首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indirect effects are powerful influences in ecosystems that may maintain species diversity and alter apparent relationships between species in surprising ways. Here, we applied network environ analysis to 50 empirically-based trophic ecosystem models to test the hypothesis that indirect flows dominate direct flows in ecosystem networks. Further, we used Monte Carlo based perturbations to investigate the robustness of these results to potential error in the underlying data. To explain our findings, we further investigated the importance of the microbial food web in recycling energy-matter using components of the Finn Cycling Index and analysis of environ centrality. We found that indirect flows dominate direct flows in 37/50 (74.0%) models. This increases to 31/35 (88.5%) models when we consider only models that have cycling structure and a representation of the microbial food web. The uncertainty analysis reveals that there is less error in the I/D values than the ±5% error introduced into the models, suggesting the results are robust to uncertainty. Our results show that the microbial food web mediates a substantial percentage of cycling in some systems (median = 30.2%), but its role is highly variable in these models, in agreement with the literature. Our results, combined with previous work, strongly suggest that indirect effects are dominant components of activity in ecosystems.  相似文献   

2.
基于高通量定量PCR研究城市化小流域微生物污染特征   总被引:2,自引:0,他引:2  
水体微生物污染(包括致病菌、病毒、寄生虫)会引起多种传染病和寄生虫病,对生产生活用水安全和人体健康造成重要威胁。本研究应用基于Taq Man探针的高通量荧光定量PCR技术对厦门市后溪流域冬季微生物污染进行检测,包含了5种粪便污染源(人源、反刍动物源、猪源、家禽源、狗源)微生物源示踪分子标记物与12种病原微生物。结果表明,该流域在上游及水库5个位点没有粪便污染,仅在其中一个水库位点检测出棘阿米巴,微生物污染极小;中下游检测出人类、反刍动物、猪、家禽、狗粪便污染,并且检测出产气荚膜梭菌、肠聚集性大肠杆菌、肠毒素型大肠杆菌、幽门螺杆菌、霍乱弧菌、副溶血弧菌、棘阿米巴、克雷伯氏肺炎杆菌等病原菌,其中流经旧城区居民生活生产区水样微生物污染严重,下游新城区微生物污染较小。这些结果暗示着城市人类活动是流域微生物污染主要来源,应从污染源头加强微生物污染控制。  相似文献   

3.
Temporal changes in abundance and biomass of picophytoplankton, heterotrophic pico-eukaryotes, and nanoplankton assemblages were investigated along a transect crossing the Adriatic Sea, from the Italian to the Croatian coast. This 15-months (June 1999-August 2000) investigation allowed comparing microbial parameters during summer 1999 (year without mucilage) and summer 2000 when a major mucilage event occurred. Pico- and nanoplankton assemblages displayed significant differences between the 2 summer periods. The main differences can be summarized as: (i) presence of cyanobacterial blooms (up to 108 cells l-1) in summer 2000, absent in summer 1999; (ii) an increasing fraction of heterotrophic pico-eukaryotes (up to 5.0 × 106 cells l-1) and heterotrophic nanoplankton (size 2-5 µm) during mucilage event; (iii) a reduced abundance of small-sized (2-3 µm) phototrophic nanoplankton in summer 2000. Changes in community structure were signals of changes in trophic condition of the system, which resulted in a competitive advantage for small sized pico- and nanoheterotrophs. Data presented here indicated that mucilage events are associated with changes in microbial community structure and functioning in ambient water and induced the amplification of 3-step microbial food chain. The potential use of the heterotrophic pico-eukaryotes for describing alterations of the trophic pathways during mucilage events is discussed.  相似文献   

