首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We maintained a factorial nitrogen (N), phosphorus (P), and potassium (K) addition experiment for 11 years in a humid lowland forest growing on a relatively fertile soil in Panama to evaluate potential nutrient limitation of tree growth rates, fine-litter production, and fine-root biomass. We replicated the eight factorial treatments four times using 32 plots of 40 x 40 m each. The addition of K was associated with significant decreases in stand-level fine-root biomass and, in a companion study of seedlings, decreases in allocation to roots and increases in height growth rates. The addition of K and N together was associated with significant increases in growth rates of saplings and poles (1-10 cm in diameter at breast height) and a further marginally significant decrease in stand-level fine-root biomass. The addition of P was associated with a marginally significant (P = 0.058) increase in fine-litter production that was consistent across all litter fractions. Our experiment provides evidence that N, P, and K all limit forest plants growing on a relatively fertile soil in the lowland tropics, with the strongest evidence for limitation by K among seedlings, saplings, and poles.  相似文献   

2.
湘乡市16年生不同密度的马尾松(Pinus massoniana)飞播林林分单株生物量随密度的增加而明显减小,低密度林分是高密度林分的2 42倍,高出18.33kg;当林分密度一定后,林分生物量同样随密度的增加而减小,低密度林分比高密度林分高出21.81t/hm2。林分各组生物量随密度增大而减小,并出现W>W根>W枝>W皮>W叶的规律。年均净生长量低密度林分是高密度林分的1.40倍。  相似文献   

3.
The construction of a new forest management module (FMM) within the ORCHIDEE global vegetation model (GVM) allows a realistic simulation of biomass changes during the life cycle of a forest, which makes many biomass datasets suitable as validation data for the coupled ORCHIDEE-FM GVM. This study uses three datasets to validate ORCHIDEE-FM at different temporal and spatial scales: permanent monitoring plots, yield tables, and the French national inventory data. The last dataset has sufficient geospatial coverage to allow a novel type of validation: inventory plots can be used to produce continuous maps that can be compared to continuous simulations for regional trends in standing volumes and volume increments. ORCHIDEE-FM performs better than simple statistical models for stand-level variables, which include tree density, basal area, standing volume, average circumference and height, when management intensity and initial conditions are known: model efficiency is improved by an average of 0.11, and its average bias does not exceed 25%. The performance of the model is less satisfying for tree-level variables, including extreme circumferences, tree circumference distribution and competition indices, or when management and initial conditions are unknown. At the regional level, when climate forcing is accurate for precipitation, ORCHIDEE-FM is able to reproduce most productivity patterns in France, such as the local lows of needleleaves in the Parisian basin and of broadleaves in south-central France. The simulation of water stress effects on biomass in the Mediterranean region, however, remains problematic, as does the simulation of the wood increment for coniferous trees. These pitfalls pertain to the general ORCHIDEE model rather than to the FMM. Overall, with an average bias seldom exceeding 40%, the performance of ORCHIDEE-FM is deemed reliable to use it as a new modelling tool in the study of the effects of interactions between forest management and climate on biomass stocks of forests across a range of scales from plot to country.  相似文献   

4.
Changes in carbon use efficiency (CUE), which is defined as the ratio of net primary production (NPP) to gross primary production (GPP), were analyzed for Abies veitchii Lindl. forests with respect to stand development by developing a simple mathematical model incorporating data on physiological variables and leaf mass ratio. A decrease in CUE with stand development was successfully expressed as a function of stand biomass (y) based on the following three assumptions: (1) a power-law relationship between mean respiration and mean individual tree mass, (2) a power-functional relationship between mean gross primary production and mean individual tree mass, and (3) self-thinning relationship between stand biomass and density. Based on this model, a parameter of CUE–y relationship was defined, and it was clarified that CUE decrease with stand development is caused not by the ratio of specific respiration rate to specific gross photosynthetic rate, but by leaf mass ratio. Since CUE is high in young forests, helpful information on selecting woody species when planting seedlings was provided from the viewpoints of reducing CO2 in the atmosphere and global warming.  相似文献   

