首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The present paper demonstrates the applicability of EPR spectrometry for separate estimation of soot (EC) and polycyclic aromatic hydrocarbons (PAH) in aerosols. The content of EC is obtained directly because of their paramagnetic properties whereas diamagnetic PAH, adsorbed on the soot, are converted to paramagnetic forms by oxidation over silica/alumina catalyst. In order to fulfill the goal of our study at this stage only few samples of aerosols are investigated after being collected at four different locations: near and distant to motorway, office and cafeteria. The obtained results show that the quantities of soot and PAH in all cases are μg m−3. However, their content varies depending on the place of sample collection. The following order of decreasing soot quantity is found: motorway>urban air>cafeteria>office whereas for PAH the order is cafeteria≅motorway>urban air>office. The obtained results are discussed in the light of the pollution sources at the sampling places.  相似文献   

2.
Nitration by NO2 of pyrene or benzo[a]pyrene adsorbed from the vapor phase onto six coal ashes, alumina, and silica substrates is not observed if the NO2 is thoroughly purged of nitric acid. Also, the photochemical transformation of pyrene or benzo[a]pyrene adsorbed on these substrates is not detectably influenced by the presence of nitric acid-free NO2. Photochemical production of nitro derivatives of adsorbed polycyclic aromatic hydrocarbons in the presence of NO2 does not appear to be a significant process unless appreciable concentrations of nitric acid, or perhaps strong oxidants such as ozone, also are present.  相似文献   

3.
To better understand the atmospheric behaviour of pesticides, heterogeneous ozonolysis of three herbicides (alachlor, terbuthylazine and trifluralin) adsorbed on silica particles were performed in a flow reactor. The experimental setup used in this study and previously validated (Pflieger et al., 2009) has been specially developed to investigate extremely slow reactivity. The pesticides were adsorbed on particles using a gas/solid adsorption equilibrium, in order to simulate atmospheric conditions. After exposure to ozone concentrations ranging from 5 to 41 ppm during 90 min to 6 h, the kinetics were calculated by comparing the initial and the remaining amounts of pesticides adsorbed on silica particles. This work offers the first results of heterogeneous ozonolysis of alachlor and trifluralin adsorbed on mineral particles. Although alachlor and terbuthylazine were expected to react with ozone, no degradation was observed which leads to a lifetime higher than 8 months towards ozonolysis (for 40 ppb of O3). A significant degradation of trifluralin adsorbed on silica particles by heterogeneous ozonolysis was observed. The experimental data could be fit by both the Langmuir–Rideal and the Langmuir–Hinshelwood models resulting in atmospheric lifetimes (towards heterogeneous ozonolysis) of 40 and 32 days respectively (for 40 ppb of O3). These results are discussed and compared to other studies.  相似文献   

4.
This work deals with the kinetic study of the reactions of ozone with pyrene, 1-hydroxypyrene and 1-nitropyrene, adsorbed on model particles. Experiments were performed at room temperature and atmospheric pressure, using a quasi-static flow reactor in the absence of light. Compounds were extracted from particles using pressurized fluid extraction (PFE) and concentration measurements were performed using gas chromatography/mass spectrometry (GC/MS). The pseudo-first order rate constants were obtained from the fit of the experimental decay of particulate polycyclic compound concentrations versus reaction time. Experiments were performed at three different O3 concentrations from which second order rate constants were calculated. The following rate constant values were obtained at 293 K: k(O3 + Pyrene) = (3.2 ± 0.7) × 10?16 cm3 molecule?1 s?1; k(O3 + 1OHP) = (7.7 ± 1.4) ×10 ?16 cm3 molecule?1 s?1; and k(O3 + 1NP) = (2.2 ± 0.5) × 10?17 cm3 molecule?1 s?1, for pyrene, 1-hydroxypyrene and 1-nitropyrene adsorbed on silica particles. The variation in the rate constants demonstrates the strong influence of the substituent (OH or NO2) on the heterogeneous reactivity of pyrene. The pyrene particulate concentration was also varied in order to check how this parameter may influence the experiments. Finally, oxidation products were investigated for all reactions and some were detected and identified for the first time for ozone heterogeneous reaction with pyrene adsorbed on particles.  相似文献   

