首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
A steady-state model of the Venice lagoon food web was constructed, based on a comprehensive set of data, which were collected in the years 2001-2005. Energy flows were estimated by means of an inverse methodology of constrained optimization based on the Minimum Norm criterion, i.e. on the minimization of both the sum of squares of the residuals and of the sum of squares of energy flows. The solution was constrained by a set inequalities, which were derived from general eco-physiological knowledge and site specific data on energy flows. The trophic network was represented by thirty-two nodes, including single-species compartments for the species of high economical or ecological relevance. Mass balance equations were weighted, in order to obtain meaningful results in presence of large differences, up to 5 orders of magnitude, among biomasses. A perturbation technique was applied, with the purpose of reducing the risk of finding solutions heavily affected by the set of constraints and of obtaining a more robust representation of the energy flows. The main patterns of energy flow are consistent with those obtained in previous attempts at modelling the Venice lagoon food web. Micro- and macro-phytobenthos account for the largest fraction of the primary production. Energy is then transferred towards higher trophic levels by means of two main pathways: the recycling of dead biomass through the detritus compartment and the direct consumption by grazers. The first pathway is the most important and accounts for approximately two/thirds of the energy transferred to the second trophic level.  相似文献   

2.
Mass-balance trophic models (Ecopath with Ecosim) are developed for the marine ecosystem of northern British Columbia (BC) for the historical periods 1750, 1900, 1950 and 2000 AD. Time series data are compiled for catch, fishing mortality and biomass using fisheries statistics and literature values. Using the assembled dataset, dynamics of the 1950-based simulations are fitted to agree with observations over 50 years to 2000 through the manipulation of trophic flow parameters and the addition of climate factors: a primary production anomaly and herring recruitment anomaly. The predicted climate anomalies reflect documented environmental series, most strongly sea surface temperature and the Pacific Decadal Oscillation index. The best-fit predator–prey interaction parameters indicate mixed trophic control of the ecosystem. Trophic flow parameters from the fitted 1950 model are transferred to the other historical periods assuming stationarity in density-dependent foraging tactics. The 1900 model exhibited an improved fit to data using this approach, which suggests that the pattern of trophic control may have remained constant over much of the last century. The 1950 model is driven forward 50 years using climate and historical fishing drivers. The resulting ecosystem is compared to the 2000 model, and the dynamics of these models are compared in a predictive forecast to 2050. The models suggest similar restoration trajectories after a hypothetical release from fishing.  相似文献   

3.
Fishing mortality and primary production (or proxy for) were used to drive the dynamics of fish assemblages in 9 trophodynamic models of contrasting marine ecosystems. Historical trends in abundance were reconstructed by fitting model predictions to observations from stock assessments and fisheries independent survey data. The model fitting exercise derives values for otherwise unknown parameters that specify the relative strength of trophic interactions and, in some instances, a time series anomaly for changes in primary production. We measured how much better or worse were model predictions when bottom-up forcing by primary production were added to top-down forcing by fishing. Searching for cross system patterns, the relative contribution of fishing and changes in primary production, mediated through trophic interactions, are evaluated for the ecosystems as a whole and for selected similar species in different ecosystems. The analysis provides a simple qualitative way to explain which forcing factors have most influence on modeled dynamics. Both fishing and primary production forcing were required to obtain the best model fits to data. Fishing effects more strongly influenced 6 of 9 of the ecosystems, but primary production was more often found to be the main factor influencing the selected pelagic and demersal fish stock trends. Examination of sensitivity to ecological and model parameters suggests that the results are the product of complex food-web interactions rather than simple deterministic responses of the models.  相似文献   

4.
Recent calls for the development of ecosystem-based fisheries management compel the development of resource management tools and linkages between existing fisheries management tools and other resource tools to enable assessment and management of multiple impacts on fisheries resources. In this paper, we describe the use of the Chesapeake Bay Fisheries Ecosystem Model (CBFEM), developed using the Ecopath with Ecosim (EwE) software, and the Chesapeake Bay Water Quality Model (WQM) to demonstrate how linkages between available modeling tools can be used to inform ecosystem-based natural resource management. The CBFEM was developed to provide strategic ecosystem information in support of fisheries management. The WQM was developed to assess impacts on water quality. The CBFEM was indirectly coupled with the WQM to assess the effects of water quality and submerged aquatic vegetation (SAV) on blue crabs. The output from two WQM scenarios (1985-1994), a baseline scenario representing actual nutrient inputs and another with reduced inputs based on a tributary management strategy, was incorporated into the CBFEM. The results suggested that blue crab biomass could be enhanced under management strategies (reduced nutrient input) when the effective search rate of blue crab young-of-the-year's (YOY's) predators or the vulnerability of blue crab YOY to its predators was adjusted by SAV. Such model linkages are important for incorporating physical and biological components of ecosystems in order to explore ecosystem-based fisheries management options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号