首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
The growth patterns of macroalgae in three-dimensional space can provide important information regarding the environments in which they live, and insights into changes that may occur when those environments change due to anthropogenic and/or natural causes. To decipher these patterns and their attendant mechanisms and influencing factors, a spatially explicit model has been developed. The model SPREAD (SPatially-explicit Reef Algae Dynamics), which incorporates the key morphogenetic characteristics of clonality and morphological plasticity, is used to investigate the influences of light, temperature, nutrients and disturbance on the growth and spatial occupancy of dominant macroalgae in the Florida Reef Tract. The model species, Halimeda and Dictyota spp., are modular organisms, with an “individual” being made up of repeating structures. These species can also propagate asexually through clonal fragmentation. These traits lead to potentially indefinite growth and plastic morphology that can respond to environmental conditions in various ways. The growth of an individual is modeled as the iteration of discrete macroalgal modules whose dynamics are affected by the light, temperature, and nutrient regimes. Fragmentation is included as a source of asexual reproduction and/or mortality. Model outputs are the same metrics that are obtained in the field, thus allowing for easy comparison. The performance of SPREAD was tested through sensitivity analysis and comparison with independent field data from four study sites in the Florida Reef Tract. Halimeda tuna was selected for initial model comparisons because the relatively untangled growth form permits detailed characterization in the field. Differences in the growth patterns of H. tuna were observed among these reefs. SPREAD was able to closely reproduce these variations, and indicate the potential importance of light and nutrient variations in producing these patterns.  相似文献   

3.
An agent-based model was used to evaluate the response of a two-species fish community to fishing boat exploration strategies, namely: boats following high-yield boats (Cartesian); boats fishing at random sites (stochast-random); and boats fishing at least exploited sites (stochast-pressure). At low fishing pressure, the stochast-random mode yielded a high average catch per boat while sustaining fish biomass. At high fishing pressure, the Cartesian mode was more effective. For the Cartesian strategy, fish biomass exhibited four distinct behaviors with increasing number of boats. In the first phase, the fish biomass dropped with increasing number of boats due to a corresponding rise in biomass extraction. Rapid exploitation occurred in the second phase, when two or more boats occupied the same initial area, that led to the faster abandonment of those sites which then underwent biomass recovery. In the third phase, adding more boats resulted in a fluctuating stock biomass, where the combined effects of initial spatial distribution of boats and rapid localization led to either full stock recovery when boats were eventually confined to a single location due to spillovers, or stock extirpation when the entire area became fully occupied. Beyond the third phase, stock extirpation was assured. In order to break the pattern of localization (bandwagon effect), we introduced stochast-random intruders in a Cartesian-dominated fishery. Adding a single intruder changed the patchy-structured stock biomass pattern of a purely Cartesian fishery to a uniformly explored stock biomass pattern because of the additional spatial information provided by the intruder. Consequently, the average catch per boat increased but at the expense of a disproportionate decline in equilibrium biomass.  相似文献   

4.
5.
Spatial model of annual weed seed dispersal, in this article, was theoretically derived. According to the requirements of building the spatial model, we designed and done an indoor experiment of weed seed dispersal by wind. In the experiment, the seeds of Bromus sterilis were released at 100 cm height under different wind velocity conditions. Based on the experimental data, the spatial models of seed dispersal of the weed species were built, which were divided into three types according to the coefficient β < 0, β = 0, β > 0. The results showed that dispersal of annual weed seed in any direction obeyed an approximate Gaussian distribution; under the experimental conditions, spatial distribution type of weed seed dispersal changed with variation of wind velocity. Well-known Howard et al.'s model (Howard et al., 1991) of Bromus sterilis seed dispersal is an especial example of the model built in this article. The result of model analysis indicated that the distribution type described by Howard's model was similar to that of seed dispersal of the weed species at the height of 100 cm under the condition of lower wind velocity (about 2.18 m/s). Using CA simulation analysis we found that mean control agent applying to a cell with weed should have a decrease with an increase of wind velocity to prevent weed with the initial configuration from spreading, which implicated less herbicide needs spraying in every cell with weed on average when wind velocity increases.  相似文献   

6.
The impact of anthropogenic disturbance on wildlife is increasing becoming a source of concern as the popularity of outdoor recreation rises. There is now more pressure on site managers to simultaneously ensure the continued persistence of wildlife and provide recreational opportunities. Using ‘Simulation of Disturbance Activities’, a model designed to investigate the impact of recreational disturbance on wildlife, we demonstrate how a simulation modelling approach can effectively inform such management decisions. As an example, we explored the implications of various design and management options for a proposed recreational area containing a historic breeding bird colony. By manipulating the proximity, orientation and intensity of recreation, we were able to evaluate the impact of recreational activities on the behaviour of black-crowned night-heron nestlings (Nycticorax nycticorax). Using a classification and regression tree (CART) procedure to analyse simulation output, we explored the dynamics of multiple strategies in concert. Our analysis revealed that there are inherent advantages in implementing multiple strategies as opposed to any single strategy. Nestlings were not disturbed by recreation when bird-watching facility placement (proximity and orientation) and type were considered in combination. In comparison, proximity alone only led to a <10% reduction in disturbance. Thus we demonstrate how simulation models based on customised empirical data can bridge the gap between field studies and active management, enabling users to test novel management scenarios that are otherwise logistically difficult. Furthermore, such models potentially have broad application in understanding human-wildlife interactions (e.g. exploring the implications of roads on wildlife, probability of bird strikes around airports, etc.). They therefore represent a valuable decision-making tool in the ecological design of urban infrastructures.  相似文献   

7.
Physically based numerical modelling follows from the basic understanding of the underlying mechanisms and is often represented by a set of (partial differential) equations. It is one of the main approaches in population dynamics modelling. The emphasis of the model introduced in this paper is on the simulation of short-term spatial and temporal dynamics of harmful algal bloom (HAB) events. Total suspended matter (TSM) concentration is one of the dominant factors for harmful algal bloom (HAB) prediction in North Sea. However, the modelling of suspended matter contains a high degree of uncertainty in this area. Therefore, this research aims to achieve a better estimation for the short-term prediction of harmful algal bloom development in both space and time by using spatially distributed TSM retrieved from remotely sensed images as physically based model inputs. In order to supply complete spatially covered datasets for the physically based model instrument: generic ecological model (GEM), this research retrieves TSM information from MERIS images by means of proper estimation techniques including biharmonic splines and self-learning cellular automata. A better estimation of HAB spatial pattern development is achieved by adding spatially distributed TSM data as inputs to original GEM model, and it proved that chlorophyll-a concentration in this area is very sensitive to TSM concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号