4.
A simple approach to modeling microbial biomass in the rhizosphere   总被引:4,自引:0,他引:4  
Microorganisms make an important contribution to the degradation of contaminants in bioremediation as well as in phytoremediation. An accurate estimation of microbial concentrations in the soil would be valuable in predicting contaminant dissipation during various bioremediation processes. A simple modeling approach to quantify the microbial biomass in the rhizosphere was developed in this study. Experiments were conducted using field column lysimeters planted with Eastern gamagrass. The microbial biomass concentrations from the rhizosphere soil, bulk soil, and unplanted soil were monitored for six months using an incubation–fumigation method. The proposed model was applied to the field microbial biomass data and good correlation between simulated and experimental data was achieved. The results indicate that plants increase microbial concentrations in the soil by providing root exudates as growth substrates for microorganisms. Since plant roots are initially small and do not produce large quantities of exudates when first seeded, the addition of exogenous substrates may be needed to increase initial microbial concentrations at the start of phytoremediation projects.  相似文献   

5.
• Carbon availability was partially solved by POM recovery and fermentation. • 12% carbon sources were regenerated by fermentation of the entrapped 35% TCOD. • The unique microbial communities facilitated the efficient hydrolysis of the POM. • Considerable economic benefits in aeration power and ECS dosage were anticipated. To address the availability of carbon sources for denitrification, the accelerated hydrolysis of the most abundant but low-availability fraction of particulate organic matter (POM) was investigated. Mesh sieves with different pore sizes were used as primary pretreatment at the start-up-stage of the biological process to separate some POM from the liquid system. The changes in soluble carbohydrates and proteins were monitored to investigate the hydrolysis performance of the sieved POM, with waste activated sludge (WAS) as the control test. The results showed that an average of 35% POM could be entrapped before filtrate mat development. In addition, benefiting from the high polysaccharides concentration, as well as the high availability due to the relatively loose physical structure, a 23% hydrolysis efficiency of POM was obtained, in contrast to that of WAS (3.4%), with a hydrolysis constant of 0.39 h1. The prominent performance was also attributed to the unique microbial communities having been domesticated at a lower temperature, especially the cellulose-degrading bacteria Paraclostridium and psychrophile Psychrobacter, making up 6.94% and 2.56%, respectively. Furthermore, the potential benefits and application of improved POM hydrolysis by start-up stage recovery via mesh sieves combined with anaerobic fermentation were evaluated, including selective POM entrapment, alleviation of blockage and wear, and a reduction in aeration energy. By the proposed strategy, carbon availability for biological nutrient removal (BNR) processes is anticipated to be improved more economically than that can be achieved by primary clarifier elimination.  相似文献   

6.
● The highest seed germination index was achieved at 0.3 g/g total solids of food waste. ● Proline was identified as the key amino acid related with the composting process. ● Amino acid metabolism sequences predominated during the whole composting process. This study systematically investigated the changes of amino acids as the composting process of food waste proceeded. It is found that the addition of 0.3 g/g total solids of food waste achieved the highest seed germination index of the product (268 %). The microbial community results indicated that the abundance of amino acid metabolism sequences remained at high levels during the whole composting process. Proline was identified as the key amino acid related with the nutrient quality of product during the composting of food waste. Further plant germination and hydroponic experiments found, that compared with those without the addition of proline, the addition of 50 mg/L proline increased seed germination rate by 20 %, increased shoot length by 3 %, increased root biomass of seedlings by 82 %, and increased leaf biomass of seedlings by 76 %, respectively. Firmicutes, γ-Pseudomonadota, Chloroflexi and Planctomycetes were the key identified bacteria related with the increase of proline during the composting of food waste. Meanwhile, the enzymatic tests of the activities of superoxide dismutase, peroxidase and malondialdehyde indicated that proline did not cause oxidative damage on the growth of plants. This study provided novel insights into the changes of amino acids, microbial community, and enzymatic activities related with the nutrient quality of product during the composting of food waste.  相似文献   

