首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tylianakis JM  Tscharntke T  Klein AM 《Ecology》2006,87(12):3047-3057
Global biodiversity decline has prompted great interest in the effects of habitat modification and diversity on the functioning and stability of ecosystem processes. However, the applicability of previous modeled or mesocosm community studies to real diverse communities in different habitats remains ambiguous. We exposed standardized nesting resources for naturally occurring communities of cavity-nesting bees and wasps and their parasitoids in coastal Ecuador, to test the effects of host and parasitoid diversity on an ecosystem function (parasitism rates) and temporal variability in this function. In accordance with predictions of complementary host use, parasitism rates increased with increasing diversity, not simply abundance, of parasitoids. In contrast, parasitism decreased with increasing host diversity, possibly due to positive prey interactions or increased probability of selecting unpalatable species. Temporal variability in parasitism was lower in plots with high mean parasitoid diversity and higher in plots with temporally variable host and parasitoid diversity. These effects of diversity on parasitism and temporal stability in parasitism rates were sufficiently strong to be visible across five different habitat types, representing a gradient of increasing anthropogenic modification. Habitat type did not directly affect parasitism rates, but host and parasitoid diversity and abundance were higher in highly modified habitats, and parasitoid diversity was positively correlated with rates of parasitism. The slope of the richness-parasitism relationship did not vary significantly across habitats, although that for Simpson's diversity was significant only in rice and pasture. We also show that pooling data over long time periods, as in previous studies, can blur the effect of diversity on parasitism rates, and the appropriate spatiotemporal scale of study must be considered.  相似文献   

2.
Top-down regulation of herbivores in terrestrial ecosystems is pervasive and can lead to trophic cascades that release plants from herbivory. Due to their relatively simplified food webs, agroecosystems may be particularly prone to trophic cascades, a rationale that underlies biological control. However, theoretical and empirical studies show that, within multiple enemy assemblages, intraguild predation (IGP) may lead to a disruption of top-down control by predators. We conducted a factorial field study to test the separate and combined effects of predators and parasitoids in a system with asymmetric IGP. Specifically we combined ambient levels of generalist predators (mainly Coccinellidae) of the soybean aphid, Aphis glycines Matsumura, with controlled releases of the native parasitoid Lysiphlebus testaceipes (Cresson) and measured their impact on aphid population growth and soybean biomass and yield. We found that generalist predators provided strong, season-long aphid suppression, which resulted in a trophic cascade that doubled soybean biomass and yield. However, contrary to our expectations, L. testaceipes provided minor aphid suppression and only when predators were excluded, which resulted in nonadditive effects when both groups were combined. We found direct and indirect evidence of IGP, but because percentage parasitism did not differ between predator exclusion and ambient predator treatments, we concluded that IGP did not disrupt parasitism during this study. Our results support theoretical predictions that intraguild predators which also provide strong herbivore suppression do not disrupt top-down control of herbivores.  相似文献   

3.
Cameron TC  Metcalfe D  Beckerman AP  Sait SM 《Ecology》2007,88(5):1225-1231
Many natural enemies do not immediately kill their host, and the lag this creates between attack and host death results in mixed populations of uninfected and infected hosts. Both competition and parasitism are known to be major structuring forces in ecological communities; however, surprisingly little is known about how the competitive nature of infected hosts could affect the survival and dynamics of remaining uninfected host populations. Using a laboratory system comprising the Indian meal moth, Plodia interpunctella, and a solitary koinobiont parasitoid, Venturia canescens, we address this question by conducting replicated competition experiments between the unparasitized and parasitized classes of host larvae. For varying proportions of parasitized host larvae and competitor densities, we consider the effects of competition within (intraclass) and between (interclass) unparasitized and parasitized larvae on the survival, development time, and size of adult moths and parasitoid wasps. The greatest effects were on survival: increased competitor densities reduced survival of both parasitized and unparasitized larvae. However, unparasitized larvae survival, but not parasitized larvae survival, was reduced by increasing interclass competition. To our knowledge, this is the first experimental demonstration of the competitive superiority of parasitized over unparasitized hosts for limiting resources. We discuss possible mechanisms for this phenomenon, why it may have evolved, and its possible influence on the stability of host-parasite dynamics.  相似文献   

