首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ecological modelling》2005,186(2):212-220
This paper presents an emergy evaluation of the biogeochemical process of petroleum formation. Unlike the previous calculation, in which the transformity of crude oil was back calculated from the relative efficiency of electricity production and factors relating coal to transportation fuels and transportation fuels to crude oil, we analyzed the geochemical process of petroleum formation (naftogenesis) to determine the transformities of oil and natural gas. We assumed that the process of oil and gas production is a steady state process in which all the emergy required is captured in the initial input. For such a system, we can use the mass concentration of the initial input to determine the specific emergy and transformity of the products. We used the maximum photosynthetic yield in Joules of phytoplankton organic matter per Joule of sunlight as the starting point. From this initial assumption, we traced the energy transformations in the oil and gas formation process through photosynthesis, death and decay of the phytoplankton, and diagenesis to kerogen production and from kerogen through catagenesis to petroleum formation. Our results show that both methods converge to similar values for oil (∼54,200 solar emJoules per Joule (sej/J)) and petroleum natural gas (43,500 sej/J) increasing our confidence in the results of past emergy analyses and providing a firm basis for the calculation of transformities for oil and gas derivatives.  相似文献   

2.
Emergy is a thermodynamics-based entity that enables the implementation of a holistic environmental accounting system. It contributes to identify and measure all the inputs (energy and matter) supporting a given system, expressed in a common unit, namely solar emergy joule (sej). The emergy per unit product (called unit emergy value, UEV), is a measure of the environmental cost of a given resource. It is specific of the system/process and gives information on the dynamics, components and functioning of it. This paper presents the emergy evaluation of water resources within the watershed of the river Sieve, located in the Province of Florence (Italy). Along the river, an artificial basin has been created by means of a dam to preserve water quantity and quality, and to protect the Florentine area from dangerous floods and inundations. Different UEVs of water can be identified along the course of the river, especially upstream and downstream of the dam. These values quantify both the environmental and human efforts made to ensure and regulate the presence of water at different points of the river. The UEV of water flowing in the river increases from 1.35 × 105 sej/g upstream, to 5.80 × 105 sej/g downstream of the dam, depending mainly on man-made infrastructure. Along the watershed, three different systems of extraction, purification and distribution of water have been chosen on the basis of their dimension, type and location. UEVs of water distributed and the emergy investment necessary to implement different water management strategies are presented. The value of water purified and distributed decreases from 2.00 × 106 sej/g for the smallest plant in the mountainous area, to 1.72 × 106 sej/g for the largest plant, in the city of Florence, depending on production efficiency.  相似文献   

3.
This paper is a contribution to the emergy evaluation of systems involving recycling or reuse of waste. If waste exergy (its residual usefulness) is not negligible, wastes could serve as input to another process or be recycled. In cases of continuous waste recycle or reuse, what then is the role of emergy? Emergy is carried by matter and its value is shown to be the product of specific energy with mass flow rate and its transformity. This transformity (τ) given as the ratio of the total emergy input and the useful available energy in the product (exergy) is commonly calculated over a specific period of time (usually yearly) which makes transformity a time dependent factor. Assuming a process in which a part of the non-renewable input is an output (waste) from a previous system, for the waste to be reused, an emergy investment is needed. The transformity of the reused or recycled material should be calculated based on the pathway of the reused material at a certain time (T) which results in a specific transformity value (τ). In case of a second recycle of the same material that had undergone the previous recycle, the material pathway has a new time (T + T1) which results in a transformity value (τ1). Recycling flows as in the case of feedback is a dynamic process and as such the process introduces its own time period depending on its pathway which has to be considered in emergy evaluations. Through the inspiration of previous emergy studies, authors have tried to develop formulae which could be used in such cases of continuous recycling of material in this paper. The developed approach is then applied to a case study to give the reader a better understanding of the concept. As a result, a ‘factor’ is introduced which could be included on emergy evaluation tables to account for subsequent transformity changes in multiple recycling. This factor can be used to solve the difficulties in evaluating aggregated systems, serve as a correction factor to up-level such models keeping the correct evaluation and also solve problems of memory loss in emergy evaluation. The discussion deals with the questions; is it a pure mathematical paradox in the rules of emergy? Is it consistent with previous work? What were the previous solutions to avoid the cumulative problem in a reuse? What are the consequences?  相似文献   