7.
Microbial compositions showed high differences in two study areas. COD was the key anthropogenic indicator in the coastal wastewater disposal area. Distinctive microbes capable of degrading toxic pollutants were screened. Microbial communities in effluent-receiving areas followed “niche theory”. Microbial community structure is affected by both natural processes and human activities. In coastal area, anthropegenetic activity can usually lead to the discharge of the effluent from wastewater treatment plant (WWTP) to sea, and thus the water quality chronically turns worse and marine ecosystem becomes unhealthy. Microorganisms play key roles in pollutants degradation and ecological restoration; however, there are few studies about how the WWTP effluent disposal influences coastal microbial communities. In this study, sediment samples were collected from two WWTP effluent-receiving areas (abbreviated as JX and SY) in Hangzhou Bay. First, based on the high-throughput sequencing of 16S rRNA gene, microbial community structure was analyzed. Secondly, several statistical analyses were conducted to reveal the microbial community characteristics in response to the effluent disposal. Using PCoA, the significant difference of in microbial community structure was determined between JX and SY; using RDA, water COD and temperature, and sediment available phosphate and ammonia nitrogen were identified as the key environmental factors for the community difference; using LDA effect size analysis, the most distinctive microbes were found and their correlations with environmental factors were investigated; and according to detrended beta-nearest-taxon-index, the sediment microbial communities were found to follow “niche theory”. An interesting and important finding was that in SY that received more and toxic COD, many distinctive microbes were related to the groups that were capable of degrading toxic organic pollutants. This study provides a clear illustration of eco-environmental deterioration under the long-term human pressure from the view of microbial ecology.  相似文献   

8.
• Structure of multi-trophic microbial groups were analyzed using DNA metabarcoding. • Discontinuity and trophic interactions were observed along the dam-fragmented river. • C, N and P cycles are driven by top-down and bottom-up forces of microbial food web. • Pelagic-benthic coupling may intensify nutrient accumulation in the river system. Cascade dams disrupt the river continuum, altering hydrology, biodiversity and nutrient flux. Describing the diversity of multi-trophic microbiota and assessing microbial contributions to the ecosystem processes are prerequisites for the restoration of these aquatic systems. This study investigated the microbial food web structure along a cascade-dammed river, paying special attention to the multi-trophic relationships and the potential role of pelagic-benthic coupling in nutrient cycles. Our results revealed the discontinuity in bacterial and eukaryotic community composition, functional group proportion, as well as α-diversity due to fragmentation by damming. The high microbial dissimilarity along the river, with the total multi-trophic β-diversity was 0.84, was almost completely caused by species replacement. Synchronization among trophic levels suggests potential interactions of the pelagic and the benthic groups, of which the β-diversities were primarily influenced by geographic and environmental factors, respectively. Dam-induced environmental variations, especially hydrological and nutrient variables, potentially influence the microbial food web via both top-down and bottom-up forces. We proposed that the cycles of carbon, nitrogen and phosphorus are influenced by multi-trophic groups through autotrophic and heterotrophic processes, predator–prey relationships, as well as the release of nutrients mainly by microfauna. Our results advance the notion that pelagic-benthic trophic coupling may intensify the accumulation of organic carbon, ammonium and inorganic phosphorus, thereby changing the biogeochemical patterns along river systems. As a consequence, researchers should pay more attention to the multi-trophic studies when assessing the environmental impacts, and to provide the necessary guidance for the ecological conservation and restoration of the dam-regulated systems.  相似文献   

9.
• Novel ACST allowed biodegradation to effectively remove adsorbed SMX and TMP. • Ammonia and nitrite were efficiently removed in ACSTs and water quality was improved. Four artificial composite soil treatment systems (ACSTs) fed with reclaimed water containing trimethoprim (TMP) and sulfamethoxazole (SMX) were constructed to investigate SMX and TMP biodegradation efficiency, ammonia and nitrite removal conditions and the microbial community within ACST layers. Results showed SMX and TMP removal rates could reach 80% and 95%, respectively, and removal rates of ammonia and nitrite could reach 80% and 90%, respectively, in ACSTs. The MiSeq sequencing results showed that microbial community structures of the ACSTs were similar. The dominant microbial community in the adsorption and biodegradation layers of the ACSTs contained Proteobacteria, Chloroflexi, Acidobacteria, Firmicutes, Actinobacteria and Nitrospirae. Firmicutes and Proteobacteria were considerably dominant in the ACST biodegradation layers. The entire experimental results indicated that Nitrosomonadaceae_uncultured, Nitrospira and Bacillus were associated with nitrification processes, while Bacillus and Lactococcus were associated with SMX and TMP removal processes. The findings suggest that ACSTs are appropriate for engineering applications.  相似文献   

