首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang Z  Huang W  Fennell DE  Peng P 《Chemosphere》2008,71(2):360-368
Polychlorinated dibenzo-p-dioxins (PCDDs) are toxic and widespread persistent organic pollutants (POPs). Cost-effective technologies for destroying or detoxifying PCDDs are in high demand. The overall purpose of this study was to develop a zero-valent zinc based technology for transforming toxic PCDDs to less- or non-toxic forms. We measured the dechlorination rates of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD) in the presence of zero-valent zinc under aqueous conditions, identified the daughter compounds of the reaction, and constructed possible pathways for the reactions. The reaction rates of daughter compounds with zero-valent zinc were also measured independently. Our results showed that the zero-valent zinc is a suitable candidate for reducing PCDDs. Reductive dechlorination of 1,2,3,4-TCDD was stepwise and complete to dibenzo-p-dioxin (DD) mainly via 1,2,4-trichlorodibenzo-p-dioxin (1,2,4-TrCDD), 1,3-dichlorodibenzo-p-dioxin (1,3-DCDD), 1-chlorodibenzo-p-dioxin (1-MCDD) to DD and via 1,2,4-TrCDD, 2,3-dichlorodibenzo-p-dioxin (2,3-DCDD), 2-chlorodibenzo-p-dioxin (2-MCDD) to DD. In each separate system, the observed half-lives of 1,2,3,4-TCDD, 1,2,3-TrCDD, 1,2,4-TrCDD, 1,2-DCDD, 1,3-DCDD, 1,4-DCDD and 2,3-DCDD are 0.56, 2.62, 5.71, 24.93, 41.53, 93.67 and 169.06 h respectively. The tendency of rate constant follows TCDD>TrCDD>DCDD. Our results suggest that zero-valent zinc is a suitable candidate for rapidly reducing highly chlorinated PCDDs to less or non-chlorinated daughter products.  相似文献   

2.
The role of iron in surface-mediated formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from 2-chlorophenol (2-MCP) was investigated over the temperature range of 200-550 °C under oxidative conditions. In order to compare and contrast with previous work on copper and ferric oxide-mediated pyrolysis of 2-MCP, identical reaction conditions were maintained (50 ppm 2-MCP, model fly-ash particles containing 5% Fe2O3 on silica). Observed products included dibenzo-p-dioxin (DD), 1-monochlorodibenzo-p-dioxin (1-MCDD), dibenzofuran (DF), 4,6-dichlorodibenzofuran (4,6-DCDF), 2,4- and 2,6-dichlorophenol, 2,4,6-trichlorophenol, quinone, catechol, chloro-o-quinone, chlorocatechol and polychlorinated benzenes. Yields of DD and 1-MCDD were 2 and 5 times higher than under pyolysis conditions, respectively. Although 4,6-DCDF was the major PCDD/F product formed with a yield that was 2.5× greater than under pyrolysis, the yield of non-chlorinated DF, which was the dominant PCDD/F product under pyrolysis, decreased by a factor of 3. Furthermore, the ∼2× higher yield of PCDDs under oxidative conditions resulted in a PCDD to PCDF ratio of 0.75 compared to a relatively low ratio of 0.39 previously observed under pyrolytic conditions.  相似文献   

3.
Five materials were used in gas-solid phase reactions between dibenzo-p- dioxin(DD) and HCl in order to determine the role of organic and inorganic components in fly ash on chlorine substitution reactions of chlorinated dioxins. The five solids were: granular activated carbon, silica gel, diatomaceous earth, Tenax-GC, and fly ash. Conditions for reactions were 10 min at 150°C with 5% HCl in air. Extent of chlorination was measured using GC/MS analyses of extracts of fly ash after treatment processes and was expressed as the ratio monochloroDD/original unreacted DD. These ratios were: fly ash, 1.082; silica gel, 0.059; activated carbon, 0.024; and Tenax-GC, 0.001. Measurement of similar behavior on diatomaceous earth was impossible since starting material and possible products were irreversibly adsorbed completely. The major chlorinated dioxin produced under these conditions was 2-chlorodibenzo-p- dioxin which is the isomer favored through an electrophilic substitution mechanism.  相似文献   