4.
An emergy evaluation was carried out to assess the carrying capacity of a small, uninhabited island (Woosedo) off the southwestern coast of Korea. The sea area within 1 km from the high tide level of the island was included in the evaluation. The total environmental emergy input to Woosedo was 1.66E19 sej/yr, with the most emergy contribution from the tidal energy. The land and marine ecosystems of Woosedo contributed 4.97 million Em$ (7600 Em$/ha/yr) to the Korean economy annually. If Woosedo was developed to the national average at the emergy investment ratio of 2.86, its carrying capacity was estimated at 1034 people at the current living standard of Korea. With this population, the island system would not be sustainable with a very low emergy sustainability index of 0.36. At the same living standard used in the developed scenario, the carrying capacity of the island would be 370 people for a sustainable development scenario and 270 people if the renewable emergy were the only source to support the population. The emergy contribution of the marine ecosystem of the island was the major source of support in determining the level of carrying capacity of the island.  相似文献   

5.
A teacher of ours used to say, “Like ice in a fire, something for nothing you will never acquire”, which is a poetic equivalent of “there is no such a thing as a free lunch”. Human economies are dependent on high quality fossil fuels and will likely continue depending on them for some time to come. Value of a resource is not only what one pays for it, or what can be extracted from it, but also value can be attributed to the “effort” required in its production. In this analysis we apply the emergy synthesis method to evaluate the work invested by the geobiosphere to generate the global storages of fossil energy resources. The upgrading of raw resources to secondary fuels is also evaluated. The analysis relies on published estimates of historic, global net primary production (NPP) on land and oceans, published preservation and conversion factors of organic matter, and assessments of the present total global storages of coal, petroleum, and natural gas. Results show that the production of coal resources over geologic time required between 6.63E4 (±0.51E4) seJ/J and 9.71E4 (±0.79E4) seJ/J, while, oil and natural gas resources required about 1.48E5 (±0.07 E5) seJ/J and 1.70E5 (±0.06E5) seJ/J, respectively. These values are between 1.5 and 2.5 times larger than previous estimates and acknowledge a far greater power of fossil fuels in driving and shaping modern society.  相似文献   

6.
利用能值分析方法分析了2013年烟台市生态经济系统的能值流动状况,并提出了相应的能值利用调控对策。2013年烟台市生态经济系统的能值总用量为2.630×1023 sej,人均能值用量为4.044×10^16 sej,能值自给率为22.6%,能值密度为19.14×10^12sej/m^2,能值货币比率为2.848×10^12sej/,电力能值占能值总用量的比例为5.6%,由可更新资源及其产品支持的人口承载力为16.19×10^4人,由可更新资源及其产品、进口产品及技术共同支持的人口承载量为518.6×10^4人,能值可持续指标值为4.986。将上述计算结果与其它国家和地区进行比较表明:虽然目前烟台市经济较发达,能值利用效率和人民生活水平较高,生态经济系统的能值使用总体上符合区域可持续发展的要求,但系统能值自给率较低,生态环境比较脆弱,经济增长对外部输入的能源和资源依赖性较强。据此,提出了调整产业结构、转变经济增长方式、加强电力资源开发、发展科学教育事业等能值利用的调控对策。  相似文献   

7.
Anil Baral 《Ecological modelling》2010,221(15):1807-1818
A commonly encountered challenge in emergy analysis is the lack of transformity data for many economic products and services. To overcome this challenge, emergy analysts approximate the emergy input from the economy via a single emergy/money ratio for the country and the monetary price of economic inputs. This amounts to assuming homogeneity in the entire economy, and can introduce serious uncertainties in the results. This paper proposes and demonstrates the use of a thermodynamically augmented economic input-output model of the US economy for obtaining sector-specific emergy to money ratios that can be used instead of a single ratio. These ratios at the economy scale are more accurate than a single economy-wide emergy/money ratio, and can be obtained quickly for hundreds of economic products and services. Comparing sector-specific emergy/money ratios with those from conventional emergy studies indicates that the input-output model can provide reasonable estimates of transformities at least as a stop-gap measure until more detailed analysis is completed. A hybrid approach to emergy analysis is introduced and compared with conventional emergy analysis using life cycles of corn ethanol and gasoline as examples. Emergy and transformity data from the hybrid approach are similar to those from conventional emergy analysis, indicating the usefulness of the proposed approach. In addition, this work proposes the metric of return on emergy investment for assessing product alternatives with the same utility such as transportation fuels. The proposed approach and data may be used easily via web-based software.  相似文献   

