首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most studied and commonly applied model of fish growth is the von Bertalanffy model. However, this model does not take water temperature into account, which is one of the most important environmental factors affecting the life cycle of fish, as many physiological processes that determine growth, e.g. metabolic rate and oxygen supply, are directly influenced by temperature. In the present study we propose a version of the von Bertalanffy growth model that includes mean annual water temperatures by correlating the growth coefficient, k, explicitly and the asymptotic length, L, implicitly to water temperature. All relationships include parameters with an obvious biological relevance that makes them easier to identify. The model is used to fit growth data of bullhead (Cottus gobio) at different locations in the Bez River network (Drme, France). We show that temperature explains much of the growth variability at the different sampling sites of the network.  相似文献   

2.
Although long-lived tree species experience considerable environmental variation over their life spans, their geographical distributions reflect sensitivity mainly to mean monthly climatic conditions. We introduce an approach that incorporates a physiologically based growth model to illustrate how a half-dozen tree species differ in their responses to monthly variation in four climatic-related variables: water availability, deviations from an optimum temperature, atmospheric humidity deficits, and the frequency of frost. Rather than use climatic data directly to correlate with a species’ distribution, we assess the relative constraints of each of the four variables as they affect predicted monthly photosynthesis for Douglas-fir, the most widely distributed species in the region. We apply an automated regression-tree analysis to create a suite of rules, which differentially rank the relative importance of the four climatic modifiers for each species, and provide a basis for predicting a species’ presence or absence on 3737 uniformly distributed U.S. Forest Services’ Forest Inventory and Analysis (FIA) field survey plots. Results of this generalized rule-based approach were encouraging, with weighted accuracy, which combines the correct prediction of both presence and absence on FIA survey plots, averaging 87%. A wider sampling of climatic conditions throughout the full range of a species’ distribution should improve the basis for creating rules and the possibility of predicting future shifts in the geographic distribution of species.  相似文献   

3.
The risks and benefits associated with efforts to control invasive alien species using classical biological control are being subjected to increasing scrutiny. A process-based population dynamics model was developed to explore the interactions between a folivorous biological control agent, Cleopus japonicus, and its plant host Buddleja davidii. The model revealed that climate could have a significant impact upon the interactions between B. davidii and C. japonicus. At the coolest sites, the impact of C. japonicus on B. davidii was slowed, but it was still eventually capable of controlling populations of B. davidii. At the warmer sites where both B. davidii and C. japonicus grew faster, B. davidii succumbed rapidly to weevil damage. We hypothesise that barring an encounter with a natural enemy, C. japonicus will eventually be able to provide sustained control B. davidii throughout the North Island of New Zealand. The model scenarios illustrate the potential for the C. japonicus population to attain high densities rapidly, and to defoliate patches of B. davidii, creating the potential for spill-over feeding on non-target plants. The potential magnitude of this threat will depend partly on the climate suitability for C. japonicus, the pattern by which it migrates in response to a reduction in the available leaf resource, and the suitability of non-target plants as hosts. In all migration scenarios considered, the pattern of population growth and resource consumption by C. japonicus was exponential, with a strong tendency toward complete utilisation of resource patches more quickly at the warmer compared to colder sites. In addition to providing some useful hypotheses about the effects of climate on the biological control system, and the non-target risks, it also provides some insight into the mechanisms by which climate affects the system.  相似文献   

4.
A system-dynamic model has been built to evaluate the competition between submerged macrophytes Potamogeton malaianus Miq. (PM) and filamentous green algae Spirogyra sp. (SP). The data background is based on a spring–summer and an autumn–winter experiment carried out in artificial field ponds. The experiments had the aim to acquire a knowledge base necessary to a successful restoration of submerged macrophyte vegetation in Lake Taihu, China by use of P. malaianus Miq. The model mainly focuses on variations in water volume; biomass dynamics of P. malaianus Miq., Spirogyra sp. and zoobenthos; nutrients cycling between water column, P. malaianus Miq., Spirogyra sp., zoobenthos, detritus and sediment. Sixteen state variables are included in the model: biomass of P. malaianus Miq., Spirogyra sp. and zoobenthos; nitrogen in sediments, detritus, in P. malaianus Miq., in Spirogyra sp. and zoobenthos; total dissolved nitrogen; phosphorus in sediments, detritus, in P. malaianus Miq., in Spirogyra sp. and in zoobenthos; total dissolved phosphorus, and water volume of the experiment pond. The calibration and validation of the model show a good accordance with the results of the spring–summer experiment and the autumn–winter experiment.  相似文献   