5.
以徐州侧柏Platycladus orientalis(Linn)Franco人工林为研究对象,运用生物量转化方程及土壤调查数据探讨了1 679、2 250和3 074株.hm-2的3种密度对生态系统碳储量的影响及其机理。结果表明,①乔木层、土壤层和生态系统的碳储量均随林分密度的增加而明显减少,灌草层碳储量在低林分密度最大,而枯落物层碳储量在中林分密度最大。低林分密度生态系统的碳储量是94.11 t.hm-2,分别是中密度和高密度生态系统的碳储量1.19倍和1.28倍,而这种差异主要是由乔木层和土壤层碳储量差异引起的。②林分密度对细根生物量的影响不显著(P〉0.05),而细根形态随林分密度的增加表现为低级根中1、2级根直径变粗,根长先变长后变短,比根长变短(P〈0.05);而高级根中的5级根直径显著变细,根长和比根长变长(P〉0.05)。③林分密度对细根生物量的影响与乔木层、土壤层和生态系统碳储量的变化规律具有较高的一致性,均为低密度下最大,高密度下最小。因此,细根生物量可能是导致系统碳储量变化的主要因素之一。  相似文献   

6.
An accurate method for determining the growth rates of the skeleton of isolated branch tips (nubbins) of corals over intervals of less than 24 h is described. The skeletal weight of the coral was estimated from its buoyant weight in seawater whose density had been accurately determined. The coral tissues accounted for between 1 and 5% of the total buoyant weight in Pocillopora verrucosa and Acropora humilis with differing relative tissue biomass. After correcting for tissue buoyant weight, predictions of skeletal weight were accurate to within 1%. The method was used to estimate the growth of sample nubbins of Porites porites of similar diameter, in 2 m of water at Discovery Bay, Jamaica. Since growth of these branch tips is apical, growth rate could be expressed without correction for the size. The mean 24 h skeletal growth rate ranged between 40 and 47 mg. Differences could be measured between day-time and night-time growth, the day: night ratio being 3.7. The method also showed that P. porites virtually ceases calcification during the 4 to 5 d periods that it becomes enclosed in a mucus tunic. Nubbins of P. porites attached to the reef at different locations showed clear differences in growth rate with depth, and between clear and turbid water sites. The growth rate of nubbins was compared with that of branch tips of whole corals by measuring the linear extension after staining with Alizarin Red S. After 3 1/2 mo, the mean linear extension was 4.1 mm in each case, indicating that the growth rate of nubbins is the same as that of branch tips of the whole colony. It is suggested that this buoyant weighing technique will find applications in laboratory experiments with calcification mechanisms and as a bioassay on reefs exposed to environmental stress.Contribution No. 464 of the Discovery Bay Marine Laboratory  相似文献   

7.
SBAR反应器生物膜生长特性   总被引:1,自引:0,他引:1  
采用载体吸附法的自固定化方式培养出活性良好的颗粒污泥———悬浮载体生物膜颗粒,并建立了生物膜物化特性和生化特性的系统分析方法。试验装置采用SBAR反应器,投加人工配水,裸载体为陶粒(湿视密度1 310 kg/m3、平均粒径0.55 mm)。试验运行了110 d,反应器内最大污泥浓度12.4 g/L,最大附着污泥浓度9.52 g/L。  相似文献   

8.
The growth of Cladophora spp. is vigorous in the field, but not good under indoor culture conditions. In order to promote the study on ecology, water environment treatment characteristics, and the development and utilization of Cladophora, the effects of three different culture methods (standing, ventilating, water flowing + ventilating) on biomass, morphology, and photosynthetic activity of C. oligoclona were compared in order to find a suitable method for its indoor culture. The results showed that the culture method of water flowing + ventilating could effectively promote C. oligoclona biomass accumulation; the morphologies in the three culture methods were different. C. oligoclona with increased single cell length and reduced cell diameter was found in the culture method involving water flowing + ventilating; in this method, the length of the main branch and branch of the cell, plant height, and branch length of C. oligoclona were significantly higher than that in the standing and ventilating culture methods (P < 0.05). C. oligoclona cultured in the water flowing + ventilating method also showed a higher photosynthetic activity. In conclusion, among the three culture methods, the water flowing + ventilating culture method is the most suitable for the indoor culturing of C. oligoclona; this method can also provide a technical reference for the further indoor mass culture of C. oligoclona. © 2018 Science Press. All rights reserved.  相似文献   