8.
Crucial to the method of emergy synthesis are the main driving emergy flows of the geobiosphere to which all other flows are referenced. They form the baseline for the construction of tables of Unit Emergy Values (UEVs) to be used in emergy evaluations. We provide here an updated calculation of the geobiosphere emergy baseline and UEVs for tidal and geothermal flows. First, we recalculate the flows using more recent values that have resulted from satellite measurements and generally better measurement techniques. Second, we have recalculated these global flows according to their available energy content (exergy) in order to be consistent with Odum's (1996) definition of emergy. Finally, we have reinterpreted the interaction of geothermal energy with biosphere processes thus changing the relationship between geothermal energy and the emergy baseline. In this analysis we also acknowledge the significant uncertainties related to most estimates of global data. In all, these modifications to the methodology have resulted in changes in the transformities for tidal momentum and geothermal energy and a minor change in the emergy baseline from 15.8E24 seJ/J to 15.2E24 seJ/J. As in all fields of science basic constants and standards are not really constant but change according to new knowledge. This is especially true of earth and ecological sciences where a large uncertainty is also to be found. As a consequence, while these are the most updated values today, they may change as better understanding is gained and uncertainties are reduced.  相似文献   

9.
Humanity's future depends on the preservation of natural ecosystems that supply resources and absorb pollutants. Rural and urban productions are currently based on chemical products made from petroleum, which are responsible for high negative impacts on the Biosphere. In order to prevent those impacts, efficient public policies seeking for sustainable development are necessary. Aiming to assess the load on the environment (considering the gratuitous contributions of natural systems—a donor's perspective) due to human-dominated process, a scientific tool called Emergy Evaluation has been applied in different production systems, including crops and farms. However, there is still a lack of emergy studies in the context of watersheds, probably due to the difficulty of collecting raw data. The present work aims to carry out an assessment of Mogi-Guaçu and Pardo watershed, through the combined use of Emergy Evaluation and Geographical Information System. The agricultural and natural land uses were considered, while urban areas were excluded. Emergy flows (expressed in seJ ha−1 yr−1) obtained for all agricultural and natural land uses were expanded for the whole watershed and the emergy indices were calculated. The results show that the watershed has: low renewability (%R = 32%); low capture of natural resources through high external economic investment (EYR = 1.86); low dependence on natural resources (EIR = 1.16); and moderate load on the environment (ELR = 2.08). Considering a scenario where sugar-cane crops, orchards and pasture areas are converted from conventional to organic management, watershed's emergy performance improved, reaching a new renewability of 38%, but it is still not enough to be considered sustainable.  相似文献   

10.
Meeting environmental, economic, and societal targets in energy policy is complex and requires a multicriteria assessment framework capable of exploring trade-offs among alternative energy options. In this study, we integrated economic analysis and biophysical accounting methods to investigate the performance of electricity production in Finland at plant and national level. Economic and environmental costs of electricity generation technologies were assessed by evaluating economic features (direct monetary production cost), direct and indirect use of fossil fuels (GER cost), environmental impact (CO2 emissions), and global environmental support (emergy cost). Three scenarios for Finland's energy future in 2025 and 2050 were also drawn and compared with the reference year 2008. Accounting for an emission permit of 25 €/t CO2, the production costs calculated for CHP, gas, coal, and peat power plants resulted in 42, 67, 68, and 74 €/MWh, respectively. For wind and nuclear power a production cost of 63 and 35 €/MWh were calculated. The sensitivity analysis confirmed wind power's competitiveness when the price of emission permits overcomes 20 €/t CO2. Hydro, wind, and nuclear power were characterized by a minor dependence on fossil fuels, showing a GER cost of 0.04, 0.13, and 0.26 J/Je, and a value of direct and indirect CO2 emissions of 0.01, 0.04, and 0.07 t CO2/MWh. Instead, peat, coal, gas, and CHP plants showed a GER cost of 4.18, 4.00, 2.78, and 2.33 J/Je. At national level, a major economic and environmental load was given by CHP and nuclear power while hydro power showed a minor load in spite of its large production. The scenario analysis raised technological and environmental concerns due to the massive increase of nuclear power and wood biomass exploitation. In conclusion, we addressed the need to further develop an energy policy for Finland's energy future based on a diversified energy mix oriented to the sustainable exploitation of local, renewable, and environmentally friendly energy sources.  相似文献   