5.
A new model for determining leaf growth in vegetative shoots of the seagrass Zostera marina (eelgrass) is described. This model requires the weights of individual mature and immature whole leaves and leaf plastochrone interval (PL) as parameters, differing from the conventional leaf marking technique (CLM) that requires cutting and separation between new and old tissue of leaves. The techniques required for the model are the same as for the plastochrone method, but the parameters differ between both methods in use of the weight of individual immature leaves. In a mesocosm study, eelgrass growth was examined, and parameters for the new model and plastochrone method (the weights of individual mature and immature leaves and PL) were measured. Leaf growth rate was measured using the CLM and determined by the new method and the plastochrone method. The results were then compared between the CLM, the new model, and the plastochrone method. The results obtained with the new model were similar to those obtained with the CLM. However, the results of the plastochrone method differed from those of the CLM, while the weight of immature leaves varied seasonally. The new model was also used to determine leaf growth in a natural eelgrass bed in Mikawa Bay, Japan, and revealed the growth rates in all shoots and those of different ages. This method would be advantageous as an accurate means of direct measurement in fieldwork, and should therefore be a useful tool for monitoring seagrass growth.  相似文献   

6.
We present a modelling framework that combines machine learning techniques and Geographic Information Systems to support the management of an important aquaculture species, Manila clam (Ruditapes philippinarum). We use the Venice lagoon (Italy), the first site in Europe for the production of R. philippinarum, to illustrate the potential of this modelling approach. To investigate the relationship between the yield of R. philippinarum and a set of environmental factors, we used a Random Forest (RF) algorithm. The RF model was tuned with a large data set (n = 1698) and validated by an independent data set (n = 841). Overall, the model provided good predictions of site-specific yields and the analysis of marginal effect of predictors showed substantial agreement among the modelled responses and available ecological knowledge for R. philippinarum. The most influent environmental factors for yield estimation were percentage of sand in the sediment, salinity, and water depth. Our results agree with findings from other North Adriatic lagoons. The application of the fitted RF model to continuous maps of all the environmental variables allowed estimates of the potential yield for the whole basin. Such a spatial representation enabled site-specific estimates of yield in different farming areas within the lagoon. We present a possible management application of our model by estimating the potential yield under the current farming distribution and comparing it to a proposed re-organization of the farming areas. Our analysis suggests a reduction of total yield is likely to result from the proposed re-organization.  相似文献   

7.
A model is presented to predict sanitary felling of Norway spruce (Picea abies) due to spruce bark beetles (Ips typographus, Pityogenes chalcographus) in Slovenia according to different climate change scenarios. The model incorporates 21 variables that are directly or indirectly related to the dependent variable, and that can be arranged into five groups: climate, forest, landscape, topography, and soil. The soil properties are represented by 8 variables, 4 variables define the topography, 4 describe the climate, 4 define the landscape, and one additional variable provides the quantity of Norway spruce present in the model cell. The model was developed using the M5′ model tree. The basic spatial unit of the model is 1 km2, and the time resolution is 1 year. The model evaluation was performed by three different measures: (1) the correlation coefficient (51.9%), (2) the Theil's inequality coefficient (0.49) and (3) the modelling efficiency (0.32). Validation of the model was carried out by 10-fold cross-validation. The model tree consists of 28 linear models, and model was calculated for three different climate change scenarios extending over a period until 2100, in 10-year intervals. The model is valid for the entire area of Slovenia; however, climate change projections were made only for the Maribor region (596 km2). The model assumes that relationships among the incorporated factors will remain unchanged under climate change, and the influence of humans was not taken into account. The structure of the model reveals the great importance of landscape variables, which proved to be positively correlated with the dependent variable. Variables that describe the water regime in the model cell were also highly correlated with the dependent variable, with evapotranspiration and parent material being of particular importance. The results of the model support the hypothesis that bark beetles do greater damage to Norway spruce artificially planted out of its native range in Slovenia, i.e., lowlands and soils rich in N, P, and K. The model calculation for climate change scenarios in the Maribor region shows an increase in sanitary felling of Norway spruce due to spruce bark beetles, for all scenarios. The model provides a path towards better understanding of the complex ecological interactions involved in bark beetle outbreaks. Potential application of the results in forest management and planning is discussed.  相似文献   

