首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sánchez L  Romero E  Peña A 《Chemosphere》2003,53(8):843-850
Packed columns were prepared with an agricultural soil to examine the ability of two organic soil modifiers, biosolid and the cationic surfactant tetradecyl trimethyl ammonium bromide (TDTMA), to alter the leaching of the insecticide methidathion. Ion chloride was used as a tracer of water flow and the mathematical model PESCOL was selected to predict the mobility of the insecticide. The biosolid addition (SB column) delayed the breakthrough curves for methidathion with respect to the non-amended soil (S) column. The cationic surfactant TDTMA, alone or combined with the biosolid (SS and SBS) and previously incorporated in the soil column, caused the highest retardation of this pesticide in the soil columns. Theoretical retardation factors (TRf) were similar to the experimental Rf values for the S and SB columns, and predicted the high retention observed in the SBS and SS columns. The simulation with PESCOL predicted the experimental results.  相似文献   

2.
We tested the effects of three amendments (a biosolid compost, a sugar beet lime, and a combination of leonardite plus sugar beet lime) on trace element stabilisation and spontaneous revegetation of a trace element contaminated soil. Soil properties were analysed before and after amendment application. Spontaneous vegetation growing on the experimental plot was studied by three surveys in terms of number of taxa colonising, percentage vegetation cover and plant biomass. Macronutrients and trace element concentrations of the five most frequent species were analysed. The results showed a positive effect of the amendments both on soil chemical properties and vegetation. All amendments increased soil pH and TOC content and reduced CaCl(2)-soluble-trace element concentrations. Colonisation by wild plants was enhanced in all amended treatments. The nutritional status of the five species studied was improved in some cases, while a general reduction in trace element concentrations of the aboveground parts was observed in all treated plots. The results obtained show that natural assisted remediation has potential for success on a field scale reducing trace element entry in the food chain.  相似文献   

3.
Soil contamination with anthropogenic metals resulting from biosolid application is widespread around the world. To better predict the environmental fate and mobility of contaminants, it is critical to study the capacity of biosolid-amended soils to retain and release metals. In this paper, nickel adsorption onto a calcareous soil, a lime-stabilized biosolid, and soil–biosolid mixtures (30, 75, and 150 t biosolid/ha) was studied in batch experiments. Sorption experiments showed that (1) Ni adsorption was higher onto the biosolid than the calcareous soil, and (2) biosolid acted as an adsorbent in the biosolid–soil mixtures by increasing Ni retention capacity. The sorption tests were complemented with the estimation of Ni adsorption reversibility by successive applications of extraction solutions with water, calcium (100 mg/L), and oxalic acid (equivalent to 100 mg carbon/L). It has been shown that Ni desorption rates in soil and biosolid-amended soils were lower than 30 % whatever the chemical reagent, indicating that Ni was strongly adsorbed on the different systems. This adsorption/desorption hysteresis effect was particularly significant at the highest biosolid concentration (150 t/ha). Finally, an adsorption empirical model was used to estimate the maximum permissible biosolid application rate using French national guideline. It has been shown that desorption effects should be quantitatively considered to estimate relevant biosolid loadings.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) such as phenanthrene, anthracene and Benzo[a]pyrene (BaP) are toxic for the environment. Removing these components from soil is difficult as they are resistant to degradation and more so in soils with high pH and large salt concentrations as in soil of the former lake Texcoco, but stimulating soil micro-organisms growth by adding nutrients might accelerate soil restoration. Soil of Texcoco and an agricultural Acolman soil, which served as a control, were spiked with phenanthrene, anthracene and BaP, added with or without biosolid or inorganic fertilizer (N, P), and dynamics of PAHs, N and P were monitored in a 112-day incubation. Concentrations of phenanthrene did not change significantly in sterilized Acolman soil, but decreased 2-times in unsterilized soil and >25-times in soil amended with biosolid and NP. The concentration of phenanthrene in unsterilized soil of Texcoco was 1.3-times lower compared to the sterilized soil, 1.7-times in soil amended with NP and 2.9-times in soil amended with biosolid. In unsterilized Acolman soil, degradation of BaP was faster in soil amended with biosolid than in unamended soil and soil amended with NP. In unsterilized soil of Texcoco, degradation of BaP was similar in soil amended with biosolid and NP but faster than in the unamended soil. It was found that application of biosolid and NP increased degradation of phenanthrene, anthracene and BaP, but to a different degree in alkaline-saline soil of Texcoco compared to an agricultural Acolman soil.  相似文献   