4.
Octachlorodibenzo-p-dioxin (OCDD)-added, pretreated fly ash was heated under vacuum at sample temperatures ranging from T(s)=450 to 650 K. The fly ash and liquid nitrogen-cooled trap samples were analyzed for DD/DF through OCDD/DF. The total amounts of DD through OCDD decrease with increasing T(s), which indicates that dechlorination/hydrogenation (DCH) reactions are not the only reaction channels. Reduction of toxic equivalent (TEQ) for PCDDs by more than 99% was achieved in the fly ash by the vacuum heat treatment at T(s)=650 K for 4 h. The total amount of PCDDs and DD detected in the liquid nitrogen-cooled trap relative to that of added OCDD was about 17%, i.e., PCDDs and DD which were adsorbed to the fly ash surfaces can evaporate into the gaseous phase. The difference between the evaporation behavior of PCDDs in the present and the previous studies is discussed in the light of their states of existence.  相似文献   

5.
Mono- to tri-chlorinated dibenzo-p-dioxin/dibenzofurans (DD/Fs) have not been studied as extensively as the 17 toxic 2,3,7,8-substituted congeners. In this study for the first time, mono- to octa-chlorinated DD/Fs were analyzed for seventy one human serum samples collected from incinerator workers as well as residents living near and far from the facility. The mean concentrations of ∑Cl1–8DD/Fs and 17-toxic congeners were 1890 and 398 pg g?1 lipid (11.9 TEQ pg g?1 lipid), respectively. 2,3,4,7,8-PeCDF, 1,2,3,7,8-PeCDD, and 1,2,3,6,7,8-HxCDD were predominant congeners that accounted for more than 78% of the TEQ concentrations. The profile for polychlorinated dibenzo-p-dioxins (PCDDs) was dominated by the most chlorinated congener, OCDD (>58%), while decreasing concentrations with increasing degree of chlorination were seen for polychlorinated dibenzofurans (PCDFs); MoCDFs (>83%) and DiCDFs (>6%). ∑Cl1–3DD/Fs accounted for 77% of the serum concentrations of ∑Cl1–8DD/Fs. These findings confirm that human beings are exposed to a large amount of ∑Cl1–3DD/Fs. Moreover, MoCDFs contributed more than 60% of the ∑Cl1–8DD/Fs and was highly correlated with ∑Cl1–8DD/Fs. Thus, 2-MoCDF could be a predictive indicator for ∑Cl1–8DD/Fs (rs = 0.96), and the combination of 2-MoCDF and OCDD could explain the 95.9% variation in the serum of ∑Cl1–8DD/Fs. These results suggest that low chlorinated DD/Fs should be studied extensively until these low chlorinated congeners will have been elucidated for their toxicities.  相似文献   

6.
An expanded reaction kinetic model, including 17 surface reactions, is proposed to explain the yields of PCDD/F obtained in an experimental study of the reaction of 2-chlorophenol over a CuO/silica surface. The mechanism is loosely based on the gas-phase mechanism for PCDD/F formation widely discussed in the literature. The principal differences are the impact of chemisorption of 2-chlorophenols to metal oxides on radical formation and the steric hindrance of oxygen-centered radicals on the surface inhibiting radical-radical reaction pathways that lead to formation of dibenzo-p-dioxin (DD). Gas-phase molecule-surface-bound adsorbate reactions are the preferred route of DD formation, while radical-radical surface reactions are the main channel for dichloro-dibenzofuran (DCDF) formation. These results suggest that the Langmuir-Hinshelwood (LH) mechanism, involving radical-radical surface reactions, and the Eley-Rideal mechanism, involving a gas-phase molecule and surface-bound adsorbate, are responsible for PCDF and PCDD formation on surfaces, respectively. The calculated yields of DCDF and DD are in reasonable agreement with experimental results.  相似文献   

7.
Ukisu Y  Miyadera T 《Chemosphere》2002,46(4):507-510
Dechlorination of polychlorinated dibenzo-p-dioxins such as 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) and 1,2,6,7-tetrachlorodibenzo-p-dioxin (1,2,6,7-TCDD) was carried out in a solution of NaOH in 2-propanol in the presence of carbon-supported noble metal catalyst (Pd/C or Rh-Pt/C) at temperatures between 23 and 35 degrees C. At initial concentrations of 140-240 micrograms/ml, 2,7-DCDD and 1,2,6,7-TCDD were efficiently converted to a chlorine-free product, dibenzo-p-dioxin (DD), in high yield (60-80%). The conversion of 2,7-DCDD and 1,2,6,7-TCDD and the yield of DD were hardly affected by the atmosphere (N2 or air). We postulate that the displacement of aromatic chlorines by hydrogen selectively occurs on the catalyst, involving hydrogen-transfer from 2-propanol to the substrates.  相似文献   

