首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The role of herding tendency in the group formation of social entities is hereby explored. The herding tendency is quantified by a parameter α∈[0,1]α[0,1]. The system consists of a mixture of two types of entities: (i) those with α>0α>0 and (ii) those with α=0α=0. The latter consist a fraction p   of the entire population. The dynamics of agent interactions leads to the formation of clusters of different sizes. The size distribution D(s)D(s) of these clusters are found to obey a power-law only in the limit that α→1α1 and p→0p0. Group-size data of several real-world animal systems are fitted with curves generated by the model. This study contributes further to the understanding of group-forming behavior commonly cited in ecological studies.  相似文献   

2.
A saturation of climate–carbon cycle feedback was found earlier in the simulations with the IAP RAS climate model of intermediate complexity. Here, this eventual saturation is interpreted by using a conceptual linearised coupled model. It is shown that this saturation is due to weak, logarithmic, dependence of the carbon dioxide radiative forcing on its atmospheric concentration. This eventual saturation leads to the non-monotonic behaviour of climate–carbon cycle parameter f   in time. If the time scale of the atmospheric CO2CO2 build up is tptp then, starting from an initial equilibrium, f   approaches maximum in time ?tp?tp. Afterwards, climate–carbon cycle parameter decreases and eventually tends to unity. The time scale of the latter decrease is t1=(1−5)tpt1=(15)tp. A dependence of tmtm and t1t1 on governing parameters of the conceptual model is studied. It is argued that an eventual saturation of the climate–carbon cycle feedback is expected to occur also in the other integrations of sufficient length with coupled climate–carbon cycle models.  相似文献   

3.
In this paper we describe a new ecological model for Regions of Restricted Exchange (RRE), such as fjords, estuaries, rias and lagoons. The model is intended to simulate the impact of external nutrient input on microplankton (phytoplankton plus pelagic microheterotrophs) in RREs. We have implemented the model with the practical purpose of finding a safe limit to the capacities of RRE to assimilate fish-farm waste. Sea-cage farming of fish is increasing in fjords in northern and southern hemispheres, and its external nutrient input can lead to environmental problems such as eutrophication and deoxygenation. The model includes a physical system of three layers with exchanges driven by tidal movement, freshwater input, wind stirring. The biological part includes two microplankton compartments, each parameterizing a microbial loop and each containing chlorophyll. The first compartment represents diatoms and associated heterotrophs, and the second compartment represents flagellates and associated heterotrophs. As well as the balance of these organisms, the model simulates concentrations of nutrient N, P, and Si, dissolved oxygen, and water transparency. Chlorophyll and nutrient change are linked by yields (q  ). Losses of microplankton to grazing by mesozooplankton or benthos are simulated by a temperature-dependent grazing pressure acting on a mean loss (L0)(L0). The model also includes the ability to simulate point source inputs of nutrients or organic matter and a generic tracer with first order decay. Sea-cage fish-farms exemplify such point sources. In order to explore model behaviour, we included inputs from a 1500 tonnes salmon farm multiplied by a factor (γ)(γ). We carried out sensitivity analysis to identify the most influential model parameters and forcing variables in the case of the shallow Scottish fjord, Loch Creran, in 1975 before the introduction of salmon farming. We tested the model fit to this pristine state (γ=0)(γ=0), using Major Axis Regression of simulated variables on observed variables. The model successfully follows the seasonal cycles of chlorophyll (summer over both microplanktons) and the limiting nutrients (P, N). The sensitivity analysis identified three sets of key parameters: (γ)(γ) and other fish-farm coefficients, which control farm waste effects on an RRE; (L0)(L0) parameters for each microplankton, which link these to the rest of the ecosystem and which have implications for future inclusion of shellfish farming in the model and, chlorophyll yields from nutrients (q), which are crucial for the predication of eutrophication and the ecological understanding of the model.  相似文献   

4.
We study the spreading of contagious diseases in a population of constant size using susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations (ODEs) and probabilistic cellular automata (PCA). In the PCA model, each individual (represented by a cell in the lattice) is mainly locally connected to others. We investigate how the topological properties of the random network representing contacts among individuals influence the transient behavior and the permanent regime of the epidemiological system described by ODE and PCA. Our main conclusions are: (1) the basic reproduction number (commonly called R0R0) related to a disease propagation in a population cannot be uniquely determined from some features of transient behavior of the infective group; (2) R0R0 cannot be associated to a unique combination of clustering coefficient and average shortest path length characterizing the contact network. We discuss how these results can embarrass the specification of control strategies for combating disease propagations.  相似文献   