5.
Leaching of arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil arsenic levels. Thus, an environmental concern arises regarding accumulation of As in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to evaluate As accumulation by vegetables from the soils adjacent to the CCA-treated utility poles and fences and examine the effects of soil amendments on plant As accumulation. Carrot (Daucus carota L.) and lettuce (Lactuca sativa L.) were grown for ten weeks in the soil with or without compost and phosphate amendments. As expected, elevated As concentrations were observed in the pole soil (43 mg kg(-1)) and in the fence soil (27 mg kg(-1)), resulting in enhanced As accumulation of 44 mg kg(-1) in carrot and 32 mg kg(-1) in lettuce. Addition of phosphate to soils increased As accumulation by 4.56-9.3 times for carrot and 2.45-10.1 for lettuce due to increased soil water-soluble As via replacement of arsenate by phosphate in soil. However, biosolid compost application significantly reduced plant As uptake by 79-86%, relative to the untreated soils. This suppression is possibly because of As adsorbed by biosolid organic mater, which reduced As phytoavailability. Fractionation analysis showed that biosolid decreased As in soil water-soluble, exchangeable, and carbonate fraction by 45%, whereas phosphate increased it up to 2.61 times, compared to the untreated soils. Our results indicate that growing vegetables in soils near CCA-treated wood may pose a risk of As exposure for humans. Compost amendment can reduce such a risk by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils. Caution should be taken for phosphate application since it enhances As accumulation.  相似文献   

6.

The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20°C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

7.
The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20 degrees C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

8.
BACKGROUND, AIM AND SCOPE: Pesticides are often found in soil as a result of their application to control pests. They can be transported on soil particles to surface waters or they can lixiviate and reach other environmental compartments. Soil modification with amendments, such as sewage sludge, and with surfactants, h been proposed to reduce pesticide environmental fate. METHODS: The sorption of atrazine, methidathion and diazinon using the batch technique has been studied on non-modified soil and soil modified with sewage sludge and cationic surfactants, as well as the effect of their addition on soil properties such as organic carbon (OC) content and exchange cations. RESULTS AND DISCUSSION: The OC content of the surfactant modified soils was the highest with the surfactant with the longest hydrocarbon chain (hexadecyltrimethyl ammonium bromide, HDTMA). The results of the OC content run in parallel with the increase in pesticide retention. When the sorption was n malized to soil OC content, the retention induced by addition of HDTMA was still the highest, which is an indication that the organic matter derived from the organic cations is a more effective medium to retain dissolved contaminants, than organic matter from native soil. The addition of sewage sludge to the soil did only result in a slight increase of the soil CEC and, hence, moderately affected the ability of the cationic surfactant to retain the pesticides. CONCLUSIONS: The addition of cationic surfactants to soil would possibly reduce the movement to groundwater of atrazine, methidathion and diazinon. In the case of HDTMA, the decrease in sorption at high surfactant loadings was very slow, being that the surfactant was able to retain the pesticides at concentration values which clearly exceeded the monolayer coverage. RECOMMENDATIONS AND PERSPECTIVES: Contamination by pesticides, which are present in the soil due to their direct input in this medium or to spills or illegal tipping, may be hindered from migration to groundwater by application of a cationic surfactant.  相似文献   

