首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
The Manila clam Ruditapes philippinarum (Adams and Reeve, 1850) is one of the mollusc species that, driven mainly by the shellfish market industry, has extended throughout the world, far beyond the limits of its original habitat. The Manila clam was introduced into France for aquaculture purposes, between 1972 and 1975. In France, this venerid culture became increasingly widespread and, since 1988, this species has colonised most of the embayments along the French Atlantic coast. In 2004, this development resulted in a fishery of ca. 520 t in Arcachon Bay.  相似文献   

2.
The most studied and commonly applied model of fish growth is the von Bertalanffy model. However, this model does not take water temperature into account, which is one of the most important environmental factors affecting the life cycle of fish, as many physiological processes that determine growth, e.g. metabolic rate and oxygen supply, are directly influenced by temperature. In the present study we propose a version of the von Bertalanffy growth model that includes mean annual water temperatures by correlating the growth coefficient, k, explicitly and the asymptotic length, L, implicitly to water temperature. All relationships include parameters with an obvious biological relevance that makes them easier to identify. The model is used to fit growth data of bullhead (Cottus gobio) at different locations in the Bez River network (Drme, France). We show that temperature explains much of the growth variability at the different sampling sites of the network.  相似文献   

3.
Ostertagia ostertagi is a nematode, predominantly affecting cattle in the Pampean region of Argentina. A mathematical model parametrized using fuzzy rule-based systems of the Takagi-Sugeno-Kant type (FTSK) for estimating the development time from egg to infecting larval stage L3 of the gastrointestinal parasite O. ostertagi is here proposed. The estimation of development time of O. ostertagi is essential for the generation of appropriate control mechanisms, since this provides information about the time when parasites are ready to migrate to pastures. For the purpose of reflecting the natural environmental conditions, the mean daily temperature is taken as the main and only regulator of the development time. Humidity conditions are considered to be sufficient for the normal development of the larvae. Hence the individual's daily growth is a function of its length and the mean temperature recorded on the previous day. It is expressed in terms of a difference equation with fuzzy parameters, which are defined using laboratory data. Model outputs are tested against results of field experiments. Simulation results are very satisfactory, yielding a mean estimation error (MEE) of 0.64 weeks, with variance 0.34, and a determination coefficient R2 = 0.74. The model clearly exhibits an inverse relationship between development time and temperature both in controlled and in field conditions. It also exhibits a very sensitive response both to the order in which the temperature sequence occurs, - reproducing the differences observed between spring and autumn - and to the amplitude of the temperature range.  相似文献   

4.
This paper aims to find patterns in nest site selection by Little Terns Sterna albifrons, in the Nakdong estuary in South Korea. This estuary is important waterfowl stopover and breeding habitat, located in the middle of the East Asia-Australasian Flyway. The Little Tern is a common species easily observed near the seashore but their number is gradually declining around the world. We investigated their nests and eggs on a barrier islet in the Nakdong estuary during the breeding season (May to June, 2007), and a pattern for the nest site selection was identified using genetic programming (GP). The GP generated a predictive rule-set model for the number of Little Tern nests (training: R2 = 0.48 and test: 0.46). The physical features of average elevation, variation of elevation, plant coverage, and average plant height were estimated to determine the influence on nest numbers for Little Tern. A series of sensitivity analyses stressed that mean elevation and vegetation played an important role in nest distribution for Little Tern. The influence of these two variables could be maximized when elevation changed moderately within the sampled quadrats. The study results are regarded as a good example of applying GP to vertebrate distribution patterning and prediction with several important advantages compared to conventional modeling techniques, and can help establish a management or restoration strategy for the species.  相似文献   

