首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A steady-state two-dimensional diffusion model suitable for predicting ambient air pollutant concentrations averaged over a long time period (e.g., month, season or year) and resulting from the transport of pollutants for distances greater than about 100 km from the source is described. Analytical solutions are derived for the primary pollutant emitted from a point source and for secondary pollutant formed from it. Depletion effects, whether due to wet or dry deposition or chemical conversion to another species, are accounted for in these models as first order processes. Thus, solutions for multiple point sources may be superimposed.In this model the time-averaging of the random trajectories of pollutant-contaminated air parcels is represented by horizontal diffusion in a steady, two-dimensional flow field of the time-averaged wind. The resulting concentration isopleths for a point source show significant dispersion both upwind and cross wind of the source with respect to the mean wind field.The analytical theory for the dispersion of a primary pollutant is compared with the numerical predictions of a plume trajectory model for the case of steady emission from a point source. Good overall agreement between the two models is achieved whether or not depletion by wet and dry deposition is included.The theory for the dispersion of a secondary pollutant is compared with measurements of the annual average sulfate concentration in the U.S. Calculations are carried out using SO2 emissions from electric power plants in the United States as a source inventory. Using optimum values of the dispersion parameters, the correlation coefficient of observed and calculated ambient concentrations is 0.87 for the eastern United States and 0.69 for the western region. The optimum dispersion parameters used are comparable to values quoted in the literature.The horizontal length scale characterizing the sulphate concentration distribution from a single source is about 500 km, being noticeably larger than that characterizing the primary (sulfur dioxide) distribution. Using optimum dispersion parameters, a point source of 33 kg s−1 of sulfur dioxide would give rise to a maximum annual average sulfate concentration of 1 μ m−3.A calculation of annual average SO2 concentrations in the United States is carried out using previously derived optimal values of the parameters from the sulfate calculation. The resulting isopleths are similar to measured values in the eastern U.S.  相似文献   

2.
本文对室内空气污染分析方法进行了详细综述 ,以期对开发室内空气污染分析的新方法及新技术提供参考。  相似文献   

3.
4.
Semi-continuous measurements of ambient mercury (Hg) species were performed in Detroit, MI, USA for the calendar year 2003. The mean (±standard deviation) concentrations for gaseous elemental mercury (GEM), particulate mercury (HgP), and reactive gaseous mercury (RGM) were 2.2±1.3 ng m−3, 20.8±30.0, and 17.7±28.9 pg m−3, respectively. A clear seasonality in Hg speciation was observed with GEM and RGM concentrations significantly (p<0.001) greater in warm seasons, while HgP concentrations were greater in cold seasons. The three measured Hg species also exhibited clear diurnal trends which were particularly evident during the summer months. Higher RGM concentrations were observed during the day than at night. Hourly HgP and GEM concentrations exhibited a similar diurnal pattern with both being inversely correlated with RGM. Multivariate analysis coupled with conditional probability function analysis revealed the conditions associated with high Hg concentration episodes, and identified the inter-correlations between speciated Hg concentrations, three common urban air pollutants (sulfur dioxide, ozone, and nitric oxides), and meteorological parameters. This analysis suggests that both local and regional sources were major factors contributing to the observed temporal variations in Hg speciation. Boundary layer dynamics and the seasonal meteorological conditions, including temperature and moisture content, were also important factors affecting Hg variability.  相似文献   