9.
Chinese brake fern (Pteris vittata L.), an arsenic (As) hyperaccumulator, has shown the potential to remediate As-contaminated soils. This study investigated the effects of soil amendments on the leachability of As from soils and As uptake by Chinese brake fern. The ferns were grown for 12 weeks in a chromated-copper-arsenate (CCA) contaminated soil or in As spiked contaminated (ASC) soil. Soils were treated with phosphate rock, municipal solid waste, or biosolid compost. Phosphate amendments significantly enhanced plant As uptake from the two tested soils with frond As concentrations increasing up to 265% relative to the control. After 12 weeks, plants grown in phosphate-amended soil removed >8% of soil As. Replacement of As by P from the soil binding sites was responsible for the enhanced mobility of As and subsequent increased plant uptake. Compost additions facilitated As uptake from the CCA soil, but decreased As uptake from the ASC soil. Elevated As uptake in the compost-treated CCA soil was related to the increase of soil water-soluble As and As(V) transformation into As(III). Reduced As uptake in the ASC soil may be attributed to As adsorption to the compost. Chinese brake fern took up As mainly from the iron-bound fraction in the CCA soil and from the water-soluble/exchangeable As in the ASC soil. Without ferns for As adsorption, compost and phosphate amendments increased As leaching from the CCA soil, but had decreased leaching with ferns when compared to the control. For the ASC soil, treatments reduced As leaching regardless of fern presence. This study suggest that growing Chinese brake fern in conjunction with phosphate amendments increases the effectiveness of remediating As-contaminated soils, by increasing As uptake and decreasing As leaching.  相似文献   

10.
Effects of two "enhanced" treatments (drying and composting mesophilic anaerobically digested (MAD) biosolid) on nutrient leaching were investigated. Repacked sandy or sandy loam textured soil cores amended with fresh, dried and composted MAD biosolid (250 kg N ha(-1)), were investigated under steady-state hydrological conditions. Two 24 h, 4.5 mm h(-1) rainfall events, with a 14-day interval, were simulated using water-tracers. Losses of nitrate from the sandy loam soil during rainfall event 1 (43.9-68.0 mg kg(-1)) were significantly greater (P < or = 0.05) than during event 2 (6.4-11.9 mg kg(-1)). Phosphate losses were significantly greater (P < or = 0.05) during event 2 (up to 0.30 mg kg(-1)) compared to the first (< 0.05 mg kg(-1)). The sand soil showed similar effects. Losses of nitrate-N (percentage of total N applied) from the sand soil were small (around 0.06% for fresh/dried and 0.63% for composted MAD biosolids). Losses of nitrate-N from the sandy loam soil were greater; 4% for fresh and dried and 3% for composted MAD biosolids. This research showed that drying MAD biosolid had little impact on nitrate and phosphate losses from soil compared to fresh MAD biosolid. The effect of composting MAD biosolid on nutrient losses was more variable.  相似文献   

11.
Laboratory evaluation of the efficacy of soil phase photodegradation of recalcitrant hazardous organic components of wood treating wastes is described. The photodecomposition of anthracene, biphenyl, 9H-carbazole, m-cresol, dibenzofuran, fluorene, pentachlorophenol, phenanthrene, pyrene and quinoline under UV and visible light was monitored over a 50-day reaction period in three test soils. Methylene blue, riboflavin, hydrogen peroxide, peat moss and diethylamine soil amendments were evaluated as to their effect on the enhancement of compound photoreaction rates in the test soil systems. Dark control samples monitored over the entire study period were utilized to quantify non-photo mediated reaction losses. Compounds losses in both the dark control and irradiated samples were found to follow first order kinetics, allowing the calculation of first order photodegradation reaction rate constants for each test soil/compound combination. Degradation due to photochemical activity was observed for all test compounds, with compound photolytic half-lives ranging from 7 to approximately 180 days. None of the soil amendments were found to improve soil phase photodegradation, although photosensitization by anthracene was shown to significantly enhance the rate of photodegradation of the other test compounds. Soil type, and its characteristic of internal reflectance, proved to be the most significant factor affecting compound degradation rates suggesting the necessity for site specific assessments of soil phase photodegradation potential.  相似文献   