9.
A simple simulation model was developed to describe the growth trends of Cymodocea nodosa (Ucria) Ascherson based on data sets from the Venice lagoon. The model reproduces the seasonal fluctuations in the above and belowground biomass and in shoot density. The modeling results are in good agreement with data on net production, growth rates and chemical–physical parameters of water. It was assumed that light and temperature are the most important factors controlling C. nodosa development, and that the growth was not limited by nutrient availability. The aim was to simulate biomass production as a function of external forcing variables (light, water temperature) and internal control (plant density). A series of simulation experiments were performed with the basic model showing that among the most important phenomena affecting C. nodosa growth are: (1) inhibition of production and recruitment of new shoots by high temperature and (2) light attenuation due to seasonal fluctuation.  相似文献   

10.
A. H. Dye 《Marine Biology》1983,73(2):165-170
Fluctuations in population structure and abundance of mangrove meiofauna were monitored over a period of 14 months. The greatest mean abundance was directly correlated with mean redox potential (Eh), but showed poor relationships with pH and temperature. Maximum density occurred at the mid to high tide levels and nematodes accounted for 80% of the total numbers. Large ciliates were the next most abundant group accounting for 6.4%. These were followed by oligochaetes (4.5%), turbellarians (3%) and kinorhynchs (2.7%). The remainder consisted of low numbers of copepods, polychaetes, gastrotrichs, the larvae of crustacea (prawns and crabs) and insects. Although there was a tendency for density to increase in summer, the numbers were variable and seasonal correlations with physical parameters were obscure. The estimated production from the standing crop is 4.34 gC m-2 vr-1.  相似文献   

11.
盐地碱蓬是黄河三角洲重要的先锋植物,抗盐能力强,分布范围广,对维持该地区生态系统稳定和演替发挥着重要作用。通过野外取样测定,研究了潮间带和潮上带盐地碱蓬种群的形态及生物量分配特征。在个体大小上,潮间带盐地碱蓬在株高和地径上显著低于潮上带盐地碱蓬;潮上带盐地碱蓬密集分布的株高高于散生分布,而生物量低于散生分布。在生物量分配特征上,潮间带盐地碱蓬Ⅰ以发展花、叶为主,潮上带盐地碱蓬Ⅱ的密集分布以优先发展茎为主,潮上带盐地碱蓬Ⅲ的散生分布以发展枝为主,属于种群发展的稳定阶段。因此,盐地碱蓬通过形态特征及生物量分配特征的调节,以适应潮间带和潮上带的不同生境特征,从而达到种群维持和土壤改良的目的。  相似文献   

12.
In order to simulate forest growth response to pre-commercial thinning (PCT), TRIPLEX1.0 - a process-based model designed to predict forest growth as well as carbon (C) and nitrogen (N) dynamics - was modified and improved to also simulate managed forest ecosystem thinning practices. A three-parameter Weibull distribution model was integrated to simulate thinning treatments within the newly developed TRIPLEX-Management model. The thinning intensity component within the model allows users to simulate thinning treatments by applying basal area, stand density and volume to quantify thinning intensity. Natural mortality decreased following thinning due to an increase in growing space for residual stems. Predicted litterfall pools also increased after thinning events took place. The TRIPLEX-Management model was tested against published observational data for Jack Pine (Pinus banksiana Lamb.) stands subjected to PCT in Northwestern Ontario, Canada. The coefficients of determination (R2) between the predicted and observed variables including stand density, mean DBH (diameter at breast height), the quadratic mean DBH, total volume and merchantable volume as well as belowground, aboveground, and total biomass ranged from 0.50 to 0.88 (n = 20, P < 0.001) with the exception of mean tree height (R2 = 0.25, n = 20, P < 0.05). Overall, the Willmott index of agreement between predicted and observed variables ranged from 0.97 to 1.00. Results show that the TRIPLEX-Management model is generally capable of simulating growth response to PCT for Jack Pine stands.  相似文献   

13.
14.
The individual-based stand-level model EFIMOD was used for large-scale simulations using standard data on forest inventories as model inputs. The model was verified for the case-study of field observations, and possible sources of uncertainties were analysed. The approach developed kept the ability for fine-tuning to account for spatial discontinuity in the simulated area. Several forest management regimes were simulated as well as forest wildfires and climate changes. The greatest carbon and nitrogen accumulations were observed for the regime without cuttings. It was shown that cuttings and wildfires strongly influence the processes of carbon and nitrogen accumulations in both soil and forest vegetation. Modelling also showed that the increase in annual average temperatures resulted in the partial relocation of carbon and nitrogen stocks from soil to plant biomass. However, forest management, particularly harvesting, has a greater effect on the dynamics of forest ecosystems than the prescribed climate change.  相似文献   