8.
Laying hens were treated orally with a single dose of aldrin (1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-1,4:5,8-dimethanonaphthalene, AD) 1 mg kg(-1) bw. Concentrations (microg g(-1)) of AD or its epoxide, dieldrin (1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydroendo-,exo-1,4:5,8-dimetha-nonaphthalene, DD), in the main tissues involved in egg formation (blood, liver, ovary, and oviducts) and egg yolk, collected at 1 day after AD dosing, were determined by normal-phase high-performance liquid chromatography. The limits of determination were 0.07 microg g(-1) for AD and 0.08 microg g(-1) for DD, respectively. In extractable fats from the above tissues and egg yolk, AD was found in the egg yolk; however, no AD was found in tissues involved in egg formation. DD was found in all tissues examined here. The DD level was highest in the liver and was lowest in the blood (P<0.01). These results suggest that the epoxidation of AD to DD occurred rapidly in the hen.  相似文献   

9.
Homologue and isomer patterns of polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) in CuCl2-catalyzed formation were studied in an isothermal flow reactor using a distribution of 20 phenols as measured in municipal waste incinerator (MWI) exhaust gases. A mixture of 20 phenols was synthesized and used as reactants for this study because phenols are known to be key precursors in the formation of PCDD/F. Experiments were conducted at 400 degrees C. The 92% of nitrogen (N2) and 8% of oxygen (O2) were used as a carrier gas. PCDD/F homologue and isomer patterns with dibenzo-p-dioxin (DD) and dibenzofuran (DF) were obtained from a mixture of 20 phenols. DF+PCDF formation was favored over DD+PCDD formation. The major homologue groups formed were non-chlorinated DD and DF, and PCDD/F homologue fraction decreased with the degree of chlorination. PCDD/F homologue and isomer distributions were almost constant. Phenol and lower chlorinated phenols present in high amount played an important role in PCDD/F congener distributions. The results presented here can be used as characteristics or fingerprints for homologue and isomer patterns of PCDD/F formation attribution in CuCl2-catalyzed reaction from phenols.  相似文献   

10.
Ryu JY  Mulholland JA  Chu B 《Chemosphere》2003,51(10):1031-1039
Dibenzofuran (DF) is formed from phenol and benzene in combustion gas exhaust streams prior to particle collection equipment. Subsequent chlorination at lower temperatures on particle surfaces is a potential source of chlorinated dibenzofuran (CDF). Gas streams containing 8% O2 and approximately 0.1% DF vapor were passed through particle beds containing copper (II) chloride (0.5% Cu, mass) at temperatures ranging from 200 to 400 °C to investigate the potential for CDF formation during particle collection. Experiment duration was sufficient to provide an excess amount of DF (DF/Cu=3). The efficiency of DF chlorination by CuCl2 and the distribution of CDF products were measured, with effects of temperature, gas velocity, and experiment duration assessed. Results of a more limited investigation of dibenzo-p-dioxin (DD) chlorination by CuCl2 to form chlorinated DD (CDD) products are also presented.

The efficiency of DF/DD chlorination by CuCl2 was high, both in terms of CuCl2 utilization and DF/DD conversion. Total yields of Cl on CDF/CDD products of up to 0.5 mole Cl per mole CuCl2 were observed between 200 and 300 °C; this suggests that nearly 100% CuCl2 was utilized, assuming a conversion of two moles of CuCl2 to CuCl per mole Cl added to DD/DF. In a short duration experiment (DF/Cu=0.3), nearly 100% DF adsorption and conversion to CDF was achieved. The degree of CDF chlorination was strongly dependent on gas velocity. At high gas velocity, corresponding to a gas–particle contact time of 0.3 s, mono-CDF (MCDF) yield was largest, with yields decreasing with increasing CDF chlorination. At low gas velocity, corresponding to a gas–particle contact time of 5 s, octa-CDF yield was largest. DF/DD chlorination was strongly favored at lateral sites, with the predominant CDF/CDD isomers within each homologue group those containing Cl substituents at only the 2,3,7,8 positions. At the higher temperatures and lower gas velocities studied, however, broader isomer distributions, particularly of the less CDD/CDF products, were observed, likely due to preferential destruction of the 2,3,7,8 congeners.  相似文献   