5.
This study investigated the anaerobic degradation of five polycyclic aromatic hydrocarbons (PAHs) from Erren River sediment in southern Taiwan. The degradation rates of PAH were in the order: acenaphthene > fluorene > phenanthrene > anthracene > pyrene. The degradation rate was enhanced when the five compounds were present simultaneously in river sediment. Comparison of the PAH degradation rates under three reducing conditions showed the following order: sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The addition of electron donors (acetate, lactate and pyruvate) enhanced PAH degradation under methanogenic and sulfate-reducing conditions. However, the addition of acetate, lactate or pyruvate inhibited PAH degradation under nitrate-reducing conditions. The addition of heavy metals, nonylphenol and phthalate esters (PAEs) inhibited PAH degradation. Our results show that sulfate-reducing bacteria, methanogen and eubacteria are involved in the degradation of PAH; sulfate-reducing bacteria constitute a major microbial component in PAH degradation. Of the microorganism strains isolated from the sediment samples, we found that strain ER9 expressed the greatest biodegrading ability.  相似文献   

6.
The heterogeneous reactivity of nitrogen dioxide with pyrene and 1-nitropyrene (1NP) adsorbed on silica particles has been investigated using a fast-flow-tube in the absence of light. Reactants and products were extracted from particles using pressurised fluid extraction (PFE) and concentration measurements were performed using gas chromatography/mass spectrometry (GC/MS). The pseudo-first order rate constants were obtained from the fit of the experimental decay of particulate polycyclic compound concentrations versus reaction time. Experiments were performed at three different NO2 concentrations and second order rate constants were calculated considering the oxidant concentration. The following rate constant values were obtained at room temperature: k(NO2 + pyrene) = (9.3 ± 2.3) × 10?17 cm3 molecule?1 s?1 and k(NO2 + 1NP) = (6.2 ± 1.5) × 10?18 cm3 molecule?1 s?1, showing that the reactivity of 1NP was slower by a factor of 15 than that of pyrene. 1NP was identified as the only NO2-initiated oxidation product of pyrene and all the three dinitropyrenes were identified in the case of the 1NP reaction. The product quantification allowed showing that the kinetics of oxidation product formation was equal to that measured for parent compounds degradation, within uncertainties, confirming the validity of the reaction kinetics measurements.  相似文献   

7.
Warner SD  Farant JP  Butler IS 《Chemosphere》2004,54(8):1207-1215
To examine the relationship between the nitro group orientation and photochemical degradation, a series of NPAHs, including 6-nitrochrysene, 9-nitroanthracene and 6-nitrobenzo(a)pyrene were irradiated both dissolved in CH3CN and adsorbed onto a surface (alumina, silica, carbon and cellulose). In solution, not all NPAHs displayed a relationship between their relative and nitro group orientation. In the adsorbed state, the nature of the particle appeared to have more of an influence than did the structure of the NPAH. If the compound degraded, the main product was generally a quinone.  相似文献   

8.
Abstract

In this study, polycyclic aromatic hydrocarbon (PAH) emissions from two batch-type medical waste incinerators (MWIs), one with a mechanical grate and the other with a fixed grate, both operated by a medical center, were assessed. Both MWIs shared the same air-pollution control devices (APCDs), with an electrostatic precipitator and a wet scrubber installed in series. Results show that when APCDs were used, total PAHs and total benzo- [a]pyrene equivalent (total BaPeq) emission concentrations of both MWIs were reduced from 2220 to 1870 µg/m3 and 50 to 12.4 µg/m3, respectively. We used the Industrial Source Complex Short Term model (ISCST) to estimate the ground-level concentrations of the residential area and the traffic intersection located at the down-wind side of the two MWIs. For the traffic intersection, we found both total PAHs and total BaPeq transported from MWIs to both studied areas were not significant. For the residential area, similar results were found when APCDs were used in MWIs. When APCDs were not included, we found that total PAHs transported from MWIs accounted for <12%, but total BaPeq accounted for >90%, of the on-site measured concentrations. These results suggest that the use of proper APCDs during incineration would significantly reduce the carcinogenic potencies associated with PAH emissions from MWIs to the residential area.  相似文献   

9.
Wang H  Hasegawa K  Kagaya S 《Chemosphere》2000,41(9):1479-1484
Conversion of NO2, HNO2 gas, their mixture and a mixed gas of HNO2 and HNO3 on silica particles was investigated under simulated atmospheric conditions. Both HNO2 and HNO3 were detected as the products from conversion of NO2 on silica particles. However, unlike HNO3, which increased with conversion time, HNO2 underwent an increase-decrease time course due to the increased HNO3 further transformed HNO2 into NO+ on silica particles. Considering the catalytic effect of HNO3 and HNO2 on the nitration of pyrene adsorbed on silica particles by NO2, another electrophilic nitration path, analogous to the one that we previously reported, with NONO2+ and NON2O4+ as electrophiles was suggested. The two paths together gave an appropriate explanation for the catalytic effect of HNO2, HNO3 and their mixed gas on the nitration of the adsorbed pyrene by NO2.  相似文献   