15.
Many plant species defend themselves against herbivorous insects indirectly by producing and releasing induced volatiles to attract natural enemies of the herbivores. In this paper, we consider the recruitment of natural enemies attracted by plant-induced volatiles and introduce the An–Liu–Johnson–Lovett model into the Lotka–Volterra model in an attempt to add this missing vital link in tritrophic interaction. Increase in attraction strength of plant-induced volatiles to the natural enemy leads to high fluctuation amplitude of plant biomass and herbivore population. When the attack strength of natural enemies reaches a certain level, fluctuation amplitude of plant biomass and herbivore population will decrease and plant biomass will approach to its environmental carrying capacity. The simulation demonstrates that plant volatile compounds induced by insects have led to the introduction of a third tritrophic level, e.g., natural enemies, into the plant–herbivore system, resulting in the coexistence of plants, insects, and natural enemies during the evolution process.  相似文献   

16.
The response of the Baltic Sea spring bloom was studied in mesocosm experiments, where temperatures were elevated up to 6°C above the present-day sea surface temperature of the spring bloom season. Four of the seven experiments were carried out at different light levels (32–202?Wh?m?2 at the start of the experiments) in the different experimental years. In one further experiment, the factors light and temperature were crossed, and in one experiment, the factors density of overwintering zooplankton and temperature were crossed. Overall, there was a slight temporal acceleration of the phytoplankton spring bloom, a decline of peak biomass and a decline of mean cell size with warming. The temperature influence on phytoplankton bloom timing, biomass and size structure was qualitatively highly robust across experiments. The dependence of timing, biomass, and size structure on initial conditions was tested by multiple regression analysis of the y-temperature regressions with the candidate independent variables initial light, initial phytoplankton biomass, initial microzooplankton biomass, and initial mesozooplankton (=copepod) biomass. The bloom timing predicted for mean temperatures (5.28°C) depended on light. The peak biomass showed a strong positive dependence on light and a weaker negative dependence on initial copepod density. Mean phytoplankton cell size predicted for the mean temperature responded positively to light and negatively to copepod density. The anticipated mismatch between phytoplankton supply and food demand by newly hatched copepod nauplii occurred only under the combination of low light and warm temperatures. The analysis presented here confirms earlier conclusions about temperature responses that are based on subsets of our experimental series. However, only the comprehensive analysis across all experiments highlights the importance of the factor light.  相似文献   

17.
EcoTroph (ET) is a model articulated around the idea that the functioning of aquatic ecosystems may be viewed as a biomass flow moving from lower to higher trophic levels, due to predation and ontogenetic processes. Thus, we show that the ecosystem biomass present at a given trophic level may be estimated from two simple equations, one describing biomass flow, the other their kinetics (which quantifies the velocity of biomass transfers towards top predators). The flow kinetic of prey partly depends on the abundance of their predators, and a top-down equation expressing this is included in the model. Based on these relationships, we simulated the impact on a virtual ecosystem of various exploitation patterns. Specifically, we show that the EcoTroph approach is able to mimic the effects of increased fishing effort on ecosystem biomass expected from theory. Particularly, the model exhibits complex patterns observed in field data, notably cascading effects and ‘fishing down the food web’. EcoTroph also provides diagnostic tools for examining the relationships between catch and fishing effort at the ecosystem scale and the effects of strong top-down controls and fast-flow kinetics on ecosystems resilience. Finally, a dynamic version of the model is derived from the steady-state version, thus allowing simulations of time series of ecosystem biomass and catches. Using this dynamic model, we explore the propagation of environmental variability in the food web, and illustrated how exploitation can induce a decrease of ecosystem stability. The potential for applying EcoTroph to specific ecosystems, based on field data, and similarities between EcoTroph and Ecopath with Ecosim (EwE) are finally discussed.  相似文献   