11.
Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.  相似文献   

12.
Dibenzofuran (DF) is formed from phenol and benzene in combustion gas exhaust streams prior to particle collection equipment. Subsequent chlorination at lower temperatures on particle surfaces is a potential source of chlorinated dibenzofuran (CDF). Gas streams containing 8% O2 and approximately 0.1% DF vapor were passed through particle beds containing copper (II) chloride (0.5% Cu, mass) at temperatures ranging from 200 to 400 °C to investigate the potential for CDF formation during particle collection. Experiment duration was sufficient to provide an excess amount of DF (DF/Cu=3). The efficiency of DF chlorination by CuCl2 and the distribution of CDF products were measured, with effects of temperature, gas velocity, and experiment duration assessed. Results of a more limited investigation of dibenzo-p-dioxin (DD) chlorination by CuCl2 to form chlorinated DD (CDD) products are also presented.The efficiency of DF/DD chlorination by CuCl2 was high, both in terms of CuCl2 utilization and DF/DD conversion. Total yields of Cl on CDF/CDD products of up to 0.5 mole Cl per mole CuCl2 were observed between 200 and 300 °C; this suggests that nearly 100% CuCl2 was utilized, assuming a conversion of two moles of CuCl2 to CuCl per mole Cl added to DD/DF. In a short duration experiment (DF/Cu=0.3), nearly 100% DF adsorption and conversion to CDF was achieved. The degree of CDF chlorination was strongly dependent on gas velocity. At high gas velocity, corresponding to a gas–particle contact time of 0.3 s, mono-CDF (MCDF) yield was largest, with yields decreasing with increasing CDF chlorination. At low gas velocity, corresponding to a gas–particle contact time of 5 s, octa-CDF yield was largest. DF/DD chlorination was strongly favored at lateral sites, with the predominant CDF/CDD isomers within each homologue group those containing Cl substituents at only the 2,3,7,8 positions. At the higher temperatures and lower gas velocities studied, however, broader isomer distributions, particularly of the less CDD/CDF products, were observed, likely due to preferential destruction of the 2,3,7,8 congeners.  相似文献   

13.
Abstract

Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photo-catalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr?1, and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and form-aldehyde found in this study ranged from 0.381 to 1.01 hr?1 under different total air change rates, from 0.34 to 0.433 hr?1 under different RH, and from 0.381 to 0.433 hr?1 for different photocatalytic filters.  相似文献   

14.
The atmospheric fate of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) was simulated for the year 2000 in North America using a SMOKE/CMAQ-based chemical transport model that was modified for this purpose. The 1999 USEPA emission inventories of PCDD/Fs and criteria pollutants were used. The 1995 Canadian emission inventory of criteria pollutants and the 1995 Canadian area source emissions for PCDD/Fs were used with the 2000 Canadian point source emissions. Modifications to CMAQ involved coupling it with dual organic matter (OM) absorption and black carbon (BC) adsorption models to calculate PCDD/F gas–particle partitioning. The model satisfactorily reproduced the particle bound fractions at all rural sites for which there were measured data and across the whole domain, the modeled vs. measured differences in particle bound fractions were less than 20% for nearly all congeners. The model predicted ambient air PCDD/F concentrations were also consistent with measurements. Simulated deposition fluxes were within 58% of direct measurements. PCDD/F atmospheric depositions to each of the Great Lakes were estimated for the year 2000. The results indicate that approximately 76% of the total deposition of PCDD/Fs to the Great Lakes (in W-TEQ, or toxic equivalent units as defined by the World Health Organization) is attributed to PCDD/Fs absorbed into OM in aerosol. For all of the lakes, more than 92% of all deposition is particle phase wet deposition and only 5–8% is particle phase dry deposition. Wet deposition from the gas phase is negligible. Of the 17 toxic PCDD/F congeners, the Cl4–5DD/F compounds contribute approximately 70% to the total atmospheric deposition to the Great Lakes. The seasonal changes in the PCDD/F deposition flux track variations in ambient temperature.  相似文献   