12.
Nitrogen mineralization in PAHs contaminated soil in presence of Eisenia fetida amended with biosolid or vermicompost was investigated. Sterilized and unsterilized soil was contaminated with PAHs, added with E. fetida and biosolid or vermicompost and incubated aerobically for 70 days, while dynamics of inorganic N were monitored. Addition of E. fetida to sterilized soil increased concentration of NH(4)(+) 100> mg N kg(-1), while concentrations in unsterilized remained <60 mg N kg(-1) except for soil amended with biosolid plus PAHs where it increased to >80 mg kg(-1). Addition of PAHs had no significant effect on concentration of NH(4)(+) compared to the unamended soil, except in the soil added with biosolid. Addition of E. fetida to sterilized soil increased concentration of NO(2)(-) 15> mg N kg(-1) while concentrations in unsterilized soil remained <7.5 mg N kg(-1) except for soil amended with biosolid where it increased to >20 mg kg(-1). Addition of PAHs had no significant effect on concentration of NO(2)(-) compared to the unamended soil. Addition of biosolid and vermicompost increased concentration of NO(3)(-), while addition of E. fetida decreased concentration of NO(3)(-) in biosolid amended soil. It was found that NH(4)(+) and NO(2)(-) oxidizers were present in the gut of E. fetida, but their activity was not sufficient enough to inhibit a temporarily increase in concentrations of NH(4)(+) and NO(2)(-). Contamination with PAHs induced immobilization of N in biosolid or vermicompost amended soil, as did feeding of E. fetida on biosolid or vermicompost.  相似文献   

13.
A composted biosolid from wastewater treatment was added to soils of two public parks of Sevilla, and successive samples were taken during one year. In one of the parks, a second addition of biosolid was carried out after the first year. The soil contents in metals (pseudo-total) and their plant-available and oral bio-accessible fractions were significantly altered when the soils were amended with biosolid. Increase of the bio-accessible metal contents represents a deterioration of the environmental quality of recreational areas, where hand-to-mouth transfer of pollutants to children is likely to occur, although part of the metals added might be leached by rainfall or irrigation. The limits established in several countries for metal contents of soils in recreational areas are often exceeded after application of the biosolid. A careful study of the metal contents of recycled wastes is thus recommended before being used for green area maintenance.  相似文献   

14.
Soil moisture and organic matter level affects soil respiration and microbial activities, which in turn impact greenhouse gas (GHG) emissions. This study was conducted to evaluate the effect of irrigation levels (75% [deficit], 100% [full], and 125% [excess] of reference crop evapotranspiration requirements), and organic amendments (OA) type (chicken manure [CM] and bone meal [BM]) and OA application rates (0,168, 336 and 672 kg total N ha?1) on (i) soil physical properties (bulk density, organic matter content and soil moisture content) and (ii) soil carbon dioxide (CO2) emissions from a highly weathered tropical Hawai'ian soil. Carbon dioxide readings were consistently taken once or twice a week for the duration of the cropping season. A drip irrigation system was used to apply the appropriate amount of irrigation water to the treatment plots. Treatments were randomly selected and corresponding organic amendments were manually incorporated into the soil. Plots were cultivated with sweet corn (Zea mays ‘SS-16’). Soil moisture content within and below the rootzone was monitored using a TDR 300 soil moisture sensor (Spectrum Technologies, Inc., Plainfield, IL, USA) connected with 12 cm long prongs. Soil bulk density and organic matter content were determined at the end of the cropping season. Analysis of variance results revealed that OA type, rate, and their interaction had significant effect on soil CO2 flux (P < 0.05). Among the OA rates, all CM mostly resulted in significantly higher soil CO2 fluxes compared to BM and control treatment (p < 0.05). The two highest rates of BM treatment were not significantly different from the control with regard to soil CO2 flux. In addition, organic amendments affected soil moisture dynamics during the crop growing season and organic matter content measured after the crop harvest. While additional studies are needed to further investigate the effect of irrigation levels on soil CO2 flux, it is recommended that in order to minimize soil CO2 emissions, BM soil amendments could be a potential option to reduce soil CO2 fluxes from agricultural fields similar to the one used in this study.  相似文献   