8.
Toona ciliata Roem. (Australian red cedar) requires a nurse-tree overstory to prevent damage from drought and irradiation in some regions of north-eastern Argentina. T. ciliata was planted in the understory of Pinus taeda L. (625 stems/ha), Pinus elliottii Engelm. × Pinus caribaea Morelet (625 stems/ha), and Grevillea robusta A. Cunn. (833 stems/ha) nurse trees, which were thinned to 0, 25, 50, 75 and 100% of the initial densities. We measured initial T. ciliata mortality and growth as well as Leaf Area Index (LAI) based on light transmission. T. ciliata soil water availability and its effect on early growth and mortality were examined by modelling drought stress using the two-dimensional forest hydrology model ForWaDy. Simulated patterns in T. ciliata water stress for the different overstory treatments were consistent with observed patterns of mortality. Early mortality was lowest with a G. robusta overstory, with corresponding lowest drought stress values and high modelled soil water contents in the top soil layer in intermediate and high overstory densities. Mortality was highest with a P. elliottii × P. caribaea overstory in treatments with the highest modelled drought stress values in the most open treatments. The model supported our field observations by indicating that water stress was an important limitation to T. ciliata survival and growth on our study sites. The linkage between T. ciliata establishment success, early growth and soil water availability as indicated by ForWaDy, leads us to conclude that the model is a suitable stand management tool for guiding establishment of T. ciliata plantations.  相似文献   

9.
As interest grows in the quantification of global carbon cycles, Light Use Efficiency (LUE) model predictions of the forest net primary production (NPP) are being developed at an accelerating rate. Such models can provide useful predictions at large scales, but evaluating their performance has been difficult. In this study, a remote sensing-based LUE model was established to estimate forest NPP. Using the forest inventory data (FID) from the regional forest inventory survey in China and established allometric biomass equations, we calculated the biomass, the biomass increment, and the NPP of Eucalyptus urophylla (E. urophylla) plantation plots in the forestry jurisdiction of the Leizhou Forestry Bureau, Southern China. The FID-based NPP and the NPP from LUE model predictions were then compared to each other. Results show that the NPP from model predictions at a spatial resolution of 30 m × 30 m varied from 0 to 265 gC/(m2 month) and showed regional differences. In addition, the stand age had variable effects on the average individual biomass of the E. urophylla plantation plots. The average individual biomass of the young and mid-age forests increased exponentially and logarithmically with the stand age (R2 = 0.9178 and R2 = 0.8683), respectively. For young and mid-age E. urophylla plantation plots, the LUE model-predicted NPP was fairly consistent with the FID-based NPP, but the model predictions of the NPP were higher than the estimates from FID. Through the analysis of the causes of uncertainty and the possible reasons for the discrepancy between the model-based NPP and FID-based NPP, the FID-derived estimates provided a foundation for model evaluation.  相似文献   