11.
In this paper, the European Union's Water Framework Directive 2000/60/EC (WFD) that is intended to foster protection of water resources is examined, focusing on the improvement of ecological and chemical quality of surface and groundwater. The WFD includes the concept of full cost recovery (FCR) in accordance with the Polluter-Pays Principle, as one of the tools of an adequate and sustainable water resource management system. The WFD defines three different costs associated with water: resource costs (RC), financial costs (FC), and environmental costs (ECs).The FCR of water is examined from a biophysical perspective using emergy evaluation to: (1) establish resource values of water from different sources, (2) establish the full economic costs associated with supplying water, and (3) the societal costs of water that is used incorrectly; from which the resource costs, financial costs, and environmental costs, respectively, can be computed. Financial costs are the costs associated with providing water including energy, materials, labor and infrastructure. The emergy based monetary values vary between 0.15 and 1.73 €/m3 depending on technology. The emergy based, global average resource value (from which resource costs can be computed) is derived from two aspects of water: its chemical potential and its geopotential. The chemical potential monetary value of different sources such as rain, groundwater, and surface water derived from global averages of emergy inputs varies from 0.03 to 0.18 €/m3, depending on source, and the geopotential values vary from 0.03 to 2.40 €/m3, depending on location in the watershed. The environmental costs of water were averaged for the county of Spain and were 1.42 €/m3.Time of year and spatial location within the watershed ultimately influence the resource costs (computed from emergy value of chemical potential and geopotential energy) of water. To demonstrate this spatial and temporal variability, a case study is presented using the Foix watershed in northeastern Spain. Throughout the year, the resource value of water varies from 0.21 to 3.17 €/m3, depending on location within the watershed. It is concluded that FCR would benefit from the evaluation of resource costs using spatially and temporally explicit emergy accounting.  相似文献   

12.
城市复合生态系统能值整合分析研究方法论   总被引:12,自引:0,他引:12  
系统阐述了城市复合生态系统能值分析的基本概念原理与方法步骤,总结了城市可持续发展综合能值评价指标体系。在此基础上,从能值转换率的积累和统一、多尺度研究的整合与尺度推绎、城市功能流分析与空间结构分析的整合、能值成本价值论与使用(市场)价值论的整合等方面,讨论了能值研究方法在城市生态系统研究中的应用前景和发展方向。  相似文献   

13.
Emergy studies have suffered criticism due to the lack of uncertainty analysis and this shortcoming may have directly hindered the wider application and acceptance of this methodology. Recently, to fill this gap, the sources of uncertainty in emergy analysis were described and analytical and stochastic methods were put forward to estimate the uncertainty in unit emergy values (UEVs). However, the most common method used to determine UEVs is the emergy table-form model, and only a stochastic method (i.e., the Monte Carlo method) was provided to estimate the uncertainty of values calculated in this way. To simplify the determination of uncertainties in emergy analysis using table-form calculations, we introduced two analytical methods provided by the Guide to the Expression of Uncertainty in Measurement (GUM), i.e., the Variance method and the Taylor method, to estimate the uncertainty of emergy table-form calculations for two different types of data, and compared them with the stochastic method in two case studies. The results showed that, when replicate data are available at the system level, i.e., the same data on inputs and output are measured repeatedly in several independent systems, the Variance method is the simplest and most reliable method for determining the uncertainty of the model output, since it considers the underlying covariance of the inputs and requires no assumptions about the probability distributions of the inputs. However, when replicate data are only available at the subsystem level, i.e., repeat samples are measured on subsystems without specific correspondence between an output and a certain suite of inputs, the Taylor method will be a better option for calculating uncertainty, since it requires less information and is easier to understand and perform than the Monte Carlo method.  相似文献   