10.
● Salinity led to the elevation of NAR over 99.72%. ● Elevated salinity resulted in a small, complex, and more competitive network. ● Various AOB or denitrifiers responded differently to elevated salinity. ● Putative keystone taxa were dynamic and less abundant among various networks. Biological treatment processes are critical for sewage purification, wherein microbial interactions are tightly associated with treatment performance. Previous studies have focused on assessing how environmental factors (such as salinity) affect the diversity and composition of the microbial community but ignore the connections among microorganisms. Here, we described the microbial interactions in response to elevated salinity in an activated sludge system by performing an association network analysis. It was found that higher salinity resulted in low microbial diversity, and small, complex, more competitive overall networks, leading to poor performance of the treatment process. Subnetworks of major phyla (Proteobacteria, Bacteroidetes, and Chloroflexi) and functional bacteria (such as AOB, NOB and denitrifiers) differed substantially under elevated salinity process. Compared with subnetworks of Nitrosomonadaceae, Nitrosomonas (AOB) made a greater contribution to nitrification under higher salinity (especially 3%) in the activated sludge system. Denitrifiers established more proportion of cooperative relationships with other bacteria to resist 3% salinity stress. Furthermore, identified keystone species playing crucial roles in maintaining process stability were dynamics and less abundant under salinity disturbance. Knowledge gleaned from this study deepened our understanding of microbial interaction in response to elevated salinity in activated sludge systems.  相似文献   

11.
The fate of soil carbon and nitrogen compounds in soils in response to climate change is currently the object of significant research. In particular, there is much interest in the development of a new generation of micro-scale models of soil ecosystems processes. Crucial to the elaboration of such models is the ability to describe the growth and metabolism of small numbers of individual microorganisms, distributed in a highly heterogeneous environment. In this context, the key objective of the research described in this article was to further develop an individual-based soil organic matter model, INDISIM-SOM, first proposed a few years ago, and to assess its performance with a broader experimental data set than previously considered. INDISIM-SOM models the dynamics and evolution of carbon and nitrogen associated with organic matter in soils. The model involves a number of state variables and parameters related to soil organic matter and microbial activity, including growth and decay of microbial biomass, temporal evolutions of easily hydrolysable N, mineral N in ammonium and nitrate, CO2 and O2. The present article concentrates on the biotic components of the model. Simulation results demonstrate that the model can be calibrated to provide good fit to experimental data from laboratory incubation experiments performed on three different types of Mediterranean soils. In addition, analysis of the sensitivity toward its biotic parameters shows that the model is far more sensitive to some parameters, i.e., the microbial maintenance energy and the probability of random microbial death, than to others. These results suggest that, in the future, research should focus on securing better measurements of these parameters, on environmental determinants of the switch from active to dormant states, and on the causes of random cell death in soil ecosystems.  相似文献   

12.
• Chlorine addition enhanced the release of TOC, TN from the sediment. • Chlorine has a long-term negative effect on microbial richness. • Usually enzymes lose activity, and expression of genes was downregulated. • Carbon degradation and nitrification might be strongly inhibited. Chlorine is often used in algal removal and deodorization of landscape waters, and occasionally used as an emergency treatment of heavily polluted sediments. However, the ecological impact of this practice has not been fully studied and recognized. In this study, NaClO at 0.1 mmol/g based on dry weight sediment was evenly mixed into the polluted sediment, and then the sediment was incubated for 150 days to evaluate its microbial effect. Results showed that NaClO addition enhanced the release of TOC, TN, Cr and Cu from the sediment. The microbial richness in the examined sediment decreased continuously, and the Chao1 index declined from 4241 to 2731, in 150 days. The microbial community composition was also changed. The abundance of Proteobacteria and Bacteroidetes increased to 54.8% and 4.2% within 7 days compared to the control, and linear discriminant analysis (LDA) showed gram-negative bacteria and aerobic bacteria enriched after chlorination. The functional prediction with PICRUSt2 showed the functions of the microbial community underwent major adjustments, and the metabolic-related functions such as carbon metabolism, including pyruvate and methane metabolisms were significantly inhibited; besides, 15 out of 22 analyzed key enzymes involved in C cycling and 6 out of 12 key enzymes or genes involved in N cycling were strongly impacted, and the enzymes and genes involved in carbon degradation and denitrification showed remarkable downregulation. It can be concluded that chlorination posed a seriously adverse effect on microbial community structure and function. This study deepens the understanding of the ecological effects of applying chlorine for environmental remediation.  相似文献   