5.
Size-fractionated particles were collected at two sites from July 2004 to April 2006 in Shanghai. The mercury in particles was extracted and divided operationally into four species: exchangeable particulate mercury (EXPM), HCl-soluble particulate mercury (HPM), elemental particulate mercury (EPM) and residual particulate mercury. The total particulate Hg concentration during the study period ranged from 0.07 ng m?3 to 1.45 ng m?3 with the average 0.56 ± 0.22 ng m?3 at site 1, while 0.20 ng m?3–0.47 ng m?3 with the average 0.33 ± 0.09 ng m?3 at site 2, which is far higher than some foreign cities and comparable to some cities with heavy air pollution in China. The Hg mass content also displayed evident size distribution, with higher value in PM1.6–3.7, somewhat higher or lower than the source profile. EXAM was only found in the summer, HPM have higher percentage in summer and fall rather than in winter and spring. The different mercury species showed different correlation to temperature, relative humidity, wind speed. HPM positively depends on temperature at both sites which implies the importance of mercury transformation on particles. In foggy days TPM increased greatly, but HPM didn't vary greatly as anticipated. Instead, RPM gained a distinguished increase. It demonstrated that aqueous reaction and complex heterogenic reactions in droplet might happen in acidic environment. The correlation of mercury with other pollutants including SO2, NO2, CO and PM10 varies with the different mercury forms. Hybrid single-particle lagrangian integrated trajectories (HYSPLIT) model was used to back trace air mass at different representative days and results indicated that transportation from Huabei Plain will increase mercury concentration in winter and fall to some extent. The possible existing compounds and their atmospheric behavior of HPM, EPM and RPM were calculated and the compared to analyze its implication on atmospheric mercury cycle.  相似文献   

6.
The size-fractionated particulate mercury in ambient air was collected at the top of a university campus building in Shanghai from March 2002 to September 2003. Wet digestion followed by cold vapor atom adsorption spectroscopy (CVAAS) was employed to analyze total particulate mercury concentration. Two-step extraction was performed to differentiate volatile particle-phase mercury (VPM), reactive particle-phase mercury (RPM) and inert particle-phase mercury (IPM). The average concentrations of mercury in PM1.6, PM8 and total suspended particle (TSP) were 0.058–0.252, 0.148–0.398 and 0.233–0.529 ng m−3, respectively. About 50%–60% of mercury in PM8 was in PM1.6, and about 60%–70% of mercury in TSP was in PM8. Particulate mercury was mainly concentrated on fine particles. The mercury fraction in fine particulate matters (<1.6 μm) was over 4 μg g−1 while 1–2 μg g−1 in TSP. Both were much higher than background values, suggesting that anthropogenic sources are the predominant emission contributors. Seasonal variation indicated that the mercury in TSP in spring was higher than that in summer; however, the mercury in fine particles (<1.6 μm) varied little. The fact that fine particulate mercury (<1.6 μm) was well correlated with sulfate and elemental carbon, but not with fluoride, chloride, nitrate and organic carbon, demonstrates that fine particulate mercury is closely associated with stationary sources and gas–particle transformation. Speciation analysis of mercury showed that VPM fraction decreased with the decrease of particle size, while IPM fraction increased and occupied over 50% in particle <1.6 μm. The detailed species in VPM, RPM and IPM were discussed. Coal burning was estimated to contribute approximately 80% of total atmospheric mercury.  相似文献   

7.
The solution of the complete transport diffusion equation with a first order reaction term is obtained for a continuous source. A deposition velocity boundary condition is met at the ground and, optionally, a similar leakage velocity boundary condition can be met at the base of a superjacent layer. The identification of a preliminary transformation of the dependent variable that eliminates the transport and sink terms permits particularly simple analytic solutions to be obtained by means of conventional Laplace transform, Green's function methods. Prior solutions are compared with these results. A linearisation of the solution without an overlying layer provides a simple extension of the conventional Gaussian plume result that permits account to be taken of pollutant settling velocity, of absorption at the ground and of a first order reaction. The accuracy of this linearisation is assessed. Examples of the application of the methods to calculation of the distribution of particulates and of the formation of nitrogen dioxide in a plume are given.  相似文献   