14.
Emergy algebra: Improving matrix methods for calculating transformities   总被引:1,自引:0,他引:1  
Transformity is one of the core concepts in Energy Systems Theory and it is fundamental to the calculation of emergy. Accurate evaluation of transformities and other emergy per unit values is essential for the broad acceptance, application and further development of emergy methods. Since the rules for the calculation of emergy are different from those for energy, particular calculation methods and models have been developed for use in the emergy analysis of networks, but double counting errors still occur because of errors in applying these rules when estimating the emergies of feedbacks and co-products. In this paper, configurations of network energy flows were classified into seven types based on commonly occurring combinations of feedbacks, splits, and co-products. A method of structuring the network equations for each type using the rules of emergy algebra, which we called “preconditioning” prior to calculating transformities, was developed to avoid double counting errors in determining the emergy basis for energy flows in the network. The results obtained from previous approaches, the Track Summing Method, the Minimum Eigenvalue Model and the Linear Optimization Model, were reviewed in detail by evaluating a hypothetical system, which included several types of interactions and two inputs. A Matrix Model was introduced to simplify the calculation of transformities and it was also tested using the same hypothetical system. In addition, the Matrix Model was applied to two real case studies, which previously had been analyzed using the existing method and models. Comparison of the three case studies showed that if the preconditioning step to structure the equations was missing, double counting would lead to large errors in the transformity estimates, up to 275 percent for complex flows with feedback and co-product interactions. After preconditioning, the same results were obtained from all methods and models. The Matrix Model reduces the complexity of the Track Summing Method for the analysis of complex systems, and offers a more direct and understandable link between the network diagram and the matrix algebra, compared with the Minimum Eigenvalue Model or the Linear Optimization Model.  相似文献   

15.
Uncertainty characterization for emergy values   总被引:1,自引:0,他引:1  
While statistical estimation of uncertainty has not typically accompanied published emergy values, as with any other quantitative model, uncertainty is embedded in these values, and lack of uncertainty characterization makes their accuracy not only opaque, it also prevents the use of emergy values in statistical tests of hypotheses. This paper first attempts to describe sources of uncertainty in unit emergy values (UEVs) and presents a framework for estimating this uncertainty with analytical and stochastic models, with model choices dependent upon on how the UEV is calculated and what kind of uncertainties are quantified. The analytical model can incorporate a broader spectrum of uncertainty types than the stochastic model, including model and scenario uncertainty, which may be significant in emergy models, but is only appropriate for the most basic of emergy calculations. Although less comprehensive in its incorporation of uncertainty, the proposed stochastic method is suitable for all types of UEVs. The distributions of unit emergy values approximate the lognormal distribution with variations depending on the types of uncertainty quantified as well as the way the UEVs are calculated. While both methods of estimating uncertainty in UEVs have their limitations in their presented stage of development, this paper provides methods for incorporating uncertainty into emergy, and demonstrates how this can be depicted and propagated so that it can be used in future emergy analyses and permit emergy to be more readily incorporated into other methods of environmental assessment, such as LCA.  相似文献   

16.
Thomas Abel 《Ecological modelling》2010,221(17):2112-2117
In emergy research, transformities are of fundamental importance. They are factors that are used to convert the inputs to a process into emergy. Once placed in emergy units, the inputs to any process can then be added together or compared. Furthermore, as a product of an emergy analysis, new transformities for outputs can be used in other analyses. By this process the collection of known transformities grows, and subsequent emergy analyses become more accurate. Human labor is often a critical input to an emergy analysis. Transformities for humans have only been roughly estimated based on education level, and should be judged as first approximations. This paper refines the existing values for human services, using similar techniques, but with some different assumptions. The result is a larger range of human transformities, expanded at both lower and upper ends that range from 7.53E4 to 7.53E13. There are many applications of this knowledge, from improving empirical studies to expositions of hierarchy that more reliably “locate” humans, economic production, and information within energy transformation hierarchies.  相似文献   

17.
Potential evapotranspiration (PET) is an important component of water cycle. For traditional models derived from the principle of aerodynamics and the surface energy balance, its calculation always includes many parameters, such as net radiation, water vapor pressure, air temperature and wind speed. We found that it can be acquired in an easier way in specific regions. In this study, a new PET model (PETP model) derived from two empirical models of soil respiration was evaluated using the Penman-Monteith equation as a standard method. The results indicate that the PETP model estimation concur with the Penman-Monteith equation in sites where annual precipitation ranges from 717.71 mm to 1727.37 mm (R2 = 0.68, p = 0.0002), but show large discrepancies in all sites (R2 = 0.07, p = 0.1280). Then we applied our PETP model at the global scale to the regions with precipitation higher than 700 mm using 2.5° CMAP data to obtain the annual PET for 2006. As expected, the spatial pattern is satisfactory overall, with the highest PET values distributed in the lower latitudes or coastal regions, and with an average of 1292.60 ± 540.15 mm year−1. This PETP model provides a convenient approach to estimate PET at regional scales.  相似文献   