13.
The benthic microbial food web can be responsible for a large proportion of benthic carbon cycling yet there are few data on the trophic interactions between this food web and macrobenthos. A large-scale field experiment was conducted to investigate effects of eliminating the polychaete Arenicola marina on benthic microbes (prokaryotes, heterotrophic and autotrophic protists) and metazoan meiofauna in a marine intertidal flat of the North Sea, Germany. Over a period of 2 years, quantity and composition of micro- and meiobenthos from unmanipulated sites were compared to those from sites deplete of lugworms. These grazer treatments were cross-classified with different sediment characteristics (low- and mid-intertidal areas). Lugworm removal resulted in an initial increase in abundance of prokaryotes and nanoflagellates, which became less pronounced in the second year. Ciliates were not affected quantitatively, but in the absence of lugworms, diversity and the proportion of carnivorous forms increased. Meiobenthos (nematodes, ostracods and copepods) were affected only moderately. The observed changes are probably due to a combination of release from grazing/predation pressure, changes in the species composition of higher trophic levels (namely large polychaetes) and altered environmental conditions (such as depth of the oxygenated layer and sediment grain size). Spatial differences between sites of different tidal exposure/grain size appeared to be as large as temporal differences during the 2 years following the manipulation of the system. We conclude that in intertidal sediments, indirect effects due to habitat transformation are as important as direct biological interactions (grazing pressure and competition) for the dynamics of the benthic microbial food web.  相似文献   

14.
• Water-dispersible nano-pollutions exhibit type-specific toxic effects on E. coli. • Global metabolite profiling was used to characterize metabolic disruption patterns. • Key dysregulated metabolites responsive to nano-pollution exposures were found. • Amino acid metabolism and purine metabolism are perturbed at nano-pollutions. Incomplete separation and recycling of nanoparticles are causing undesirable nanopollution and thus raising great concerns with regard to nanosafety. Since microorganisms are important regulator of physiological processes in many organisms, the interaction between nanopollution and microbial metabolomics and the resultant impact on the host’s health are important but unclear. To investigate how typical nanopollution perturbs microbial growth and metabolism, Escherichia coli (E. coli) in vitro was treated with six water-dispersible nanomaterials (nanoplastic, nanosilver, nano-TiO2, nano-ZnO, semiconductor quantum dots (QDs), carbon dots (CDs)) at human-/environment-relevant concentration levels. The nanomaterials exhibited type-specific toxic effects on E. coli growth. Global metabolite profiling was used to characterize metabolic disruption patterns in the model microorganism exposed to different nanopollutants. The percentage of significant metabolites (p<0.05, VIP>1) accounted for 6%–38% of the total 293 identified metabolites in each of the nanomaterial-contaminated bacterial groups. Metabolic results also exhibited significant differences between different nanopollutants and dose levels, revealing type-specific and untypical concentration-dependent metabolic responses. Key metabolites responsive to nanopollution exposures were mainly involved in amino acid and purine metabolisms, where 5, 4, and 7 significant metabolic features were included in arginine and proline metabolism, phenylalanine metabolism, and purine metabolism, respectively. In conclusion, this study horizontally compared and demonstrated how typical nanopollution perturbs microbial growth and metabolomics in a type-specific manner, which broadens our understanding of the ecotoxicity of nanopollutants on microorganisms.  相似文献   