8.
The goal of this study was to investigate the potential for atmospheric Hg degrees uptake by grassland species as a function of different air and soil Hg exposures, and to specifically test how increasing atmospheric CO(2) concentrations may influence foliar Hg concentrations. Four common tallgrass prairie species were germinated and grown for 7 months in environmentally controlled chambers using two different atmospheric elemental mercury (Hg major; 3.7+/-2.0 and 10.2+/-3.5 ng m(-3)), soil Hg (<0.01 and 0.15+/-0.08 micro g g(-1)), and atmospheric carbon dioxide (CO(2)) (390+/-18, 598+/-22 micro mol mol(-1)) exposures. Species used included two C4 grasses and two C3 forbs. Elevated CO(2) concentrations led to lower foliar Hg concentrations in plants exposed to low (i.e., ambient) air Hg degrees concentrations, but no CO(2) effect was apparent at higher air Hg degrees exposure. The observed CO(2) effect suggests that leaf Hg uptake might be controlled by leaf physiological processes such as stomatal conductance which is typically reduced under elevated CO(2). Foliar tissue exposed to elevated air Hg degrees concentrations had higher concentrations than those exposed to low air Hg degrees , but only when also exposed to elevated CO(2). The relationships for foliar Hg concentrations at different atmospheric CO(2) and Hg degrees exposures indicate that these species may have a limited capacity for Hg storage; at ambient CO(2) concentrations all Hg absorption sites in leaves may have been saturated while at elevated CO(2) when stomatal conductance was reduced saturation may have been reached only at higher concentrations of atmospheric Hg degrees . Foliar Hg concentrations were not correlated to soil Hg exposures, except for one of the four species (Rudbeckia hirta). Higher soil Hg concentrations resulted in high root Hg concentrations and considerably increased the percentage of total plant Hg allocated to roots. The large shifts in Hg allocation patterns-notably under soil conditions only slightly above natural background levels-indicate a potentially strong role of plants in belowground Hg transformation and cycling processes.  相似文献   

9.
An intercomparison for sampling and analysis of atmospheric mercury species was held in Tuscany, June 1998. Methods for sampling and analysis of total gaseous mercury (TGM), reactive gaseous mercury (RGM) and total particulate mercury (TPM) were used in parallel sampling over a period of 4 days. The results show that the different methods employed for TGM compared well whereas RGM and TPM showed a somewhat higher variability. Measurement results of RGM and TPM improved over the time period indicating that activities at the sampling site during set-up and initial sampling affected the results. Especially the TPM measurement results were affected. Additional parallel sampling was performed for two of the TPM methods under more controlled conditions which yielded more comparable results.  相似文献   

10.
Total mercury and mercury species (methylmercury-MeHg, inorganic mercury--Hg(2+)) were determined in the aquatic ecosystem Záhlinice (Czech Republic). Four tissues (muscle, intestines, liver and kidney) of three bird species--cormorant, great crested grebe and Eurasian buzzard, muscle tissues of common carp, grass carp, northern pike, goldfish, common tench, perch and rudd, aquatic plants (reed mace and common reed), sediments and water were analysed. Relative contents of MeHg (of total Hg) were in the range from 71% to 94% and from 15% up to 62% in the muscle and intestines and in liver, respectively, for all birds. Statistically significant differences were found between contents of MeHg in liver tissues of young and adult cormorant populations (F(4.60)=56.71, P<10(-5)). Relative contents of MeHg in muscle tissues of fishes were in the range from 65.1% to 87.9% of total Hg.  相似文献   

11.
Nomograms based on the ATDL model to calculate the concentration of pollutants in an urban area in a simple manner are presented. Their use for estimation of permissible emission rates in various grids of an urban region is also elucidated.  相似文献   

12.
Field open top chambers (OTCs) and soil mercury (Hg) enriched experiments were employed to study the influence of Hg concentrations in air and soil on the Hg accumulation in the organs of maize (Zea mays L.) and wheat (Triticum aestivum L.). Results showed that Hg concentrations in foliages were correlated significantly (p < 0.05) with air Hg concentrations but insignificantly correlated with soil Hg concentrations, indicating that Hg in crop foliages was mainly from air. Hg concentrations in roots were generally correlated with soil Hg concentrations (p < 0.05) but insignificantly correlated with air Hg concentrations, indicating that Hg in crop roots was mainly from soil. No significant correlations were found between Hg concentrations in stems and those in air and soil. However, Hg concentrations in upper stems were usually higher than those in bottom stems, implying air Hg might have stronger influence than soil Hg on stem Hg accumulation.  相似文献   