15.
New data on the aqueous solubility of n-octane, 1-chlorooctane and 1-bromooctane are reported between 1 degree C and 45 degrees C. Henry's law constants, K(H), and air/water partition coefficients, K(AW), were calculated by associating the measured solubility values to vapor pressures taken from literature. The mole fraction aqueous solubility varies between (1.13-1.60)x10(-7) for n-octane with a minimum at approximately 23 degrees C, (3.99-5.07)x10(-7) for 1-chlorooctane increasing monotonically with temperature and (1.60-3.44)x10(-7) for 1-bromooctane with a minimum near 18 degrees C. The calculated air-water partition coefficients increase with temperature and are two orders of magnitude lower for the halogenated derivatives compared to octane. The precision of the results, taken as the average absolute deviations of the aqueous solubility, the Henry's law constants, or the air/water partition coefficients, from appropriate smoothing equations as a function of temperature is of 3% for n-octane and of 2% and 4% for 1-chlorooctane and 1-bromooctane, respectively. A new apparatus based on the dynamic saturation column method was used for the solubility measurements. Test measurements with n-octane indicated the capability of measuring solubilities between 10(-6) and 10(-10) in mole fraction, with an estimated accuracy better than +/-10%. A thorough thermodynamic analysis of converting measured data to air/water partition coefficients is presented.  相似文献   

16.
Zhang F  Chen J  Zhang H  Ni Y  Liang X 《Chemosphere》2007,68(9):1716-1722
Dechlorination of octachlorodibenzo-p-dioxin (OCDD) was carried out in ethanol-water (v/v=1:1) solution of NaOH in the presence of Pd/C catalysts with the use of H(2). The substrate was dechlorinated with Pd/C under mild conditions (atmospheric pressure and <100 degrees C) to give a chlorine-free product, dibenzo-p-dioxin (DD), in high yields. After reaction of 3h at 50 degrees C, 95.9% OCDD was degraded to low dechlorinated congeners and the yield of DD was 77.4%. We have also studied the dechlorination selectivity of chlorine atoms on the different substituted positions and postulated the dechlorination pathway of OCDD. For OCDD, the 2-position has higher reactivity than 1-position, but the difference is very small. From the distribution statistics of the intermediates during the reaction, we postulate that the steric effect plays an important role during the reaction and affect the dechlorination pathway of OCDD.  相似文献   

17.
Removal of PCDDs/DFs and dl-PCBs in MWI fly ash by heating under vacuum   总被引:1,自引:0,他引:1  
Temperature dependence of PCDD/DF and dioxin-like polychlorinated biphenyl (dl-PCB) concentrations in fly ash from a municipal waste incinerator (MWI) heated under vacuum has been investigated as a function of sample temperature ranging from T(s)=425 to 800 K to find out if PCDDs/DFs in fly ash evaporate and are trapped in a liquid nitrogen-cooled trap. The results show that more than 99.98% of PCDDs/DFs in TEQ is removed from fly ash by vacuum heat treatment at T(s)>650 K for 4 h. Almost no PCDDs/DFs were detected in the liquid nitrogen-cooled trap. Homologue distributions indicate that dechlorination/hydrogenation (DCH) reactions proceed in fly ash at T(s)>450 K. Arrhenius rate parameters for the DCH reactions have been determined for each homologue assuming that only DCH reactions occur. The fly ash heated under vacuum at 650 or 800 K was reheated at 573 K (300 degrees C) in a stream of dry or humid air to see how much PCDDs/DFs and dl-PCBs are regenerated. We have found that (1) PCDDs/DFs are regenerated in both 650 K and 800 K treated fly ash, whereas dl-PCBs are regenerated in 650 K treated fly ash, (2) formation of PCDFs predominates over that of PCDDs or dl-PCBs, and (3) less chlorinated homologues are abundant for PCDDs/DFs and dl-PCBs.  相似文献   