5.
Spatial autocorrelation (SAC) is frequently encountered in most spatial data in ecology. Cellular automata (CA) models have been widely used to simulate complex spatial phenomena. However, little has been done to examine the impact of incorporating SAC into CA models. Using image-derived maps of Chinese tamarisk (Tamarix chinensis Lour.), CA models based on ordinary logistic regression (OLCA model) and autologistic regression (ALCA model) were developed to simulate landscape dynamics of T. chinensis. In this study, significant positive SAC was detected in residuals of ordinary logistic models, whereas non-significant SAC was found in autologistic models. All autologistic models obtained lower Akaike's information criterion corrected for small sample size (AICc) values than the best ordinary logistic models. Although the performance of ALCA models only satisfied the minimum requirement, ALCA models showed considerable improvement upon OLCA models. Our results suggested that the incorporation of the autocovariate term not only accounted for SAC in model residuals but also provided more accurate estimates of regression coefficients. The study also found that the neglect of SAC might affect the statistical inference on underlying mechanisms driving landscape changes and obtain false ecological conclusions and management recommendations. The ALCA model is statistically sound when coping with spatially structured data, and the adoption of the ALCA model in future landscape transition simulations may provide more precise probability maps on landscape transition, better model performance and more reasonable mechanisms that are responsible for landscape changes.  相似文献   

6.
As the human activity footprint grows, land-use decisions play an increasing role in determining the future of plant and animal species. Studies have shown that urban and agricultural development cannot only harm species populations directly through habitat destruction, but also by destroying the corridors that connect habitat patches and populations within a metapopulation. Without these pathways, populations can encounter inbreeding depression and degeneration, which can increase death rates and lower rates of reproduction. This article describes the development and application of the FRAGGLE model, a spatial system dynamics model designed to calculate connectivity indices among populations. FRAGGLE can help planners and managers identify the relative contribution of populations associated with habitat patches to future populations in those patches, taking into account the importance of interstitial land to migration success. The model is applied to the gopher tortoise (Gopherus polyphemus), a threatened species whose southeastern U.S. distribution has diminished significantly within its native range due to agricultural and urban development over the last several decades. This model is parameterized with life history and movement traits of the gopher tortoise in order to simulate population demographics and spatial distribution within an area in west-central Georgia that supports a significant tortoise population. The implications of this simulation modeling effort are demonstrated using simple landscape representations and a hypothetical on land-use management scenario. Our findings show that development resulting in even limited habitat losses (10%) may lead to significant increases in fragmentation as measured by a loss in the rate of dispersions (31%) among area subpopulations.  相似文献   

7.
Several studies have proven the importance of field margins in sustaining biodiversity and other work has been done on the effect of field management on field margin flora. However few models have been built to predict the effects of field management on the flora. Our project addresses this need for a model capable of predicting the effect of cropping techniques and their timing on the flora of field margins. Primula vulgaris is a biodiversity indicator, characteristic of undisturbed flora and found in field margins and woodlands: its population has been declining for several years. We created a temporal matrix model of P. vulgaris populations on field margins, taking into account the effects of field, field margin and roadside management based on literature and expert knowledge. We then analysed its sensitivity to demographic parameters by comparing lambda (growth rate) sensitivity and elasticity. We compared the management parameter effect using the relative growth rate of the population after 6 years of simulation. Sensitivity analysis to biological parameters showed the importance of adult survival and seed production and germination. Results show that P. vulgaris is particularly sensitive to broad-spectrum herbicides and that other management techniques like early mowing, scything and scrub-killer (diluted broad-spectrum herbicide or specific herbicide) are less aggressive. Our simulations show that management of cash crops in Brittany is too aggressive for P. vulgaris populations and that 4-5 years of grassland in the adjacent field are necessary to maintain populations.  相似文献   