10.
Polycyclic aromatic hydrocarbon (PAH) concentrations have been determined for 14 successive days in a remote site of the Mediterranean Sea situated in Corsica, France. Both particulate and gas phases were collected and analyzed. For any receptor site the concentration of adsorbed PAH on particles is determined by three parameters, in order of decreasing importance: the source area, nearby sources and precipitation along the trajectory followed by the particles. For two air masses originating from the same source area, PAH concentrations can be reduced by 60% by particle scavenging during precipitation events. The identification of the source area is in complete agreement with the classification based on the mineral elements. The gas phase concentrations are determined by the source area only; they remain high compared to the concentrations in the industrial zone, thus proving that the gaseous PAH are not strongly degraded by chemical aggressors during transport. Factor analysis clearly shows the different effects involved during transport. The gas/particle ratio is determined essentially by the temperature and molecular weight of the PAH and not by the origin of the emissions. However precipitation influences this ratio to a non-negligible extent through scavenging of the aerosols. For example, the gas/particle ratio, for pyrene, varies from 2 to 4 between two ‘dry’ episodes with a temperature difference of 2.2° C, and from 6 to 13 because of the particle scavenging by rain. These results can be used as a data base and are expected to guide the conception of transport models including the parameters considered in this study.  相似文献   

11.
Water samples were collected from wastewater treatment plant (WWTP), drain water (DW), major tributaries (MT), and main course of the Yangtze River (MY) in areas of three industrial parks (IPs) in Chongqing city in the Three Gorges Reservoir (TGR). Sixteen EPA priority polycyclic aromatic hydrocarbon (PAH) pollutants were quantified to identify the effects of industrial activities on water quality of the TGR. The results showed that 11 individual PAHs were quantified and 5 PAHs (naphthalene (Nap), acenaphthylene (Acy), benzo[k]fluoranthene (BkF), indeno[1,2,3-cd]pyrene (InP), and benzo[g,h,i]perylene (BgP)) were under detection limits in all of the water samples. Three-ring and four-ring PAHs were the most detected PAHs. Concentrations of individual PAHs were in the range of not detected (nd) to 24.3 ng/L. Total PAH concentrations for each site ranged from nd to 42.9 ng/L and were lower compared to those in other studies. The mean PAH concentrations for sites WWTP, DW, MT, and MY showed as follows: DW (25.9 ng/L) > MY (15.5 ng/L) > MT (14.0 ng/L) > WWTP (9.3 ng/L), and DW contains the highest PAH concentrations. Source identification ratios showed that petroleum and combustion of biomass coal and petroleum were the main sources of PAHs. The results of potential ecosystem risk assessment indicated that, although PAH concentrations in MT and MY are likely harmless to ecosystem, contaminations of PAHs in DW were listed as middle levels and some management strategies and remediation actions, like strengthen clean production processes and banning illegal sewage discharging activities, etc., should be taken to lighten the ecosystem risk caused by PAHs especially risks caused by water discharging drains.  相似文献   

12.
Two representative samples of surficial marine sediments have been studied, one from the northern Baltic Proper and the other from the Gulf of Finland. Aliphatic hydrocarbons were determined by gas chromatography on a fused silica capillary column, and six polyaromatic hydrocarbons were determined by gas chromatography-mass fragmentography. Hydrocarbons were extracted with a benzene-methanol mixture and ultrasonic agitation. The aliphatic hydrocarbons were tentatively identified by their retention times. The polyaromatic hydrocarbons (PAHs) were identified on the basis of their retention times and mass fragmentograms by direct comparison with those of standard compounds. The aliphatic hydrocarbon contents ranged from 0,1 to 2,6 μg/g dry matter. In both samples there was a clear maximum at n-C17 and also a clear odd-carbon predominance. The PAH contents ranged from 4 to 120 ng/g dry matter. The PAH concentration was about 58 per cent higher in the sample from the Gulf of Finland than in the sample from the Baltic Proper.  相似文献   