5.
Multi-metric evaluation of the models WARM,CropSyst, and WOFOST for rice   总被引:1,自引:0,他引:1  
WARM (Water Accounting Rice Model) simulates paddy rice (Oryza sativa L.), based on temperature-driven development and radiation-driven crop growth. It also simulates: biomass partitioning, floodwater effect on temperature, spikelet sterility, floodwater and chemicals management, and soil hydrology. Biomass estimates from WARM were evaluated and compared with the ones from two generic crop models (CropSyst, WOFOST). The test-area was the Po Valley (Italy). Data collected at six sites from 1989 to 2004 from rice crops grown under flooded and non-limiting conditions were split into a calibration (to estimate some model parameters) and a validation set. For model evaluation, a fuzzy-logic based multiple-metrics indicator (MQI) was used: 0 (best) ≤ MQI ≤ 1 (worst). WARM estimates compared well with the actual data (mean MQI = 0.037 against 0.167 and 0.173 with CropSyst and WOFOST, respectively). On an average, the three models performed similarly for individual validation metrics such as modelling efficiency (EF > 0.90) and correlation coefficient (R > 0.98). WARM performed best in a weighed measure of the Akaike Information Criterion: (worst) 0<wk<10<wk<1 (best), considering estimation accuracy and number of parameters required to achieve it (mean wk=0.983wk=0.983 against 0.007 and ∼0.000 with CropSyst and WOFOST, respectively). WARM results were sensitive to 30% of the model parameters (ratio being lower with both CropSyst, <10%, and WOFOST, <20%), but appeared the easiest model to use because of the lowest number of crop parameters required (10 against 15 and 34 with CropSyst and WOFOST, respectively). This study provides a concrete example of the possibilities offered using a range of assessment metrics to evaluate model estimates, predictive capabilities, and complexity.  相似文献   

6.
7.
8.
Gorgonian corals are long-lived, slow-growing marine species dominating Mediterranean rocky bottoms. Endowed with complex morphologies they give a structure to the whole community, moreover, being efficient suspension feeders, they play a key role in plankton-benthos energy flow and CO2CO2 storage. Thus, the structure and the development of benthic, hard bottom communities are linked to gorgonian survival. The red coral Corallium rubrum (L. 1758) is a precious gorgonian endemic to the Mediterranean Sea. Harvested and traded world-wide since ancient times red coral is a clear example of overexploited marine resource. This species is structured into self-seeding, genetically differentiated populations, some of which, living in the shallower part of the species bathymetric distribution, was recently affected by anomalous mortality events linked to global climate change. The co-occurrence of overharvesting and mass mortality could dramatically affect such populations. Demographic population models, widely applied by conservation biologists to check population viability and to project population trends over time are fundamental to foster survival of such populations matching harvesting to population growth rates. Therefore we set out a dynamic model of a genetically differentiated red coral population living in shallow waters. This population is characterised by small/young, crowded colonies and high recruitment rate. On the basis of the size–age structure determined for this population, a static life-history table, in which survival and reproduction coefficients of the different size–age classes were reported, has been set out. Demographic data were included in a non-linear, discrete, age-structured dynamic model, based on a Leslie-Lewis transition matrix. Our field data indicate that the recruits-to-larvae ratio is actually density-dependent. Such dependence, positive for low and negative for high density values, was included into the model and the effect of colonies of different size–age classes on recruits-to-larvae ratio was considered to be proportional to the number of polyps they have. We applied such model to simulate the trends of the studied population under different increases of survival and life-span. As some populations of gorgonians actually show the dominance of sparse, big/old colonies and low recruitment rate, while others are characterised by crowded, small/young colonies and high recruitment rate, we simulated the shift from the former to the latter structure increasing survival and life-span. Our results suggest that a dramatic mortality increase of bigger–older colonies (due, in the case of red coral to overfishing) could have determined the population structure we found.  相似文献   

9.
10.
11.
The oxidation of aqueous monochlorobenzene (MCB) solutions using thermally- activated persulfate has been investigated. The influence of reaction temperature on the kinetics of MCB oxidation was examined, and the Arrenhius Equation rate constants at 20℃, 30℃, 40℃, 50℃, and 60℃ for MCB oxidation performance were calculated as 0, 0.001, 0.002, 0.015, 0.057 min-1, which indicates that elevated temperature accelerated the rate. The most efficient molar ratio ofpersulfate/MCB for MCB oxidation was determined to be 200 to 1 and an increase in the rate constants suggests that the oxidation process proceeded more rapidly with increasing persulfate/MCB molar ratios. In addition, the reactivity of persulfate in contaminated water is partly influenced by the presence of background ions such as CI-, HCO3, SO2 , and NO3. Importantly, a scavenging effect in rate constant was observed for both C1 and CO2- but not for other ions. The effective thermally activated persulfate oxidation of MCB in groundwater from a real contaminated site was achieved using both elevated reaction temperature and increased persulfate/MCB molar ratio.  相似文献   