15.
● Lipid can promote PA production on a target from food waste. ● PA productivity reached 6.23 g/(L∙d) from co-fermentation of lipid and food waste. ● Lipid promoted the hydrolysis and utilization of protein in food waste. Prevotella , Veillonella and norank _f _Propioni bacteriaceae were enriched. ● Main pathway of PA production was the succinate pathway. Food waste (FW) is a promising renewable low-cost biomass substrate for enhancing the economic feasibility of fermentative propionate production. Although lipids, a common component of food waste, can be used as a carbon source to enhance the production of volatile fatty acids (VFAs) during co-fermentation, few studies have evaluated the potential for directional propionate production from the co-fermentation of lipids and FW. In this study, co-fermentation experiments were conducted using different combinations of lipids and FW for VFA production. The contributions of lipids and FW to propionate production, hydrolysis of substrates, and microbial composition during co-fermentation were evaluated. The results revealed that lipids shifted the fermentation type of FW from butyric to propionic acid fermentation. Based on the estimated propionate production kinetic parameters, the maximum propionate productivity increased significantly with an increase in lipid content, reaching 6.23 g propionate/(L∙d) at a lipid content of 50%. Propionate-producing bacteria Prevotella, Veillonella, and norank_f_Propionibacteriaceae were enriched in the presence of lipids, and the succinate pathway was identified as a prominent fermentation route for propionate production. Moreover, the Kyoto Encyclopedia of Genes and Genomes functional annotation revealed that the expression of functional genes associated with amino acid metabolism was enhanced by the presence of lipids. Collectively, these findings will contribute to gaining a better understanding of targeted propionate production from FW.  相似文献   

16.
Nutrient limitation of phytoplankton growth in nature is a complex phenomenon. the timing of nutrient limitation is a product of matching of algal growth with abiotic and/or biotic events regenerating nutrients, and mismatching with predator activity. the extent of production is governed by the concentration of atomic constituents which, in turn, is a function of the rapidity and quantity of nutrient regeneration by heterotrophs. Excess phytoplankton production over heterotroph demand is lost from the euphotic zone by sinking and from the ecosphere by sedimentation. Phytoplankton growth is therefore always limited by the size and activity of the regenerative food web, either directly through predation, or indirectly by inadequate nutrient regeneration. the open water column is a habitat deplete environment for metazoa, incapable of supporting simultaneous high predator and prey densities. Because of the incompatibility of the temporal and spatial scales of microbial and metazoan processes, and the presence of micro-habitats which can support a full recycling food web on microbial scales, the microbial loop is an important component of euphotic zone ecology. the total marine ecosystem runs at a nutrient sufficient level with nutrient deplete and replete phases dependent on matching of production with predation throughout the food web and subject to abiotic events. Man's release of N and P into coastal waters, if coupled with an increased incidence of mismatch resulting from climatic variation induced by the “greenhouse effect”, could have catastrophic effects on marine ecosystems.  相似文献   

17.
To investigate the seasonal variations of microbial ecology in grassland of Tatachia forest, soil properties, microbial populations, microbial biomass, and 16S rDNA clone library analysis were determined. The soil had temperatures 6.6–18.4°C, pH 3.6–5.1, total organic carbon 1.11–10.68%, total nitrogen 0.18–0.78%, and C/N ratios 3.46–20.55. Each gram of dry soil contained bacteria, actinomycetes, fungi, cellulolytic, phosphate-solubilizing microbes, and nitrogen-fixing microbes 4.54 × 104 to 3.79 × 107, 3.43 × 102 to 2.17 × 105, 5.74 × 103 to 3.76 × 106, 1.97 × 103 to 1.34 × 106, 8.49 × 102 to 5.59 × 105, and 3.86 × 102 to 3.75 × 105 CFU, respectively. Each gram of soil contained 117–2,482 μg of microbial biomass carbon, 23–216 μg of microbial biomass nitrogen and 9–29 μg of DNA. The microbial populations, microbial biomass, and DNA decreased stepwise with the depth of soil, and they had low values in winter seasons. The microbial populations, microbial biomass carbon, microbial biomass nitrogen, and DNA at the BW2 horizon were 8.42–17.84, 19.26–64.40, 16.84–61.11, and 31.03–46.26% of those at the O horizon, respectively. When analyzing 16S rDNA library, members of Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, candidate division TM1, candidate division TM7, Gammatimonadetes, and Verrucomicrobia were identified. Members of Proteobacteria (44.4%) and Acidobacteria (33.3%) dominated the clone libraries. Within the phylum Proteobacteria, α-, β-, and γ-Proteobacteria were most numerous, followed by δ-Proteobacteria.  相似文献   