10.
The impact of 2 × CO2 driven climate change on radial growth of boreal tree species Pinus banksiana Lamb., Populus tremuloides Michx. and Picea mariana (Mill.) BSP growing in the Duck Mountain Provincial Forest of Manitoba (DMPF), Canada, is simulated using empirical and process-based model approaches. First, empirical relationships between growth and climate are developed. Stepwise multiple-regression models are conducted between tree-ring growth increments (TRGI) and monthly drought, precipitation and temperature series. Predictive skills are tested using a calibration–verification scheme. The established relationships are then transferred to climates driven by 1× and 2 × CO2 scenarios using outputs from the Canadian second-generation coupled global climate model. Second, empirical results are contrasted with process-based projections of net primary productivity allocated to stem development (NPPs). At the finest scale, a leaf-level model of photosynthesis is used to simulate canopy properties per species and their interaction with the variability in radiation, temperature and vapour pressure deficit. Then, a top-down plot-level model of forest productivity is used to simulate landscape-level productivity by capturing the between-stand variability in forest cover. Results show that the predicted TRGI from the empirical models account for up to 56.3% of the variance in the observed TRGI over the period 1912–1999. Under a 2 × CO2 scenario, the predicted impact of climate change is a radial growth decline for all three species under study. However, projections obtained from the process-based model suggest that an increasing growing season length in a changing climate could counteract and potentially overwhelm the negative influence of increased drought stress. The divergence between TRGI and NPPs simulations likely resulted, among others, from assumptions about soil water holding capacity and from calibration of variables affecting gross primary productivity. An attempt was therefore made to bridge the gap between the two modelling approaches by using physiological variables as TRGI predictors. Results obtained in this manner are similar to those obtained using climate variables, and suggest that the positive effect of increasing growing season length would be counteracted by increasing summer temperatures. Notwithstanding uncertainties in these simulations (CO2 fertilization effect, feedback from disturbance regimes, phenology of species, and uncertainties in future CO2 emissions), a decrease in forest productivity with climate change should be considered as a plausible scenario in sustainable forest management planning of the DMPF.  相似文献   

11.
A multivariate statistical approach integrating the absolute principal components score (APCS) and multivariate linear regression (APCS-MLR), along with structural equation modeling (SEM), was used to model the influence of water chemistry variables on chlorophyll a (Chl a) in Lake Qilu, a severely polluted lake in southwestern China. Water quality was surveyed monthly from 2000 to 2005. APCS-MLR was used to identify key water chemistry variables, mine data for SEM, and predict Chl a. Seven principal components (PCs) were determined as eigenvalues >1, which explained 68.67% of the original variance. Four PCs were selected to predict Chl a using APCS-MLR. The results showed a good fit between the observed data and modeled values, with R2 = 0.80. For SEM, Chl a and eight variables were used: NH4-N (ammonia-nitrogen), total phosphorus (TP), Secchi disc depth (SD), cyanide (CN), arsenic (As), cadmium (Cd), fluoride (F), and temperature (T). A conceptual model was established to describe the relationships among the water chemistry variables and Chl a. Four latent variables were also introduced: physical factors, nutrients, toxic substances, and phytoplankton. In general, the SEM demonstrated good agreement between the sample covariance matrix of observed variables and the model-implied covariance matrix. Among the water chemistry factors, T and TP had the greatest positive influence on Chl a, whereas SD had the largest negative influence. These results will help researchers and decision-makers to better understand the influence of water chemistry on phytoplankton and to manage eutrophication adaptively in Lake Qilu.  相似文献   

12.
Contemporary shallow lakes theory proposes that these ecosystems may experience abrupt regime shifts due to small changes in controlling variables or triggers. So far, these triggers have been related mostly to nutrients as the immediate driver. During May 2004 the río Cruces wetland, a Ramsar site located in Southern Chile, underwent a major regime shift, from a clear water state, vastly dominated by the invasive macrophyte Egeria densa, to a turbid water state. In this article we show, through the analysis of long-term meteorological data that late fall 2004 was anomalous due to the presence of a high-pressure cell that persisted most of the month of May over Southern Chile. This climatic event caused an almost complete absence of precipitations and lower temperatures during this period, including several freezing nights. Eco-physiological experiments showed that 6 h exposure to desiccation kill the macrophyte. We developed a simple-biology dynamic model, under Stella Research 9.1, to show that the climatic anomaly of May 2004, plus the increased sedimentation of the wetland's floodplains, and the associated response of E. densa, explains its sudden disappearance from río Cruces wetland.  相似文献   