12.
13.
Batch adsorption experiments were conducted to explore the adsorption of Cr(VI) in aqueous solutions by β-FeOOH-coated sand. We investigated the key factors which affected the adsorption process such as adsorbent dosage, initial pH, initial Cr(VI) ion concentration, contact time and temperature. The uptake of Cr(VI) was very rapid and 44.3%, 51.6%, 58.9% of the adsorption happened during the first 180 minutes at 293K, 303K and 313K, respectively. The pseudo-second-order rate equation successfully described the adsorption kinetics. To study the adsorption isotherm, two equilibrium models, the Langmuir and Freundlich isotherms, were adopted. At 293K, 303K and 313K, the adsorption capacities obtained from the Langmuir isotherm were 0.060, 0.070 and 0.076 mg Cr(VI) per gram of the adsorbent, respectively. Thermodynamic parameters such as the change of energy, enthalpy and entropy were calculated using the equilibrium constants. The negative value of ΔG0 and the positive value of ΔH0 showed that the adsorption of Cr(VI) in aqueous solutions by β-FeOOH-coated sand was spontaneous, endothermic and occurred by physisorption.  相似文献   

14.
Chemical precipitation is a useful technology as a pretreatment to treat mature landfill leachate with high concentrations of ammonium-nitrogen (NH4+-N) and refractory organic compounds. Orthogonal experiments and factorial experiments were carried out to determine the optimal conditions enhancing the magnesium ammonium phosphate (MAP) precipitation process, and the experimental results demonstrated that the removal rate of NH4+-N was more than 85% when MgO and NaH2PO4·2H2O were applied as external sources of magnesium and phosphorous under the optimal conditions that molar ratio n(Mg)∶n(N)∶n(P) = 1.4∶1∶0.8, reaction time 60 min, original pH of leachate and settling time 30 min. In the precipitation process, pH could be maintained at the optimal range of 8–9.5 because MgO could release hydroxide ions to consume hydrogen ions. Calcium ions and carbonate ions existed in the leachate could affect the precipitation process, which resulted in the decrease of NH4+-N removal efficiency. The residues of MAP sediments decomposed by heating under alkaline conditions can be reused as the sources of phosphorous and magnesium for the removal of high concentrations of NH4+-N, and up to 90% of ammonium could be released under molar ratio of n[OH]∶n[MAP] = 2.5∶1, heating temperature 90°C and heating time 2h.  相似文献   

15.
16.
Nitrogen is one of major contaminants in wastewater; however, nitrogen, as bio-elements for crop growth, is the indispensable fertilizer in agriculture. In this study, two-chamber microbial fuel cells (MFCs) were first operated with microorganisms in anode chamber and potassium ferricyanide as catholyte. After being successfully startup, the two-chamber MFCs were re-constructed to three-chamber MFCs which were used to recover the NO3N and NH4+N of synthetic wastewater into value-added nitrogenous fertilizer from cathode chamber and anode chamber, respectively. Ferric nitrate was used as the sole electron acceptor in cathode, which also was used to evaluate the NO3N recover efficiency in the case major anion of NO3 in cathode. The output voltage of these MFCs was about 600–700 mV at an external load of 500 Ω. About 47% NH4+N in anode chamber and 83% NO3N in cathode chamber could be recovered. Higher current density can selectively improve the recovery efficiency of both NH4+N and NO3N. The study demonstrated a nitrogen recovery process from synthetic wastewater using three-chamber MFCs.  相似文献   

17.
Shortcut nitrification-denitrification, anaerobic ammonium oxidation (ANAMMOX), and methanogenesis have been successfully coupled in an Expanded Granular Sludge Bed-Biological Aerated Filter (EGSB-BAF) integrated system. As fed different synthetic wastewater with chemical oxygen demand (COD) of 300–1200 mg·L-1 and NH4+-N of 30–120 mg·L-1 at the outer recycle ratio of 200%, the influence of influent on ANAMMOX in the integrated system was investigated in this paper. The experimental results showed that higher COD concentration caused an increase in denitrification and methanogenesis but a decrease in ANAMMOX; however, when an influent with the low concentration of COD was used, the opposite changes could be observed. Higher influent NH4+-N concentration favored ANAMMOX when the COD concentration of influent was fixed. Therefore, low COD/NH4+-N ratio would decrease competition for nitrite between ANAMMOX and denitrification, which was favorable for reducing the negative effect of organic COD on ANAMMOX. The good performance of the integrated system indicated that the bacterial community of denitrification, ANAMMOX, and methanogenesis could be dynamically maintained in the sludge of EGSB reactor for a certain range of influent.  相似文献   

18.
19.
20.
The anaerobic-anoxic oxidation ditch (A2/O OD) process is popularly used to eliminate nutrients from domestic wastewater. In order to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal, and enhance the denitrifying phosphorus removal in the A2/O OD process, a pilot-scale A2/O OD plant (375 L) was conducted. At the same time batch tests using sequence batch reactors (12 L and 4 L) were operated to reveal the significance of anoxic phosphorus removal. The results indicated that: The average removal efficiency of COD, NH4+, PO43-, and TN were 88.2%, 92.6%, 87.8%, and 73.1%, respectively, when the steady state of the pilot-scale A2/O OD plant was reached during 31-73 d, demonstrating a good denitrifying phosphorus removal performance. Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms NO2- could be used as electron receptors in denitrifying phosphorus removal, and the phosphorus uptake rate with NO2- as the electron receptor was higher than that with NO3- when the initial concentration of either NO2- or NO3- was 40 mg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号