13.
The concentrations of total gaseous mercury (Hg) were determined at hourly intervals along with relevant environmental parameters that include both meteorological plus criteria pollutant data during two field campaigns (September 1997 and May/June 1998). The mean concentrations of Hg for the two study periods were computed as 3.94 and 3.43 ng m−3, respectively. By separating the data into daytime and nighttime periods, we further analyzed diurnal variation patterns for both seasons. Using our Hg data sets, we were able to recognize two contrasting diurnal variation patterns of Hg between two different seasons that can be characterized as: (1) the occurrences of peak Hg concentration during daytime (fall) and (2) slight reductions in daytime Hg concentration relative to nighttime (summer). To study the systematic differences in diurnal patterns between two different seasons, we analyzed Hg data in terms of different statistical approaches such as correlation (and linear regression) and factor analysis. Results of these analyses consistently indicated that different mechanisms were responsible for controlling the daytime distribution patterns of Hg. When the relationship between Hg and concurrently determined O3 is considered, its reaction with ozone is unlikely to limit Hg levels as the dominant sink mechanism (within the ranges of ozone concentrations found during this study, regardless of season). It is on the other hand suspected that the variation of boundary layer conditions between day/night periods may have been important in introducing the relative reduction in daytime Hg levels during summer. To further provide a general account of short-term variations in Hg distribution data, it is desirable to describe other unknown sink mechanisms.  相似文献   

14.
Concentrations of different species of mercury in arctic air and precipitation have been measured at Ny-Ålesund (Svalbard) and Pallas (Finland) during 1996–1997. Typical concentrations for vapour phase mercury measured at the two stations were in the range of 0.7–2 ng m−3 whereas particulate mercury concentrations were below 5 pg m−3. Total mercury in precipitation was in the range 3–30 ng l−1. In order to evaluate the transport and deposition of mercury to the arctic from European anthropogenic sources, the Eulerian transport model HMET has been modified and extended to also include mercury species. A scheme for chemical conversion of elemental mercury to other species of mercury and deposition characteristics of different mercury species have been included in the model. European emission inventories for three different forms of Hg (Hg0, HgCl2 and Hgp) have been implemented in the numerical grid system for the HMET model.  相似文献   

15.
Si L  Ariya PA 《Chemosphere》2011,84(8):1079-1084
Mercury is a global environmental contaminant with severe toxicity impact. The chemical processes resulting in the transformation of oxidized mercury species (Hg2+) to elemental mercury (Hg0), greatly affects the fate and transport of mercury in the natural environment. We hereby provide the first study on the photochemistry of Hg2+ with selected alkanethiols (R-SH) as model compounds to represent thiols and thiol-type binding sites on humic substances in natural waters because of the common sulfhydryl functional group (-SH). Kinetic studies were performed using cold vapor atomic fluorescence spectroscopy (CVAFS), the formation of Hg2+-thiol complexes (Hg(SR)2) were confirmed by UV-visible spectrometry and Atmospheric Pressure Chemical Ionization-Mass Spectrometry (APCI-MS), and the reaction products were analyzed using Electron Impact-Mass Spectrometry (EI-MS) and Solid Phase Microextraction coupled with Gas Chromatography-Mass Spectrometry (SPME/GC-MS). Our results indicated that the photoreduction of Hg2+ by selected alkanethiols may be mediated by Hg2+-thiol complexes to produce Hg0. Under our experimental conditions, the apparent first order rate constants obtained for 1-propanethiol, 1-butanethiol, and 1-pentanethiol were (2.0 ± 0.2) × 10−7 s−1, (1.4 ± 0.1) × 10−7 s−1, (8.3 ± 0.5) × 10−8 s−1, respectively. The effects of ionic strength, dissolved oxygen or chloride ion on reaction rates were found to be minimal under our experimental conditions. The identified products of the reaction between oxidized mercury species with selected alkanethiols (C3-C5) were Hg0 and disulfides (RS-SR). The potential environmental implications are herein discussed.  相似文献   