18.
The main principle of the economic approach to a trophic system we propose here lies in assuming that there is a transfer of food along a path between a prey and a predator if, for the predator, the benefits are greater than costs of predation on this path. Conversely, if the costs exceed the benefits, there are no flows. This trade-off, considered all along the food chains of an ecosystem, together with ecological processes (assimilation, somatic maintenance) results in a model coupling mass balance equations (biological constraints) and complementarity principles (Walras’ law). Here is the core of the Network Economics Approach to Trophic Systems (NEATS).  相似文献   

19.
As the world's freshwater resources and available energy are alarmingly decreasing, the bioelectrochemical system (BES) is a cutting-edge technology for the resolution of the resource and energy issue. Researchers have paid much attention to t he application of t he BES configuration. Based on t he brief i ntroduction of m icrobial f uel cell a nd m icrobial electrolytic cell structure, principles, and domestic and foreign research, the BES and its influencing factors are introduced, specifically including: microbial activity, electrode materials, and configuration. Three important aspects (i.e., the electrode chamber, the reaction chamber, and micro-sensor) are summarized, and the advantages and disadvantages of single-electrode and multi-electrode chambers are compared, based on the microbial desalination cell. Microbial electrolysis desalination cell: Microbial electrolysis desalination and chemical-production cell have been discussed to introduce increasing reaction chamber configuration; this review focuses on the research of BES monitoring with regards to biochemical oxygen demand. The potential applications of the research progress are explored. The results show that the configuration of multi-chamber microbial fuel cell is complex and its efficiency is low, while the single chamber configuration is advantageous. The reaction chamber added is mainly aimed at desalination, and the study of the desalination pool still needs to be focused on optimizing the cation exchange membrane to maintain the anode pH balance and reduce the air cathode dissolved oxygen. Microbial electrode sensor can be applied in more areas, and its sensitivity and long-term stability need to be further improved. However, there is relatively less research on the abundance and activity of electricigen communities; the configurations and scopes of application of BES are still the research priority. © 2018 Science Press. All rights reserved.  相似文献   

20.
During the past 10 years, soil scientists have started to use 3D Computed Tomography in order to gain a clearer understanding of the geometry of soil structure and its relationships with soil properties. We propose a geometric model for the 3D representation of pore space and a practical method for its computation. Our basic idea consists in representing pore space using a minimal set of maximal balls (Delaunay spheres) recovering the shape skeleton. In this representation, each ball could be considered as a maximal local cavity corresponding to the “intuitive” notion of a pore as described in the literature. The space segmentation induced by the network of balls (pores) was then used to spatialize biological dynamics. Organic matter and microbial decomposers were distributed within the balls (pores). A valuated graph representing the pore network, organic matter and distribution of micro-organisms was then defined. Microbial soil organic matter decomposition was simulated by updating this valuated graph. The method was implemented and tested using real CT images. The model produced realistic simulated results when compared with data in the literature in terms of the water retention curve and carbon mineralization. A decrease in water pressure decreased carbon mineralization, which is also in accordance with findings in the literature. From our results we showed that the influence of water pressure on decomposition is a function of organic matter distribution in the pore space. As far as we know, this is the approach to have linked pore space geometry and biological dynamics in a formal way. Our next goal will be to compare the model with experimental data of decomposition using different soil structures, and to define geometric typologies of pore space shape that can be attached to specific biological and dynamic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号