13.
Luan TG  Yu KS  Zhong Y  Zhou HW  Lan CY  Tam NF 《Chemosphere》2006,65(11):2289-2296
The PAH metabolites produced during degradation of fluorene, phenanthrene and pyrene by a bacterial consortium enriched from mangrove sediments were analyzed using the on-fiber silylation solid-phase microextraction (SPME) combining with gas chromatography–mass spectrometry (GC–MS) method. Seventeen metabolites at trace levels were identified in different PAH degradation cultures based on the full scan mass spectra. In fluorene degradation cultures, 1-, 2-, 3- and 9-hydroxyfluorene, fluorenone, and phthalic acid were detected. In phenanthrene and pyrene degradation cultures, various common metabolites such as phenanthrene and pyrene dihydrodiols, mono-hydroxy phenanthrene, dihydroxy pyrene, lactone and 4-hydroxyphenanthrene, methyl ester, and phthalic acid were found. The detection of various common and novel metabolites demonstrates that SPME combining with GC–MS is a quick and convenient method for identification as well as monitoring the real time changes of metabolite concentrations throughout the degradation processes. The knowledge of PAH metabolic pathways and kinetics within indigenous bacterial consortium enriched from mangrove sediments contributes to enhance the bioremediation efficiency of PAH in real environment.  相似文献   

14.
Real-world vehicle emission factors for seventeen gas and particulate polycyclic aromatic hydrocarbons (PAHs) were quantified in the Shing Mun Tunnel, Hong Kong during summer and winter 2003. Naphthalene, acenaphthylene, and acenaphthene were the most abundant gas PAHs while fluoranthene and pyrene were the most abundant in the particle phase. Most (98%) of the gas PAHs consisted of two- and three-aromatic rings whereas most of the particle-phase PAHs were in four- (~60%) and five-ring (~17%) for fresh exhaust emissions. Average emission factors for the gas- and particle PAHs were 950–2564 μg veh?1 km?1 and 22–354 μg veh?1 km?1, respectively. Good correlations were found between diesel markers (fluoranthene and pyrene; 0.85) and gasoline markers (benzo[ghi]perylene and indeno[1,2,3-cd]pyrene; 0.96). Higher PAH emission factors were associated with a higher fraction of diesel-fueled vehicles (DV) passing through the tunnel. Separate emission factors were determined from diesel and non-diesel exhaust by the regression intercept method. The average PAH emission factor (i.e., sum of gas and particle phases) from DV (3085 ± 1058 μg veh?1 km?1) was ~5 times higher than that from non-diesel-fueled vehicles (NDV, 566 ± 428 μg veh?1 km?1). Ratios of DV to NDV emission factors were high for diesel markers (>24); and low for gasoline markers (<0.4).  相似文献   

15.
Traffic has long been recognized as the major contributor to polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Stationary combustion sources, including residential space heating systems, are also a major contributor to PAH emissions. The aim of this study was to determine the profile and concentration of PAHs in stack flue gas emissions from different kinds of space heaters in order to increase the understanding of the scale of the PAH pollution problem caused by this source. This study set out to first assess the characteristics of PAHs and their corresponding benzo[a]pyrene equivalent emissions from a few types of domestic heaters and central heating systems to the urban atmosphere. The study, enabled for the first time, the characterization of PAHs in stationary combustion sources in the city of Damascus, Syria. Nine different types of heating systems were selected with respect to age, design, and type of fuel burned. The concentrations of 15 individual PAH compounds in the stack flue gas were determined in the extracts of the collected samples using high-performance liquid chromatography system (HPLC) equipped with ultraviolet–visible and fluorescence detectors. In general, older domestic wood stoves caused considerably higher PAH emissions than modern domestic heaters burning diesel oil. The average concentration of ΣPAH (sum of 15 compounds) in emissions from all types of studied heating systems ranged between 43?±?0.4 and 316?±?1.4 μg/m3. Values of total benzo[a]pyrene equivalent ranged between 0.61 and 15.41 μg/m3.  相似文献   