15.
Kao PH  Huang CC  Hseu ZY 《Chemosphere》2006,64(1):63-70
Application of biosolid on land has been widespread in numerous countries for last several decades. This study performed incubation experiments by mixing a neutral loamy soil and biosolid enriched in Cu, Pb and Zn to explore how heavy metal affects soil mineralization and microbial biomass. The experimental results indicated that large nutrient, microorganism and C sources from biosolid were beneficial to microbial respiration. However, compared to the biosolid alone treatment, the supplemented Cu, Pb and Zn in biosolid reduced the mineralized C by roughly 36%. This phenomenon was probably caused by a portion of the Cu, Pb and Zn being complexed with organic matter to prevent decomposition of organic carbon by microorganisms. Equally, soil treated with biosolid increased the quantity of mineralized N by approximately five-fold and accelerated the rate of N mineralization by about one-fold compared to untreated soil. Notably, addition of heavy metals impaired the mineralization process, particularly when Pb reached about 64%. The reduced N mineralization occurred for similar reasons to the microbial respiration. The addition of biosolid in soil considerably increased the amount of mineralizable N; however, the increase was lower in biosolid-treated soil spiked by heavy metals. The addition of heavy metals in the soil-biosolid mixture clearly reduced the microbial biomasses C (MBC) and N (MBN), indicating that the microbial activities had been disrupted by the heavy metals. The microbial biomass C/N ratio had changed initially from 8 to 13 at the end of incubation period, owing to various groups of microbes expressing different mechanisms of metabolism, indicating that the microbial population had changed from bacteria to fungi, which had higher metal tolerance.  相似文献   

16.
Sinha S  Gupta AK 《Chemosphere》2005,61(8):1204-1214
The plants of Sesbania cannabina Ritz grown on different amendments of fly ash (FA), have shown a high accumulation of metals (Fe, Mn, Zn, Cu, Pb and Ni). The highest accumulation of Fe the and lowest level of Ni were recorded in these plants. The different amendments of fly ash with garden soil (GS) were extracted with DTPA and the levels of metals were found to be decreased with an increase in fly ash application ratio from 10% to 50% FA. The analysis of the results showed an increase in the level of malondialdehyde (MDA) content of the roots for all the exposure periods. The maximum increases of 136% (roots) and 120% (leaves) were observed in MDA content at 100% FA after 30 d of growth of the plant, compared to GS. The level of antioxidants was found to increase for all the exposure periods in the roots of the plants to combat metal stress. At 30 d, the maximum increase of 57% (ascorbic acid) and 78% (free proline) was observed in the roots of the plants grown on 100% and 10% FA, respectively, as compared to their respective GS. At 90 d, a maximum increase of 42% (cysteine) and 117% (NPSH) was recorded in the roots of the plants grown on 25% and 100% FA, respectively, as compared to their respective GS. In leaves, a significant increase in antioxidants i.e. cysteine, NPSH and free proline content was recorded after 30 d, whereas no such trend was observed for the rest of the exposure periods. The chlorophyll and carotenoid contents increased with an increase in the FA amendment ratio from 10% to 50% FA for all the exposure periods as compared to GS. In both roots and leaves, the level of protein content increased in all the amendments and 100% FA at 30 d as compared to GS. Thus, there is a balance in the level of MDA content and level of antioxidants in the plants at 90 d. In view of its tolerance, the plants may be used for phytoremediation of metals from fly ash contaminated sites and suitable species for plantation on fly ash land fills.  相似文献   

17.
Guerra P  Ahumada I  Carrasco A 《Chemosphere》2007,68(11):2021-2027
Biosolid application to soil may be a supply of nutrients and micronutrients but it may also accumulate toxic compounds which would be absorbed by crops and through them be incorporated to the trophic chain.