8.
The dynamics that govern the elevation of a coastal wetland relative to sea level are complex, involving non-linear feedbacks among opposing processes. Changes in the balance between these processes can result in significant alterations to vegetation communities that are adapted to a specific range of water levels. Given that current sedimentation rates in Padilla Bay, Washington are likely less than historical levels and that eustatic sea level rise is accelerating, the extensive Zostera marina (eelgrass) meadows in the bay may be at risk of eventual submergence. We developed a spatially explicit relative elevation model and used it to project changes in the productivity and distribution of eelgrass in Padilla Bay over the next century. The model is mechanistic and incorporates many of the processes and feedbacks that govern coastal wetland elevation change. Accretion estimates made using 210Pb dating of sediment cores, sediment characteristics measured within cores, and eelgrass productivity and decomposition data were used to initialize and calibrate the model. Validation was performed using an elevation change rate measured with a network of surface elevation tables. Both the field data and model simulations revealed a net accretion deficit for the bay. Simulations using current rates of sea level rise indicated an overall expansion of eelgrass within Padilla Bay over the next century as it migrates from the center of the bay shoreward.  相似文献   

9.
This study provides a method for assessing a multiplicity of environmental factors in red spruce growth in the Great Smoky Mountains National Park (GSMNP) of Southeastern USA. Direct and indirect factors in the annual growth increment are first organized into a schematic input-output envirogram (ARIRS), and this information is then used to construct a simulation model (ARIM). The envirogram represents a structured conceptualization of most environmental factors involved in growth, as developed from relevant literature. This interdisciplinary synthesis distinguishes direct vs. indirect factors in growth and takes account of the systems ecology concept that indirect factors may be as important as or more important than direct ones in regulating growth. The ARIRS envirogram summarizes hierarchically organized, within- and cross-scale, local-to-global interactions, and its construction makes it obvious that growth is influenced by many cross-scale spatiotemporal interactions. More research on genecology is still needed to clarify the role of phenotypic plasticity and adaptive capacity in nutrient cycling, global change, and human disturbance.  相似文献   

10.
A population model for the peach fruit moth, Carposina sasakii Matsumura, was constructed to understand the population dynamics of this pest species and to develop an effective management strategy for various orchard (apple, peach, apple + peach) systems. The model was structured by the five developmental stages of C. sasakii: egg, larva, pupa, larval-cocoon (overwintering larva), and adult. The model consisted of a series of component models: (1) a bimodal spring adult emergence model, (2) an adult oviposition model, (3) stage emergence models of eggs, larvae, and pupae, (4) a larval survival rate model in fruits, (5) a larval-cocoon formation model, and (6) an insecticide effect model. Simulations using the model described the typical patterns of C. sasakii adult abundance in various orchard systems well, and was specific to the composition of host plants: three adult abundance peaks (first peak, mid-season peak, and last peak) a year with decreased peaks after the first peak in monoculture orchards of late apple, two adult peaks a year with a much higher last peak in monoculture orchards of early peach, and three adult peaks a year with much higher later peaks in mixed orchards of late apple and early peach. The average deviation between model outputs and actual records for first and second adult peak dates was 2.8 and 3.9 d, respectively, in simulations without an insecticide effect. The deviation decreased when insecticide effects were incorporated into the model. We also performed a sensitivity analysis of our model, and suggest possible applications of the model.  相似文献   

