首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH4 m−2 h−1. Considering the current gas production rate of 0.03 g CH4 m−2 h−1, the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level.  相似文献   

2.
3.
The effect of leachate irrigation on methanotrophic activity in sandy loam-based landfill cover soil with vegetation was investigated. Laboratory-scale experiments were conducted to investigate the methane oxidation reaction in cover soil with and without plants (tropical grass). The methane oxidation rate in soil columns was monitored during leachate application at different organic concentrations and using different irrigation patterns. The results showed that the growth of plants on the final cover layer of landfill was promoted when optimal supplement nutrients were provided through leachate irrigation. The vegetation also helped to promote methane oxidation in soil, whereas leachate application helped increase the methane oxidation rate in nonvegetated cover soil. Intermittent application of leachate (once every 4 days) improved the methane oxidation activity as compared to daily application. Nevertheless, the adverse effects of organic overloading on methane oxidation rate and plant growth were also observed.  相似文献   

4.
A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas concentration profiles were compared to field measurements. Column studies simulating compost respiration in the biowindow showed average CO2 production and O2 consumption rates of 107 ± 14 g m−2 d−1 and 63 ± 12 g m−2 d−1, respectively. Gas profiles from the columns showed elevated CO2 concentrations throughout the compost layer, and CO2 concentrations exceeded 20% at a depth of 40 cm below the surface of the biowindow. Overall, the results showed that respiration of compost material placed in biowindows might generate significant CO2 emissions. In landfill compost covers, methanotrophs carrying out CH4 oxidation will compete for O2 with other aerobic microorganisms. If the compost is not mature, a significant portion of the O2 diffusing into the compost layer will be consumed by non-methanotrophs, thereby limiting CH4 oxidation. The results of this study however also suggest that the consumption of O2 in the compost due to aerobic respiration might increase over time as a result of the accumulation of biomass in the compost after prolonged exposure to CH4.  相似文献   

5.
Biologically-active landfill cover soils (biocovers) that serve to minimize CH4 emissions by optimizing CH4 oxidation were investigated at a landfill in Florida, USA. The biocover consisted of 50 cm pre-composted yard or garden waste placed over a 10-15 cm gas distribution layer (crushed glass) over a 40-100 cm interim cover. The biocover cells reduced CH4 emissions by a factor of 10 and doubled the percentage of CH4 oxidation relative to control cells. The thickness and moisture-holding capacity of the biocover resulted in increased retention times for transported CH4. This increased retention of CH4 in the biocover resulted in a higher fraction oxidized. Overall rates between the two covers were similar, about 2g CH4 m(-2)d(-1), but because CH4 entered the biocover from below at a slower rate relative to the soil cover, a higher percentage was oxidized. In part, methane oxidation controlled the net flux of CH4 to the atmosphere. The biocover cells became more effective than the control sites in oxidizing CH4 3 months after their initial placement: the mean percent oxidation for the biocover cells was 41% compared to 14% for the control cells (p<0.001). Following the initial 3 months, we also observed 29 (27%) negative CH4 fluxes and 27 (25%) zero fluxes in the biocover cells but only 6 (6%) negative fluxes and 22 (21%) zero fluxes for the control cells. Negative fluxes indicate uptake of atmospheric CH4. If the zero and negative fluxes are assumed to represent 100% oxidation, then the mean percent oxidation for the biocover and control cells, respectively, for the same period would increase to 64% and 30%.  相似文献   

6.
Final landfill covers are highly engineered to prevent methane release into the atmosphere. However, methane production begins soon after waste placement and is an unaddressed source of emissions. The methane oxidation capacity of methanotrophs embedded in a “bio-tarp” was investigated as a means to mitigate methane release from open landfill cells. The bio-tarp would also serve as an alternative daily cover during routine landfill operation.Evaluations of nine synthetic geotextiles identified two that would likely be suitable bio-tarp components. Pilot tarp prototypes were tested in continuous flow systems simulating landfill gas conditions. Multilayered bio-tarp prototypes consisting of alternating layers of the two geotextiles were found to remove 16% of the methane flowing through the bio-tarp. The addition of landfill cover soil, compost, or shale amendments to the bio-tarp increased the methane removal up to 32%. With evidence of methane removal in a laboratory bioreactor, prototypes were evaluated at a local landfill using flux chambers installed atop intermediate cover at a landfill. The multilayered bio-tarp and amended bio-tarp configurations were all found to decrease landfill methane flux; however, the performance efficacy of bio-tarps was not significantly different from controls without methanotrophs. Because highly variable methane fluxes at the field site likely confounded the test results, repeat field testing is recommended under more controlled flux conditions.  相似文献   