16.
We obtain an analytical solution for two-dimensional steady-state transport of conservative contaminant between injecting and pumping wells. Flow and transport are considered in the vertical cross-section. The Dupuit approximation and conformal mapping onto the complex potential domain are employed to determine the velocity and concentration distributions, respectively. We use this solution to derive a priori conditions under which widely used 1-D analytical solutions with constant velocity and dispersion coefficients provide accurate approximations. These conditions are formulated in terms of aquifer parameters, such as hydraulic conductivity, porosity and dispersivities, and remediation strategy, e.g., well spacing and pumping regimes.  相似文献   

17.
Exposures from indoor environments are a major issue for evaluating total long-term personal exposures to the fine fraction (<2.5 microm in aerodynamic diameter) of particulate matter (PM). It is widely accepted in the indoor air quality (IAQ) research community that biocontamination is one of the important indoor air pollutants. Major indoor air biocontaminants include mold, bacteria, dust mites, and other antigens. Once the biocontaminants or their metabolites become airborne, IAQ could be significantly deteriorated. The airborne biocontaminants or their metabolites can induce irritational, allergic, infectious, and chemical responses in exposed individuals. Biocontaminants, such as some mold spores or pollen grains, because of their size and mass, settle rapidly within the indoor environment. Over time they may become nonviable and fragmented by the process of desiccation. Desiccated nonviable fragments of organisms are common and can be toxic or allergenic, depending upon the specific organism or organism component. Once these smaller and lighter fragments of biological PM become suspended in air, they have a greater tendency to stay suspended. Although some bioaerosols have been identified, few have been quantitatively studied for their prevalence within the total indoor PM with time, or for their affinity to penetrate indoors. This paper describes a preliminary research effort to develop a methodology for the measurement of nonviable biologically based PM, analyzing for mold and ragweed antigens and endotoxins. The research objectives include the development of a set of analytical methods and the comparison of impactor media and sample size, and the quantification of the relationship between outdoor and indoor levels of bioaerosols. Indoor and outdoor air samples were passed through an Andersen nonviable cascade impactor in which particles from 0.2 to 9.0 microm were collected and analyzed. The presence of mold, ragweed, and endotoxin was found in all eight size ranges. The presence of respirable particles of mold and pollen found in the fine particle size range from 0.2 to 5.25 microm is evidence of fragmentation of larger source particles that are known allergens.  相似文献   

18.
19.
A sampling system and analytical procedure for determining PCDD/Fs, PCBs, HCB, and PAHs in ambient air was tested. The reproducibility of the concentrations and the gas/particle partitioning was ± 10% for most compounds. The removal of gaseous compounds on the XAD resin trap was greater than 99%. The adsorption of gaseous substances on the glass fiber filter was negligible for compounds primarily found in the gas phase, but could not be ruled out for compounds found mainly on particles.  相似文献   

20.
A method for determining atmospheric concentrations of eight pesticides applied to corn and soybean crops in Mato Grosso state, Brazil is presented. The method involved a XAD-2 resin cartridge coupled to a low volume air pump at 2 L min?1 over 8 hours. Pesticides were recovered from the resin using sonication with n-hexane:ethyl acetate and determined by GC-MS. Good accuracy (76–128%) and precision (CV < 20%) were obtained for atrazine, chlorpyrifos, alpha- and beta-endosulfan, endosulfan sulfate, flutriafol, malathion, metolachlor and permethrin. Method detection ranged from 9.0 to 17.9 ng m?3. This method was applied to 61 gas phase samples collected between December 2008 and June 2009. Atrazine and endosulfan were detected both in urban and rural areas indicating the importance of atmospheric dispersion of pesticides in tropical areas. The simple and efficient extraction method and sampling system employed was considered suitable for identifying pesticides in areas of intense agricultural production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号