11.
The benefits of genetically modified herbicide-tolerant (GMHT) sugar beet (Beta vulgaris) varieties stem from their presumed ability to improve weed control and reduce its cost, particularly targeting weed beet, a harmful annual weedy form of the genus Beta (i.e. B. vulgaris ssp. vulgaris) frequent in sugar beet fields. As weed beet is totally interfertile with sugar beet, it is thus likely to inherit the herbicide-tolerance transgene through pollen-mediated gene flow. Hence, the foreseeable advent of HT weed beet populations is a serious threat to the sustainability of GM sugar beet cropping systems. For studying and quantifying the long-term effects of cropping system components (crop succession and cultivation techniques) on weed beet population dynamics and gene flow, we developed a biophysical process-based model called GeneSys-Beet in a previous study. In the present paper, the model was employed to identify and rank the weed life-traits as function of their effect on weed beet densities and genotypes, using a global sensitivity analysis to model parameters. Monte Carlo simulations with simultaneous randomization of all life-trait parameters were carried out in three cropping systems contrasting for their risk for infestation by HT weed beets. Simulated weed plants and bolters (i.e. beet plants with flowering and seed-producing stems) were then analysed with regression models as a function of model parameters to rank processes and life-traits and quantify their effects. Key parameters were those determining the timing and success of growth, development, seed maturation and the physiological end of seed production. Timing parameters were usually more important than success parameters, showing for instance that optimal timing of weed management operations is more important than its exact efficacy. The ranking of life-traits though depended on the cropping system and, to a lesser extent, on the target variable (i.e. GM weeds vs. total weed population). For instance, post-emergence parameters were crucial in rotations with frequent sugar beet crops whereas pre-emergence parameters were most important when sugar beet was rare. In the rotations with frequent sugar beet and insufficient weed control, interactions between traits were small, indicating diverse populations with contrasted traits could prosper. Conversely, when sugar beet was rare and weed control optimal, traits had little impact individually, indicating that a small number of optimal combinations of traits would be successful. Based on the analysis of sugar beet parameters and genetic traits, advice for the future selection of sugar beet varieties was also given. In climatic conditions similar to those used here, the priority should be given to limiting the presence of hybrid seeds in seed lots rather than decreasing varietal sensitivity to vernalization.  相似文献   

12.
The growth patterns of macroalgae in three-dimensional space can provide important information regarding the environments in which they live, and insights into changes that may occur when those environments change due to anthropogenic and/or natural causes. To decipher these patterns and their attendant mechanisms and influencing factors, a spatially explicit model has been developed. The model SPREAD (SPatially-explicit Reef Algae Dynamics), which incorporates the key morphogenetic characteristics of clonality and morphological plasticity, is used to investigate the influences of light, temperature, nutrients and disturbance on the growth and spatial occupancy of dominant macroalgae in the Florida Reef Tract. The model species, Halimeda and Dictyota spp., are modular organisms, with an “individual” being made up of repeating structures. These species can also propagate asexually through clonal fragmentation. These traits lead to potentially indefinite growth and plastic morphology that can respond to environmental conditions in various ways. The growth of an individual is modeled as the iteration of discrete macroalgal modules whose dynamics are affected by the light, temperature, and nutrient regimes. Fragmentation is included as a source of asexual reproduction and/or mortality. Model outputs are the same metrics that are obtained in the field, thus allowing for easy comparison. The performance of SPREAD was tested through sensitivity analysis and comparison with independent field data from four study sites in the Florida Reef Tract. Halimeda tuna was selected for initial model comparisons because the relatively untangled growth form permits detailed characterization in the field. Differences in the growth patterns of H. tuna were observed among these reefs. SPREAD was able to closely reproduce these variations, and indicate the potential importance of light and nutrient variations in producing these patterns.  相似文献   

13.
Changes in carbon use efficiency (CUE), which is defined as the ratio of net primary production (NPP) to gross primary production (GPP), were estimated for the aerial parts of the Hinoki Cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) with respect to stand development. The analysis incorporated previously published data from the early stages of stand development, namely the seedling stages of the cypress. For this analysis, a simple mathematical model to assess the changes in CUE was developed by incorporating data on physiological variables and mass of woody species. The CUE tended to increase with increases in the aboveground biomass of the stand, and then decreased gradually despite increases in the aboveground biomass. The CUE-value (0.28, 0.39) of the seedling stage was lower than that (0.33-0.58) of the young or mature trees. To examine the effect of physiological variables and mass on CUE, the ratios of the specific respiration rate to the specific photosynthetic rate (r/a) and the leaf biomass to the aboveground biomass or leaf mass ratio (yL/yT) were calculated. The low value of CUE at the seedling stage was due to the high ratio of specific respiration rate to specific photosynthetic rate r/a, but was not due to the high value of the leaf mass ratio yL/yT. In addition, the decline in CUE associated with older stages of stand development was due to the decreasing changes in yL/yT, and the r/a ratio did not influence the change in CUE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号