18.
A process-based crop growth model (Vegetation Interface Processes (VIP) model) is used to estimate crop yield with remote sensing over the North China Plain. Spatial pattern of the key parameter—maximum catalytic capacity of Rubisco (Vcmax) for assimilation is retrieved from Normalized Difference of Vegetation Index (NDVI) from Terra-MODIS and statistical yield records. The regional simulation shows that the agreements between the simulated winter wheat yields and census data at county-level are quite well with R2 being 0.41-0.50 during 2001-2005. Spatial variability of photosynthetic capacity and yield in irrigated regions depend greatly on nitrogen input. Due to the heavy soil salinity, the photosynthetic capacity and yield in coastal region is less than 50 μmol C m−2 s−1 and 3000 kg ha−1, respectively, which are much lower than that in non-salinized region, 84.5 μmol C m−2 s−1 and 5700 kg ha−1. The predicted yield for irrigated wheat ranges from 4000 to 7800 kg ha−1, which is significantly larger than that of rainfed, 1500-3000 kg ha−1. According to the path coefficient analysis, nitrogen significantly affects yield, by which water exerts noticeably indirect influences on yield. The effect of water on yield is regulated, to a certain extent, by crop photosynthetic capacity and nitrogen application. It is believed that photosynthetic parameters retrieved from remote sensing are reliable for regional production prediction with a process-based model.  相似文献   

19.
“奶牛-沼气-牧草”循环型农业系统的能值分析   总被引:2,自引:0,他引:2  
为探讨“奶牛-沼气-牧草”循环型农业模式(模式I)的结构功能和生态经济效益,应用能值分析方法对其进行研究,并与单一奶牛养殖模式(模式Ⅱ)进行比较。结果表明:模式Ⅰ的净能值产出率(4.06)比模式Ⅱ(4.13)低;模式Ⅰ能值可持续发展指标值为10.27,模式Ⅱ为9.57,模式Ⅰ具有更高的可持续发展能力;模式Ⅰ的环境负载率(0.11)低于模式Ⅱ(0.12),并且模式Ⅱ能值废弃率为21.72%,模式I为0,因此模式Ⅰ对环境的压力小;模式Ⅰ产出能值反馈率达到30.63%,系统自组织能力强。模式Ⅰ的净效益是模式Ⅱ的1.13倍,但产投比是模式Ⅱ的97.64%。以能值-货币价值计算的生态经济效益分析结果与实际经济效益分析结果基本一致。因此,模式Ⅰ具有环境压力小、自组织能力强、可持续发展能力较强的特征,但仍需进一步优化系统内部结构,提高生产效率。  相似文献   

20.
"奶牛-沼气-牧草"循环型农业系统的能值分析   总被引:1,自引:0,他引:1  
为探讨奶牛-沼气-牧草循环型农业模式(模式Ⅰ)的结构功能和生态经济效益,应用能值分析方法对其进行研究,并与单一奶牛养殖模式(模式Ⅱ)进行比较。结果表明:模式Ⅰ的净能值产出率(4.06)比模式Ⅱ(4.13)低;模式Ⅰ能值可持续发展指标值为10.27,模式Ⅱ为9.57,模式Ⅰ具有更高的可持续发展能力;模式Ⅰ的环境负载率(0.11)低于模式Ⅱ(0.12),并且模式Ⅱ能值废弃率为21.72%,模式Ⅰ为0,因此模式Ⅰ对环境的压力小;模式Ⅰ产出能值反馈率达到30.63%,系统自组织能力强。模式Ⅰ的净效益是模式Ⅱ的1.13倍,但产投比是模式Ⅱ的97.64%。以能值-货币价值计算的生态经济效益分析结果与实际经济效益分析结果基本一致。因此,模式Ⅰ具有环境压力小、自组织能力强、可持续发展能力较强的特征,但仍需进一步优化系统内部结构,提高生产效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号