4.
Zovi D  Stastny M  Battisti A  Larsson S 《Ecology》2008,89(5):1388-1398
Herbivore populations may become adapted to the defenses of their local hosts, but the traits that maximize host exploitation may also carry ecological costs. We investigated the patterns and costs of local adaptation in the pine processionary moth, Thaumetopoea pityocampa, to its host plants, Pinus nigra and P. sylvestris. The two hosts differ in needle toughness, a major feeding impediment for leaf-eating insects. We observed a west-to-east gradient of increasing progeny size in the Italian Alps, matching the pattern in toughness of their respective local host plant. Eastern populations that feed on the native P. nigra with tough needles had larger eggs, and neonate larvae with larger head capsules, than western populations that feed on the native P. sylvestris and the introduced P. nigra with softer foliage. In a reciprocal transfer experiment that involved the eastern-most and the western-most populations of T. pityocampa from this region, and excluded natural enemies, we found evidence for local adaptation to the host plant. Specifically, larvae from the western population only performed well when raised on their local hosts with soft needles, and they suffered near-complete mortality on the tough foliage at the eastern site. In contrast, larvae from the eastern population survived equally well at both sites. Local adaptation involved a trade-off between progeny size and the number of offspring. We hypothesized that an additional cost, imposed by natural enemies, may be associated with increased egg size: we also observed a west-to-east gradient of increased egg parasitism. We tested this hypothesis in a common garden by exposing eggs of both populations to parasitism by two native egg parasitoids, Ooencyrtus pityocampae and Baryscapus servadeii. The eastern population suffered a higher level of parasitoid attack by O. pityocampae than the western population, and performance of hatched adults of both parasitoids was enhanced in large eggs. Thus, increased neonate quality (larger eggs yielding larger larvae) confers an advantage on tough foliage but incurs the ecological cost of increased parasitism, which may constrain further adaptation by this herbivore.  相似文献   

5.
Cronin JT 《Ecology》2007,88(12):2977-2990
The interaction between species, mediated by a shared natural enemy (i.e., apparent competition), has been the subject of much theoretical and empirical investigation. However, we lack field experiments that assess the importance of apparent competition to metacommunity structure. Here, I conducted a series of field experiments to test whether apparent competition, mediated by shared egg parasitoids (Anagrus nigriventris and A. columbi), occurs between two abundant planthopper species (Delphacodes scolochloa and Prokelisia crocea) of the North American Great Plains. The two planthoppers feed on different plant species within prairie potholes (wet depressions) and, thus, do not interact directly. At the scale of individual potholes, a five-fold pulse increase in D. scolochloa density (relative to control potholes) resulted in a steady decline in P. crocea density over two generations. As expected in cases of apparent competition, P. crocea eggs in these potholes suffered twice the level of parasitism as P. crocea eggs in control potholes. In contrast, a sixfold increase in P. crocea density had no effect on D. scolochloa density or parasitism in those potholes. The superiority of D. scolochloa over P. crocea likely can be attributed to a larger source population size, greater amount of host habitat, and/or the presence of a phenological refuge from parasitism for D. scolochloa. In another experiment, in which small populations of P. crocea were established either in close proximity to D. scolochloa or in isolation, I found that the likelihood of P. crocea persistence was 36% lower in the former than the latter populations. This difference was attributable to very high rates of parasitism of P. crocea when adjacent to D. scolochloa. These two experiments provide clear evidence that the two planthopper species engage in apparent competition and that the shared parasitoids may play a significant role in limiting membership in a local community. Based on these findings, I argue that metacommunity studies must be broadened to include higher trophic levels.  相似文献   

6.
Kursar TA  Wolfe BT  Epps MJ  Coley PD 《Ecology》2006,87(12):3058-3069
We surveyed Lepidoptera found on 11 species of Inga (Fabaceae:Mimosoideae) co-existing on Barro Colorado Island, Panama, to evaluate factors influencing diet choice. Of the 47 species of caterpillars (747 individuals) recorded, each fed on a distinct set of Inga. In the field, 96% of the individuals were found on young leaves. Growth rates of caterpillars that were fed leaves in the laboratory were 60% higher on young leaves compared to mature leaves. When caterpillars were fed leaves of nonhost Inga, they grew more slowly. These data provide support for a link between preference and performance. However, among hosts on which larvae normally occurred, faster growth rates were not associated with greater host electivity (the proportion of larvae found on each host species in the field, corrected for host abundance). Growth rates on normal hosts were positively correlated with leaf expansion rates of the host, and fast expansion was associated with leaves with higher nutritional content. Detailed studies on a gelechiid leaf roller, the species with the largest diet breadth, allowed us to assess the importance of factors other than growth that could influence diet electivity. This species showed a 1.7-fold difference in growth rate among Inga hosts and faster growth on species with fast-expanding leaves. However, there was no correlation between caterpillar growth rate and abundance on different host species. Instead, abundance of the gelechiid on each Inga species was significantly correlated with the temporal predictability of food (synchrony of leaf flushing) and was negatively correlated with competition (amount of leaf area removed by species other than the gelechiid). Although rates of parasitism were high (23-43%), there were no differences among hosts. Parasitism was also not related to measures of escape, such as growth rates of caterpillars, leaf expansion rates, and synchrony of leaf production. Together, food availability, parasitism, and competition explained 84% of the variation in host preference by the gelechiid. We suggest that these ecological interactions may be particularly important in determining diet choice initially and that preferences may be reinforced by subsequent divergence in host chemistry and/or the herbivore's ability to tolerate the secondary metabolites.  相似文献   