13.
In integrated pest management (IPM), biological control is one of the possible options for the prevention or remediation of an unacceptable pest activity or damage. The success of forecast models in IPM depends, among other factors, on the knowledge of temperature effect over pests and its natural enemies. In this work, we simulated the effects of parasitism of Lysiphlebus testaceipes (Cresson, 1880) (Hymenoptera: Aphidiidae) on Aphis gossypii (Glover, 1877) (Hemiptera: Aphididae), a pest that is associated to crops of great economic importance in several parts of the world. We made use of experimental data relative to the host and its parasitoid at different temperatures. Age structure was incorporated into the dynamics through the Penna model. The results obtained showed that simulation, as a forecast model, can be a useful tool for biological control programs.  相似文献   

14.
Most fish farming waste output models provide gross waste rates as a function of stocked or produced biomass for a year or total culture cycle, but without contemplating the temporality of the discharges. This work aims to ascertain the temporal pattern of waste loads by coupling available growth and waste production models and developing simulation under real production rearing conditions, considering the overlapping of batches and management of stocks for three widely cultured species in the Mediterranean Sea: gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and Atlantic bluefin tuna (Thunnus thynnus). For a similar annual biomass production, the simulations showed that waste output and temporal dumping patterns differ between the three species as a result of the disparities in growth velocity, nutrient digestibility, maintenance metabolic budget and husbandry. The simulations allowed the temporal patterns including the periods of maximum discharge and the dissolved and particulate nitrogen and phosphorus content in the wastes released to be determined, both of which were seen to be species-specific.  相似文献   

15.
This study provides a method for assessing a multiplicity of environmental factors in red spruce growth in the Great Smoky Mountains National Park (GSMNP) of Southeastern USA. Direct and indirect factors in the annual growth increment are first organized into a schematic input-output envirogram (ARIRS), and this information is then used to construct a simulation model (ARIM). The envirogram represents a structured conceptualization of most environmental factors involved in growth, as developed from relevant literature. This interdisciplinary synthesis distinguishes direct vs. indirect factors in growth and takes account of the systems ecology concept that indirect factors may be as important as or more important than direct ones in regulating growth. The ARIRS envirogram summarizes hierarchically organized, within- and cross-scale, local-to-global interactions, and its construction makes it obvious that growth is influenced by many cross-scale spatiotemporal interactions. More research on genecology is still needed to clarify the role of phenotypic plasticity and adaptive capacity in nutrient cycling, global change, and human disturbance.  相似文献   

16.
Ostertagia ostertagi is a nematode, predominantly affecting cattle in the Pampean region of Argentina. A mathematical model parametrized using fuzzy rule-based systems of the Takagi-Sugeno-Kant type (FTSK) for estimating the development time from egg to infecting larval stage L3 of the gastrointestinal parasite O. ostertagi is here proposed. The estimation of development time of O. ostertagi is essential for the generation of appropriate control mechanisms, since this provides information about the time when parasites are ready to migrate to pastures. For the purpose of reflecting the natural environmental conditions, the mean daily temperature is taken as the main and only regulator of the development time. Humidity conditions are considered to be sufficient for the normal development of the larvae. Hence the individual's daily growth is a function of its length and the mean temperature recorded on the previous day. It is expressed in terms of a difference equation with fuzzy parameters, which are defined using laboratory data. Model outputs are tested against results of field experiments. Simulation results are very satisfactory, yielding a mean estimation error (MEE) of 0.64 weeks, with variance 0.34, and a determination coefficient R2 = 0.74. The model clearly exhibits an inverse relationship between development time and temperature both in controlled and in field conditions. It also exhibits a very sensitive response both to the order in which the temperature sequence occurs, - reproducing the differences observed between spring and autumn - and to the amplitude of the temperature range.  相似文献   