7.
In this experimental program, the effects of non-methane organic compounds (NMOCs) on the biological methane (CH4) oxidation process were examined. The investigation was performed on compost experiments incubated with CH4 and selected NMOCs under different environmental conditions. The selected NMOCs had different concentrations and their effects were tested as single compounds and mixtures of compounds. The results from all experimental sets showed a decrease in CH4 oxidation capacity of the landfill bio-cover with the increase in NMOCs concentrations. For example, in the experiment using compost with 100% moisture content at 35 °C without any NMOCs the Vmax value was 35.0 μg CH4h-1gwet wt-1. This value was reduced to 19.1 μg CH4h-1gwet wt-1 when mixed NMOCs were present in the batch reactors under the same environmental conditions. The experimental oxidation rates of CH4 in the presence of single and mixed NMOCs were modeled using the uncompetitive inhibition model and kinetic parameters, including the dissociation constants, were obtained. Additionally, the degradation rates of the NMOCs and co-metabolic abilities of methanotrophic bacteria were estimated.  相似文献   

8.
Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, Km, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.  相似文献   

9.
The influence of atmospheric pressure on landfill methane emissions   总被引:3,自引:0,他引:3  
Landfills are the largest source of anthropogenic methane (CH4) emissions to the atmosphere in the United States. However, few measurements of whole landfill CH4 emissions have been reported. Here, we present the results of a multi-season study of whole landfill CH4 emissions using atmospheric tracer methods at the Nashua, New Hampshire Municipal landfill in the northeastern United States. The measurement data include 12 individual emission tests, each test consisting of 5-8 plume measurements. Measured emissions were negatively correlated with surface atmospheric pressure and ranged from 7.3 to 26.5 m3 CH4 min(-1). A simple regression model of our results was used to calculate an annual emission rate of 8.4 x 10(6) m3 CH4 year(-1). These data, along with CH4 oxidation estimates based on emitted landfill gas isotopic characteristics and gas collection data, were used to estimate annual CH4 generation at this landfill. A reported gas collection rate of 7.1 x 10(6) m3 CH4 year(-1) and an estimated annual rate of CH4 oxidation by cover soils of 1.2 x 10(6) m3 CH4 year(-1) resulted in a calculated annual CH4 generation rate of 16.7 x 10(6) m3 CH4 year(-1). These results underscore the necessity of understanding a landfill's dynamic environment before assessing long-term emissions potential.  相似文献   

10.
The natural methane oxidation potential of methanotrophic bacteria in landfill top covers is a sustainable and inexpensive method to reduce methane emissions to the atmosphere. Basically, the activity of methanotrophic bacteria is limited by the availability of oxygen in the soil. A column study was carried out to determine whether and to what extent vegetation can improve soil aeration and maintain the methane oxidation process. Tested soils were clayey silt and mature compost. The first soil is critical in light of surface crusting due to vertical erosion of an integral part of fine-grained material, blocking pores required for the gas exchange. The second soil, mature compost, is known for its good methane oxidation characteristics, due to high air-filled porosity, favorable water retention capacity and high nutrient supply. The assortment of plants consisted of a grass mixture, Canadian goldenrod and a mixture of leguminous plants. The compost offered an excellent methane oxidation potential of 100% up to a CH4-input of 5.6 l CH4 m−2 h−1. Whereas the oxidation potential was strongly diminished in the bare control column filled with clayey silt even at low CH4-loads. By contrast the planted clayey silt showed an increased methane oxidation potential compared to the bare column. The spreading root system forms secondary macro-pores, and hence amplifies the air diffusivity and sustain the oxygen supply to the methanotrophic bacteria. Water is produced during methane oxidation, causing leachate. Vegetation reduces the leachate by evapotranspiration. Furthermore, leguminous plants support the enrichment of soil with nitrogen compounds and thus improving the methane oxidation process. In conclusion, vegetation is relevant for the increase of oxygen diffusion into the soil and subsequently enhances effective methane oxidation in landfill cover soils.  相似文献   

11.
Landfills that generate too little biogas for economic energy recovery can potentially offset methane (CH4) emissions through biological oxidation by methanotrophic bacteria in cover soils. This study reports on the CH4 oxidation efficiency of a 10-year old landfill cap comprising a volcanic pumice soil. Surface CH4 and CO2 fluxes were measured using field chambers during three sampling intervals over winter and summer. Methane fluxes were temporally and spatially variable (?0.36 to 3044 mg CH4 m?2 h?1); but were at least 15 times lower than typical literature CH4 fluxes reported for older landfills in 45 of the 46 chambers tested. Exposure of soil from this landfill cover to variable CH4 fluxes in laboratory microcosms revealed a very strong correlation between CH4 oxidation efficiency and CH4/CO2 ratios, confirming the utility of this relationship for approximating CH4 oxidation efficiency. CH4/CO2 ratios were applied to gas concentrations from the surface flux chambers and indicated a mean CH4 oxidation efficiency of 72%. To examine CH4 oxidation with soil depth, we collected 10 soil depth profiles at random locations across the landfill. Seven profiles exhibited CH4 removal rates of 70–100% at depths <60 cm, supporting the high oxidation rates observed in the chambers. Based on a conservative 70% CH4 oxidation efficiency occurring at the site, this cover soil is clearly offsetting far greater CH4 quantities than the 10% default value currently adopted by the IPCC.  相似文献   