16.
El Nemr A  Abd-Allah AM 《Chemosphere》2003,52(10):1711-1716
The residues of seven polycyclic aromatic hydrocarbons (PAHs) pollutants in microlayer and subsurface seawater samples collected from Alexandria coast, Egypt, were analyzed by gas chromatography–electron-impact mass spectrometry-selected ion monitoring mode (GC–MS-SIM). The pollutants studied were, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene and benzo[a]pyrene. Total PAH levels in microlayer ranged from 103 to 523 ng/l, while it ranged in subsurface samples from 13 to 120 ng/l. The Western Harbor location recorded the highest level of PAHs pollutant over all the other location for both subsurface and microlayer waters. The two major PAHs in microlayer water at the Western Harbor were fluorene and phenanthrene, making up 27% and 20% of the total PAHs, while the two major PAHs in subsurface water at the Eastern Harbor were phenanthrene and fluoranthene recording up 21% each of the total PAHs. The total PAH levels were generally in the nano-gram per liter for microlayer and subsurface seawater samples. The dominant PAHs in both subsurface and microlayer samples were fluoranthene, pyrene and benzo[a]pyrene. The microlayer enrichment factor at Alexandria’s Mediterranean coast was ranged from 29 for fluorene to 3 for phenanthrene and benzo[a]pyrene which showed PAHs concentration in the microlayer with an average of five times more than the total PAH in the subsurface samples.  相似文献   

17.
Laboratory and field sampling experiments were conducted to determine the phase-distribution of polynuclear aromatic hydrocarbons (PAH) in the ambient atmosphere and to determine the potential for artifact formation due to volatilization and ozone (O3) reaction during normal sampling conditions. The study was conducted in two segments to investigate both summer and winter ambient temperature effects. The winter measurements reflect stronger association of PAH with the particulate phase than the summer data, but data from both seasons show appreciable filter losses due to volatilization of phenanthrene, anthracene, fluoranthene, benz(a)anthracene and chrysene. No evidence was found for volatilization of the heavier PAH, including benzo(e)pyrene, benzo(a)pyrene, indeno(l,2,3-c,d)pyrene, benzo(g,h,i)perylene and coronene. Although O3 reacted readily with particulate matter that was freshly spiked with PAH in the laboratory experiments, no evidence was found for reaction of O3 with particulate matter during the field sampling experiments.  相似文献   

18.
A preliminary investigation has been made on the emissions of Polynuclear Aromatic Hydrocarbons (PAH) when burning wood chips and peat in a modified commercial hot water boiler. The amount of the investigated eighteen PAH that were filter trapped from peat combustion averaged 2.7 times greater than that from wood combustion per cubic meter flue gas. The total emitted amount (particulate plus gas phase PAH) was 9.7 times greater than from wood combustion. The corresponding values for benzo(a)pyrene only were 1.7 and 3.5 times greater, respectively. The comparison of PAH emitted by the combustion of wood and peat showed a pronounced tendency towards the emission of high molecular weight PAH by the latter.Particulate phase-gas phase distribution ourves are presented for PAH in the boiling point range 336°C – 525°C. In addition, the emission of a polynuclear aromatic ketone is shown.  相似文献   

19.
The composition of exhaust emissions from eight in-service passenger cars powered by liquefied petroleum gas (LPG) and unleaded petrol (ULP) were measured on a chassis dynamometer at two driving speeds (60 and 80 km h−1) with the aims of evaluating their polycyclic aromatic hydrocarbon (PAH) contents and investigating the effects of the type of fuel on vehicle performance, ambient air quality and associated health risks. Naphthalene, fluorene, phenanthrene, anthracene, pyrene, chrysene, benzo(a)anthracene and benzo(b)fluoranthene were the most prominent PAHs emitted by both ULP and LPG powered cars. The total emission factors of PAHs from LPG cars were generally lower than (but statistically comparable with) those of ULP cars. Similarly, the total BAPeq of the PAHs emitted by LPG cars were lower than those from ULP cars. Multi-criteria decision making (MCDM) methods showed that cars powered by LPG fuel performed better than those powered by ULP fuel in term of PAH levels. The implications of these observations on the advantages and disadvantages of using ULP and LPG fuels are discussed.  相似文献   

20.
With an Xe arc lamp house as simulated sunlight, the influences of fulvic acid (FA) concentration and origins on photodegradation of acenaphthene, fluorine, phenanthrene, fluoranthene and pyrene in aqueous solution have been studied. Similar effects of FAs, collected from five places around China, on polycyclic aromatic hydrocarbon (PAH) photodegradation have been observed. Active oxygen was of significance in PAH photodegradation with the presence of FAs. For systems with 1.25 mg L−1 FAs, the contributions of OH to PAH photodegradation rates were from 33% to 69%. FAs had two opposite effects, i.e., stimulating the generation of active oxygen and advancing PAH photodegradation; competing with PAHs for energy and photons and restraining PAH photodegradation. Generally, photodegradation rates of the 5 PAHs decreased with the increase of FAs concentration; except fluoranthene and pyrene were advanced in solutions with low FA concentration. The influences of FA concentration on PAH photodegradation were more significant than FA origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号