17.
The growth patterns of macroalgae in three-dimensional space can provide important information regarding the environments in which they live, and insights into changes that may occur when those environments change due to anthropogenic and/or natural causes. To decipher these patterns and their attendant mechanisms and influencing factors, a spatially explicit model has been developed. The model SPREAD (SPatially-explicit Reef Algae Dynamics), which incorporates the key morphogenetic characteristics of clonality and morphological plasticity, is used to investigate the influences of light, temperature, nutrients and disturbance on the growth and spatial occupancy of dominant macroalgae in the Florida Reef Tract. The model species, Halimeda and Dictyota spp., are modular organisms, with an “individual” being made up of repeating structures. These species can also propagate asexually through clonal fragmentation. These traits lead to potentially indefinite growth and plastic morphology that can respond to environmental conditions in various ways. The growth of an individual is modeled as the iteration of discrete macroalgal modules whose dynamics are affected by the light, temperature, and nutrient regimes. Fragmentation is included as a source of asexual reproduction and/or mortality. Model outputs are the same metrics that are obtained in the field, thus allowing for easy comparison. The performance of SPREAD was tested through sensitivity analysis and comparison with independent field data from four study sites in the Florida Reef Tract. Halimeda tuna was selected for initial model comparisons because the relatively untangled growth form permits detailed characterization in the field. Differences in the growth patterns of H. tuna were observed among these reefs. SPREAD was able to closely reproduce these variations, and indicate the potential importance of light and nutrient variations in producing these patterns.  相似文献   

18.
Only recently, studies of forest succession have started to include the effects of browsing by wild or domestic ungulates. We aim to contribute to this topic by analysing the influence of goat grazing on the long-term coexistence of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) in the low-elevation forests of an inner-Alpine dry valley. The forest gap model ForClim was first adapted to these site conditions by examining the site-dependent sensitivity of the model with regard to the species-specific parameterisation of the drought tolerance as well as the light demand of establishing and adult trees. In a second step, the behaviour of the model was investigated with respect to different grazing intensities and species-specific browsing susceptibilities. The last step was the application of a grazing scenario based on forest history, with 150 years of heavy browsing (by goats) at the beginning of the simulated forest succession, followed by less intensive grazing pressure.  相似文献   

19.
The dynamics that govern the elevation of a coastal wetland relative to sea level are complex, involving non-linear feedbacks among opposing processes. Changes in the balance between these processes can result in significant alterations to vegetation communities that are adapted to a specific range of water levels. Given that current sedimentation rates in Padilla Bay, Washington are likely less than historical levels and that eustatic sea level rise is accelerating, the extensive Zostera marina (eelgrass) meadows in the bay may be at risk of eventual submergence. We developed a spatially explicit relative elevation model and used it to project changes in the productivity and distribution of eelgrass in Padilla Bay over the next century. The model is mechanistic and incorporates many of the processes and feedbacks that govern coastal wetland elevation change. Accretion estimates made using 210Pb dating of sediment cores, sediment characteristics measured within cores, and eelgrass productivity and decomposition data were used to initialize and calibrate the model. Validation was performed using an elevation change rate measured with a network of surface elevation tables. Both the field data and model simulations revealed a net accretion deficit for the bay. Simulations using current rates of sea level rise indicated an overall expansion of eelgrass within Padilla Bay over the next century as it migrates from the center of the bay shoreward.  相似文献   

20.
The Manila clam Ruditapes philippinarum (Adams and Reeve, 1850) is one of the mollusc species that, driven mainly by the shellfish market industry, has extended throughout the world, far beyond the limits of its original habitat. The Manila clam was introduced into France for aquaculture purposes, between 1972 and 1975. In France, this venerid culture became increasingly widespread and, since 1988, this species has colonised most of the embayments along the French Atlantic coast. In 2004, this development resulted in a fishery of ca. 520 t in Arcachon Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号