12.
Supercritical water oxidation of landfill leachate   总被引:1,自引:0,他引:1  
In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N(2) is the main product, and the formation of NO(2) and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 °C, reaction time of 50-300s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH(3) conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH(3) is a refractory compound in supercritical water. The conversion of COD and NH(3) were higher in the presence of MnO(2) than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH(3) conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH(3). The activation energy with and without catalyst for NH(3) oxidation were 107.07 ± 8.57 kJ/mol and 83.22 ± 15.62 kJ/mol, respectively.  相似文献   

13.
Landfill gases produced during biological degradation of buried organic wastes include methane, which when released to the atmosphere, can contribute to global climate change. Increasing use of gas collection systems has reduced the risk of escaping methane emissions entering the atmosphere, but gas capture is not 100% efficient, and further, there are still many instances when gas collection systems are not used. Biotic methane mitigation systems exploit the propensity of some naturally occurring bacteria to oxidize methane. By providing optimum conditions for microbial habitation and efficiently routing landfill gases to where they are cultivated, a number of bio-based systems, such as interim or long-term biocovers, passively or actively vented biofilters, biowindows and daily-used biotarps, have been developed that can alone, or with gas collection, mitigate landfill methane emissions. This paper reviews the science that guides bio-based designs; summarizes experiences with the diverse natural or engineered substrates used in such systems; describes some of the studies and field trials being used to evaluate them; and discusses how they can be used for better landfill operation, capping, and aftercare.  相似文献   

14.
Electrochemical oxidation for landfill leachate treatment   总被引:10,自引:0,他引:10  
This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.  相似文献   

15.
The residual fraction of mechanically-biologically treated municipal solid waste (MBT residual) was studied in the laboratory to evaluate its suitability and environmental compatibility as a support medium in methane (CH(4)) oxidative biocovers for the mitigation of greenhouse gas emissions from landfills. Two MBT residuals with 5 and 12 months total (aerobic) biological stabilisation times were used in the study. MBT residual appeared to be a favourable medium for CH(4) oxidation as indicated by its area-based CH(4) oxidation rates (12.2-82.3 g CH(4) m(-2) d(-1) at 2-25 degrees C; determined in CH(4)-sparged columns). The CH(4) oxidation potential (determined in batch assays) of the MBT residuals increased during the 124 d column experiment, from <1.6 to a maximum of 104 microg CH(4) g(dw)(-1) h(-1) (dw=dry weight) at 5 degrees C and 578 microg CH(4) g(dw)(-1) h(-1) at 23 degrees C. Nitrous oxide (N(2)O) production in MBT residual (<15 microg N(2)O kg(dw)(-1) d(-1) in the CH(4) oxidative columns) was at the lower end of the range of N(2)O emissions reported for landfills and non-landfill soils, and insignificant as a greenhouse gas source. Also, anaerobic gas production (25.6 l kg(dw)(-1) during 217 d) in batch assays was low, indicating biological stability of the MBT residual. The electrical conductivities (140-250 mS m(-1)), as well as the concentrations of zinc (3.0 mg l(-1)), copper (0.5 mg l(-1)), arsenic (0.3 mg l(-1)), nickel (0.1 mg l(-1)) and lead (0.1 mg l(-1)) in MBT residual eluates from a leaching test (EN-12457-4) with a liquid/solid (L/S) ratio of 10:1, suggest a potential for leachate pollutant emissions which should be considered in plans to utilise MBT residual. In conclusion, the laboratory experiments suggest that MBT residual can be utilised as a support medium for CH(4) oxidation, even at low temperatures, to mitigate greenhouse gas emissions from landfills.  相似文献   