The present study deals with the effect of biosolid application on Cr, Cu, Pb, Ni, and Zn in agricultural soils. The procedure used is sequential extraction so that the availability of those metals may be estimated and related to their bioavailability as determined through two indicator plants grown in greenhouse: ryegrass (Lolium perenne L.) and red clover (Trifolium pratense). Results showed that biosolid application to soil increased total Cu and Zn content. Sequential extraction showed that the more labile Zn fractions increased after biosolid application to soil. This was confirmed when assessing the total content of this metal in shoot and root of the plants under study, since a higher content was found in plant tissues, while no significant differences were found for Cu, Cr, Ni, and Pb.  相似文献   


18.
CL-20 is a relatively new energetic compound with applications in explosive and propellant formulations. Currently, information about the fate of CL-20 in ecological systems is scarce. The aim of this study is to evaluate the biodegradability of CL-20 in soil environments. Four soils were used where initial CL-20 concentrations (above water solubility) ranged from 125 to 1500 mg of CL-20 per kg dry soil (corresponding to the concentrations derived from unexploded ordnance, low order detonation, or manufacturing spills). CL-20 appears to be biodegradable in soil under anaerobic conditions, and additions of organic substrates can substantially accelerate this process. However, CL-20 is not degraded in soil under aerobic conditions kept in the dark at temperatures up to 30 degrees C without organic amendments. Additions of starch or cellulose promote the biodegradation of CL-20 under aerobic conditions. Soil microbial community mediated biodegradation and plant uptake appears to enhance CL-20 biodegradation, the latter suggesting a possible route for CL-20 to entry in the food chain.  相似文献   

19.
Decamethylcyclopentasiloxane (D5) is a cyclic volatile methyl siloxane (cVMS) commonly found in commercially available products. D5 is expected to enter the terrestrial environment through the deposit of biosolids from sewage treatment plants onto agricultural fields for nutrient enrichment. Little to no information currently exists as to the risks of D5 to the terrestrial environment. In order to evaluate the potential risk to terrestrial organisms, the toxicity of a D5 contaminated biosolid in an agricultural soil was assessed with a battery of standardized soil toxicity tests.D5 was spiked into a surrogate biosolid and then mixed with a sandy loam soil to create test concentrations ranging from 0 to 4074 mg kg−1. Plant (Hordeum vulgare (barley) and Trifolium pratense (red clover)) and soil invertebrates (Eisenia andrei (earthworm) and Folsomia candida (springtail)) toxicity tests were completed to assess for lethal and sub-lethal effects. Plant testing evaluated the effects on seedling emergence, shoot and root length, and shoot and root dry mass. Invertebrate test endpoints included adult lethality, juvenile production, and individual juvenile dry mass (earthworms only). Soil samples were collected over time to confirm test concentrations and evaluate the loss of chemical over the duration of a test. The toxicity of the D5 was species and endpoint dependent, such that no significant adverse effects were observed for T. pratense or E. andrei test endpoints, however, toxicity was observed for H. vulgare plant growth and F. candida survival and reproduction. Chemical losses of up to 50% were observed throughout the tests, most significantly at high concentrations.  相似文献   

20.
A field study was conducted to investigate the impact of soil amendments on concentrations of two volatile organic compounds, 2-undecanone and 2-tridecanone, in onion bulbs. The soil in five plots was mixed with sewage sludge, five plots were mixed with yard waste compost, five plots were mixed with laying hen manure each at 15 t acre?1, and five unamended plots that never received soil amendments were used for comparison purposes. Plots (n = 20) were planted with onion, Allium cepa L. var. Super Star-F1 bulbs. Gas chromatographic/mass spetrometric (GC/MS) analyses of mature onion bulbs crude extracts revealed the presence of two major fragment ions that correspond to 2-undecanone and 2-tridecanone. Soil amended with yard waste compost enhanced 2-undecanone and 2-tridecanone production by 31 and 59%, respectively. Soil amended with chicken manure enhanced 2-undecanone and 2-tridecanone production by 28 and 43%, respectively. Concentrations of 2-undecanone and 2-tridecanone were lowest in onion bulbs of plants grown in sewage sludge and unamended soil, respectively. The increased concentrations of 2-undecanone and 2-tridecanone in onion bulbs may provide a protective character against insect and spider mite attack in field grown onions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号