm2) were consistently higher on all blocks than the delta‐endotoxin protein deposits. Spray mass recovery on the ground samplers were low, and ranged from 2.9 to 8.0% of the applied rates.  相似文献   

15.
Environmental scanning electron microscopy (ESEM) with an energy-dispersive X-ray spectrometer (EDS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were demonstrated to be useful analytical tools for investigating surface and bulk components of individual floc particles from both full- and bench-scale activated sludge systems. Detailed surface imaging of various hydrated biological floc particles by ESEM revealed substantial differences in surface features between treatment systems, while EDS identified spatial differences in the iron and the aluminum distributions. The ToF-SIMS spectra had signature fragments of protein and polysaccharide material from the floc surface, suggesting that this technique is capable of surface profiling extracellular polymeric substances. Principal-component analysis of the positive ion ToF-SIMS spectra from the mixed-liquor-suspended solid (MLSS) samples and reference aquatic organic materials found slight differences between the full- and bench-scale MLSS surface properties but substantial differences among MLSS and treated effluent from the same facility.  相似文献   

16.
During four intensive measurement campaigns (two on Mt. Sonnblick, European background aerosol, and two in Vienna, urban aerosol), cloud condensation nuclei (CCN) were measured at supersaturations of 0.5%. Impactor measurements of the mass size distribution in the size range 0.1–10 μm were performed and later analyzed for Cl-, NO-3, SO2-4, Na+, NH+4, K+, Ca2+ and Mg2+ by ion chromatography, for total carbon (TC) using a combustion method, and for black carbon (BC) by an optical method (integrating sphere). Organic carbon (OC) was defined as the difference between TC (minus carbonate carbon) and BC. At all sites, the mass fraction of BC in the submicron aerosol was comparable (4–5%). CCN concentrations on Mt. Sonnblick were found to be 10–30% of those measured in Vienna, although high Mt. Sonnblick concentrations were comparable to low Vienna concentrations (around 800 cm-3). The contribution of organic material was estimated from the mass concentrations of the chemical species sampled on the impactor stage with the lowest cut point (0.1–0.215 μm aerodynamic equivalent diameter). On Mt. Sonnblick, TC material contributed 11% to the total mass in fall 1995, and 67% in summer 1996, while the OC fraction was 6 and 61%. The combined electrolytes and mineral material contributed 18 and 16% in fall and summer. During the Vienna spring campaign, the contributions of OC and electrolytes to the total mass concentration in this size range were 48 and 36%, respectively.  相似文献   

17.
A PM10 monitoring network was established throughout the South Coast Air Basin (SOCAB) in the greater Los Angeles region during the calendar year 1986. Annual average PM10 mass concentrations within the Los Angeles metropolitan area ranged from 47.0 µg m-3 along the coast to 87.4 µg m-3 at Rubldoux, the furthest inland monitoring station. Measurements made at San Nicolas Island suggest that regional background aerosol contributes between 28 to 44 percent of the PM10 aerosol at monitoring sites In the SOCAB over the long term average. Five major aerosol components (carbonaceous material, NO- 3, SO= 4, NH+ 4, and soil-related material) account for greater than 80 percent of the annual average PM10 mass at all on-land monitoring stations. Peak 24-h average mass concentrations of nearly 300 µg m-3 were observed at inland locations, with lower peak values (?130–150 µg m-3) measured along the coast. Peak-day aerosol composition was characterized by increased NO- 3 Ion and associated ammonium ion levels, as compared to the annual average. There appears to be only a weak dependence of PM10 mass concentration on season of the year. This lack of a pronounced seasonal dependence results from the complex and contradictory seasonal variations in the major chemical components (carbonaceous material, nitrate, sulfate, ammonium ion and crustal material). At most sites within the Los Angeles metropolitan area, PM10 mass concentrations exceeded both the annual and 24-h average federal and state of California PM10 regulatory standards.  相似文献   

18.
Abstract

The urea herbicide buturon (N‐[p‐chlorophenyl] ‐N’ ‐methyl‐N’ ‐isobutinyl‐urea), 14C‐labeled, was sprayed on winter wheat as an aqueous formulation (2.98 kg/ha) under outdoor conditions. Upon harvest (three months after application), a total of 49. 2% of the applied radiocarbon was recovered: 2.0% in the plants, 46.9% in the soil, and 0.3% in the leaching water (depth > 50 cm); less than 0.1% was in the grains (0.464 ppm). Only about half of the radioactivity present in plants could be recovered under mild extraction conditions; about half of this was unchanged buturon. In straw and husk extracts, the following metabolites were identified by gaschromatography/mass spectrometry: N‐(p‐chlorophenyl)‐N‐methyl‐O‐methyl‐carbamate (metabolite I), N‐phenyl‐N’ ‐formyl‐urea (metabolite II), two unstable metabolites giving (p‐chlorophenyl)‐isocyanate upon purification (metabolites III and IV), N‐(p‐chlorophenyl)‐N’ ‐methyl‐N’ ‐isobutenylol‐urea (metabolite V), p‐chloroformanilide (metabolite VI) and biologically bound p‐chloroaniline (metabolite VII). In the root and basal stem extract, the following metabolites were identified by gas chromatography/mass spectrometry: N‐(p‐chlorophenyl)‐O‐methyl‐carbamate (metabolite VIII) and N‐(p‐chlorophenyl)‐N’ ‐methyl‐urea (metabolite IX).  相似文献   

19.
Trace elements (22) and stable isotope ratios (δ15N and δ13C) were analyzed in marine organisms from shallow (SW) and deep-water (DW) of the East China Sea to understand biomagnification and prey source of trace elements. In the benthic marine organisms from DW, δ15N values were negatively correlated with Ba, Cu, Ag, Mo, Sr, As, and Co concentrations. This may be due to the specific accumulation in lower trophic animals and/or the biodilution through the food web in DW. Relationships between δ15N and concentrations of Co, Cr, Bi, and Tl in fish and Ag, Bi, V, Hg, and Tl in crustaceans showed positive correlations, suggesting that trophic position was affecting the concentrations of those elements in phyla, with higher trophic animals retaining higher concentrations than the lower trophic animals. Positive correlations between δ13C and Rb were observed in marine organisms. Therefore, Rb may be a possible substitute of δ13C as tracer of prey source in the East China Sea although further investigation is required.  相似文献   

20.
Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb2+, Hg2+, and Ni2+ and the harmless Ca2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号