16.
Sanitary landfills for Municipal Solid Waste (MSW) disposal have been identified as one of the most important anthropogenic sources of methane (CH4) emissions; in order to minimize its negative effects on the environment, landfill gas (LFG) recovery is a suitable tool to control CH4 emissions from a landfill site; further, the measurement of CH4 emissions can represent a good way to evaluate the effectiveness of LFG recovering systems. In general, LFG will escape through any faults in the landfill capping or in the LFG collection system. Indeed, some areas of the capping can be more permeable than others (e.g. portions of a side slope), especially when considering a temporarily capped zone (covered area that is not expected to receive any further waste for a period of at least 3 months, but for engineering reasons does not have a permanent cap yet). These areas, which are characterized by abnormal emissions, are usually defined as “features”: in particular, a feature is a small, discrete area or an installation where CH4 emissions significantly differ from the surrounding zones. In the present study, the influence that specific features have on CH4 emissions has been investigated, based on direct measurements carried out in different seasons by means of a flux chamber to the case study of Palermo (IT) landfill (Bellolampo). The results showed that the flux chamber method is reliable and easy to perform, and the contoured flux maps, obtained by processing the measured data were found to be a suitable tool for identifying areas with abnormal (high) emissions. Further, it was found that a relationship between methane emission rates and landfill side slope can be established. Concerning the influence of the temporary HDPE cover system on CH4 recovery efficiency, it contributed to a significant decrease of the free surface area available for uncontrolled emissions; this aspect, coupled to the increase of the CH4 volumes collected by the LFG recovery system, led to a significant increase of the recovery efficiency.  相似文献   

17.
Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005–June 2006) were 0.86–6.2 m3 ha?1 h?1. Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1–3 points showed significantly higher methane fluxes into the soil cover (20–135 m3 ha?1 h?1) and methane emissions (6–135 m3 ha?1 h?1) compared to the other points (<20 m3 ha?1 h?1 and <10 m3 ha?1 h?1, respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.  相似文献   

18.
As the stabilization criteria for landfill sites, only chemical criteria for the leachate discharges from the landfill sites have been used in Japan and many other countries. Recently, chemical oxidation has been developed as a method for the early-stabilization of landfills. However, by-products that are difficult to detect by chemical analysis can be produced by this method. Therefore, toxicity tests are useful tools for detecting the changes of leachate quality after application of this method. The heat source in the A landfill was analyzed by organic position inquiry technology, and ozone-treated leachate was sprayed back to the heat source in the landfill. Toxicity changes of the leachate after the spray were monitored using Microtoxtrade mark, ToxScreen-II, and DaphTox tests. The hardly-degradable organic matter was efficiently removed and toxicities of the leachate in the heat source decreased after the application. These toxicity results were significantly related to chemical oxygen demand (COD) changes. Thus, it was concluded that the toxicity tests were effective for monitoring the leachate quality after applying the chemical oxidation method for landfill stabilization, and its incorporation to establish the criteria for early-stabilization of landfill sites needs to be considered.  相似文献   

19.
Methane oxidation in a landfill cover with capillary barrier   总被引:6,自引:0,他引:6  
The methane oxidation potential of a landfill cover with capillary barrier was investigated in an experimental plant (4.8 m x 0.8 m x 2.1m). The cover soil consisted of two layers, a mixture of compost plus sand (0.3 m) over a layer of loamy sand (0.9 m). Four different climatic conditions (summer, winter, spring and fall) were simulated. In and outgoing fluxes were measured. Gas composition, temperature, humidity, matrix potential and gas pressure were monitored in two profiles. CH4 oxidation rate within the investigated top cover ranged from 98% to 57%. The minimum was observed for a short time after irrigation. Temperature distribution, gas concentration profiles and lab-scaled batch experiments indicate that before irrigation the highest oxidising activity took place in a depth of about 30 cm. After irrigation the oxidising horizon seemed to migrate upwards since methanotrophic bacteria develop better there due to an adequate supply with oxygen. It can be assumed that the absence of oxygen is one of the most important limiting factors for the CH4 oxidation process. Abrupt cross-overs between horizons of different soil material may lead to zones of increased water saturation and decreased soil respiration.  相似文献   

20.
A series of processes by biofilter and Fenton oxidation to treat mature landfill leachate has been devised. At a hydraulic loading rate of 20 l m?3 d?1, a biofilter packed with aged refuse is found to remove 80% of chemical oxygen demand (COD), 89% of ammonia nitrogen and 96% of total phosphorus (TP). Particularly, TP levels dropped below 1 mg l?1. The optimal condition for Fenton oxidation was selected to be an initial pH of 5, a dosage of 0.01 and 0.02 mol l?1 of FeSO4 and H2O2, respectively, and a duration of 3 h, where COD removal efficiency reaches 58.6%, and BOD5/COD ratio is raised from 0.05 to 0.20. Subsequent treatment by a biofilter packed with slag reduces COD, ammonia nitrogen levels to less than 100, 25 mg l?1, respectively. A pilot scale experiment conducted in situ demonstrates that this series of processes exhibits a high efficiency in removing pollutants from mature landfill leachate and it is viable for application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号