18.
Allometric equations allow aboveground tree biomass and carbon stock to be estimated from tree size. The allometric scaling theory suggests the existence of a universal power-law relationship between tree biomass and tree diameter with a fixed scaling exponent close to 8/3. In addition, generic empirical models, like Chave's or Brown's models, have been proposed for tropical forests in America and Asia. These generic models have been used to estimate forest biomass and carbon worldwide. However, tree allometry depends on environmental and genetic factors that vary from region to region. Consequently, theoretical models that include too few ecological explicative variables or empirical generic models that have been calibrated at particular sites are unlikely to yield accurate tree biomass estimates at other sites. In this study, we based our analysis on a destructive sample of 481 trees in Madagascar spiny dry and moist forests characterized by a high rate of endemism (> 95%). We show that, among the available generic allometric models, Chave's model including diameter, height, and wood specific gravity as explicative variables for a particular forest type (dry, moist, or wet tropical forest) was the only one that gave accurate tree biomass estimates for Madagascar (R2 > 83%, bias < 6%), with estimates comparable to those obtained with regional allometric models. When biomass allometric models are not available for a given forest site, this result shows that a simple height-diameter allometry is needed to accurately estimate biomass and carbon stock from plot inventories.  相似文献   

19.
In this study we developed a dynamic growth model for Scots pine (Pinus sylvestris L.) plantations in Galicia (north-western Spain). The data used to develop the model were obtained from a network of permanent plots, of between 10 and 55-year-old, which the Unidade de Xestión Forestal Sostible (Sustainable Forest Management Unit) of the University of Santiago de Compostela has set up in pure plantations of this species of pine in its area of distribution in Galicia. In this model, the initial stand conditions at any point in time are defined by three state variables (number of trees per hectare, stand basal area and dominant height), and are used to estimate stand volume, classified by commercial classes, for a given projection age. The model uses three transition functions expressed as algebraic difference equations of the three corresponding state variables used to project the stand state at any point in time. In addition, the model incorporates a function for predicting initial stand basal area, which can be used to establish the starting point for the simulation. This alternative should only be used when the stand is not yet established or when no inventory data are available. Once the state variables are known for a specific moment, a distribution function is used to estimate the number of trees in each diameter class, by recovering the parameters of the Weibull function, using the moments of first and second order of the distribution (arithmetic mean diameter and variance, respectively). By using a generalized height–diameter function to estimate the height of the average tree in each diameter class, combined with a taper function that uses the above predicted diameter and height, it is then possible to estimate total or merchantable stand volume.  相似文献   

20.
We studied northern flying squirrel (Glaucomys sabrinus) demography in the eastern Washington Cascade Range to test hypotheses about regional and local abundance patterns and to inform managers of the possible effects of fire and fuels management on flying squirrels. We quantified habitat characteristics and squirrel density, population trends, and demography in three typical forest cover types over a four-year period. We had 2034 captures of flying squirrels over 41 000 trap nights from 1997 through 2000 and marked 879 squirrels for mark-recapture population analysis. Ponderosa pine (Pinus ponderosa) forest appeared to be poorer habitat for flying squirrels than young or mature mixed-conifer forest. About 35% fewer individuals were captured in open pine forest than in dry mixed-conifer Douglas-fir (Pseudotsuga menziesii) and grand fir (Abies grandis) forests. Home ranges were 85% larger in pine forest (4.6 ha) than in mixed-conifer forests (2.5 ha). Similarly, population density (Huggins estimator) in ponderosa pine forest was half (1.1 squirrels/ha) that of mixed-conifer forest (2.2 squirrels/ha). Tree canopy cover was the single best correlate of squirrel density (r = 0.77), with an apparent threshold of 55% canopy cover separating stands with low- from high-density populations. Pradel estimates of annual recruitment were lower in open pine (0.28) than in young (0.35) and mature (0.37) forest. High recruitment was most strongly associated with high understory plant species richness and truffle biomass. Annual survival rates ranged from 45% to 59% and did not vary among cover types. Survival was most strongly associated with understory species richness and forage lichen biomass. Maximum snow depth had a strong negative effect on survival. Rate of per capita increase showed a density-dependent response. Thinning and prescribed burning in ponderosa pine and dry mixed conifer forests to restore stable fire regimes and forest structure might reduce flying squirrel densities at stand levels by reducing forest canopy, woody debris, and the diversity or biomass of understory plants, truffles, and lichens. Those impacts might be ameliorated by patchy harvesting and the retention of large trees, woody debris, and mistletoe brooms. Negative stand-level impacts would be traded for increased resistance and resilience of dry-forest landscapes to now-common, large-scale stand replacement fires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号