18.
Formaldehyde (HCHO) is still a major indoor air pollutant in Japanese air-tight houses and is the subject of numerous complaints regarding health disorders. Authors have developed a passive-type air-cleaning material and an air cleaner using manganese oxide (77% MnO2) as an active component and successfully reduced indoor HCHO concentrations in newly built multi-family houses. In this study, the reactivity between manganese oxide and HCHO was discussed. We tested the removal efficiencies of several metal oxides for HCHO in a static reaction vessel and found manganese oxide could react with HCHO and release carbon dioxide even at room temperature. The reactivity and mechanisms were discussed for the proposed chemical reactions. A mass balance study proved that a major product through the heterogeneous reaction between manganese oxide and HCHO was carbon dioxide. Harmful by-products (HCOOH and CO) were not found.  相似文献   

19.
Water-stressed and well-watered soybean (Glycine max cvs. Williams and Corsoy) plants were exposed to increasing seasonal doses of ozone (O(3)) using open-top field chambers and ambient air plots. Chamber O(3) treatments included charcoal filtered (CF) air, non-filtered (NF) air, NF + 0.03, NF + 0.06 and NF + 0.09 microl litre(-1) O(3). Soil water potentials measured at 25 and 45 cm averaged -0.40 MPa and -0.05 MPa, respectively, for the plots in the water-stressed and well-watered series. Total root length/core, root length densities, and biomasses (dry weights) were determined. With Williams, a very popular cultivar in recent years, total root length for all O(3) treatments averaged 58% more under water-stress conditions than in well-watered plots, but the range was from 136% to 11% more for NF air and NF + 0.09 microl litre(-1) O(3), respectively. Increasing the O(3) exposure dose did not affect root lengths or weights in the well-watered series. With Corsoy, water stress did not significantly increase root development. In both soil moisture regimes, with both cultivars, there was a linear decrease in seed yield and top dry weight as the O(3) exposure dose increased.  相似文献   

20.
Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in indoor air concentrations of size-resolved particles (0.01-20 microm) caused by (1) diumal and seasonal variation of outdoor air concentrations and meteorological variables, (2) indoor sources such as cooking and using candles, and (3) activities affecting air change rates such as opening windows and using fans. A second objective was to test and compare available instruments for their suitability in providing real-time estimates of particle levels and ancillary variables. Despite different measuring principles, the instruments employed in this study agreed reasonably well for particles less than 10 microm in diameter. The three instruments measuring fine and coarse particles (aerodynamic diameter between 0.3 and 20 microm) agreed to within 30% in their overall estimates of total volume. Two of these instruments employed optical scattering, and the third used an aerodynamic acceleration principle. However, several lines of evidence indicated that the instrument employing aerodynamic acceleration overestimated concentrations for particle diameters greater than 10 microm. A fourth instrument measuring ultrafine and accumulation-mode particles (0.01-1 microm) was operated with two different inlets providing somewhat different particle size ranges. The two inlets agreed in the ultrafine region (< 0.1 microm) but diverged increasingly for larger particles (up to 0.445 microm). Indoor sources affecting ultrafine particle concentrations were observed 22% of the time, and sources affecting fine and coarse particle concentrations were observed 12 and 15% of the time, respectively. When an indoor source was operating, particle concentrations for different sizes ranged from 2 to 20 times the average concentrations when no indoor source was apparent. Indoor sources, such as cooking with natural gas, and simple physical activities, such as walking, accounted for a majority (50-90%) of the ultrafine and coarse particle concentrations, whereas outdoor sources were more important for accumulation-mode particles between 0.1 and 1 microm in diameter. Averaged for the entire year and including no periods when indoor sources were apparent, the number distribution was bimodal, with a peak at approximately 10 nm (possibly smaller), a shallow minimum at approximately 14 nm, and a second broad peak at approximately 68 nm. The volume distribution was also bimodal, with a broad peak at approximately 200 nm, a minimum at approximately 1.2 microm, and then an upward slope again through the remaining size fractions. A database was created on a 5-min averaging time basis. It contains more than 90,000 measurements by two of the instruments and approximately 30,000 by the two optical scattering instruments. About 4500 hour-long average air change rates were also calculated throughout the year using a dedicated gas chromatograph with electron capture detection (GC/ECD). At high air change rates [> 0.8 air changes per hour (hr(-1))], particle concentrations were either elevated (when no source was present) or depressed (when an indoor source was operating) by factors of up to 2 compared with low air change rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号