7.
Russell FL  Louda SM  Rand TA  Kachman SD 《Ecology》2007,88(2):413-423
Theory predicts that damage by a shared herbivore to a secondary host plant species may either be higher or lower in the vicinity of a preferred host plant species. To evaluate the importance of ecological factors, such as host plant proximity and density, in determining the direction and strength of such herbivore-mediated indirect effects, we quantified oviposition by the exotic weevil Rhinocyllus conicus on the native wavyleaf thistle Cirsium undulatum in midgrass prairie on loam soils in the upper Great Plains, USA. Over three years (2001-2003), the number of eggs laid by R. conicus on C. undulatum always decreased significantly with distance (0-220 m) from a musk thistle (Carduus nutans L.) patch. Neither the level of R. conicus oviposition on C. undulatum nor the strength of the distance effect was predicted by local musk thistle patch density or by local C. undulatum density (<5 m). The results suggest that high R. conicus egg loads on C. undulatum near musk thistle resulted from the native thistle's co-occurrence with the coevolved preferred exotic host plant and not from the weevil's response to local host plant density. Mean egg loads on C. undulatum also were greater at sites with higher R. conicus densities. We conclude that both preferred-plant proximity and shared herbivore density strongly affected the herbivore-mediated indirect interaction, suggesting that such interactions are important pathways by which invasive exotic weeds can indirectly impact native plants.  相似文献   

8.
Most host species of obligate interspecific brood parasites are under strong selection because such parasitism, e.g., that involving evictor nestmates, is highly costly. Egg rejection is one of the most efficient host defences against avian brood parasites. Many hosts have thus evolved egg-recognition ability and rejection behaviour. However, this defensive mechanism has not evolved in most species where only intraspecific brood parasitism occurs, probably because (1) the eggs of conspecific females are very similar in appearance, making egg rejection less likely to emerge, and (2) such parasitism is frequently less costly than interspecific parasitism. Using a captive population of house sparrows (Passer domesticus) with a low breeding density, we here provide new evidence showing that this species actually has a fine capacity to discriminate conspecific eggs and to eject them (44.2% of foreign eggs ejected) while incurring very low rejection costs (4.2% of own eggs ejected). This result contradicts those previously found in high-density house sparrow populations in which very high rejection costs and very high clutch desertion rates were reported, probably as a consequence of intraspecific competition and infanticide provoked by the high breeding density. The house sparrow has only rarely been reported as the host of an interspecific brood parasite, which implies that it is a newly described example of an altricial species in which egg ejection has evolved and is maintained in response to intraspecific brood parasitism.  相似文献   

9.
Werner EE  Peacor SD 《Ecology》2006,87(2):347-361
Indirect effects propagated through intervening species in a food web have important effects on community properties. Traditionally, these indirect effects have been conceptualized as mediated through density changes of the intervening species, but it is becoming increasingly apparent that those mediated through trait (phenotypic) responses also can be very important. Because density- and trait-mediated indirect effects have different properties, it is critical that we understand the mechanisms of transmission in order to predict how they will interact, and when or where they will be important. In this study, we examined the mechanisms and consequences of the lethal (density-mediated) and nonlethal (trait-mediated) effects of a larval odonate predator on a guild of four herbivore species (a larval anuran and three species of snails) and their resources. We also manipulated system productivity in order to explore the effects of environmental context on the transmission of these two types of indirect effects. We show that trait-mediated effects arising from the predator can be very strong relative to density-mediated effects on both the competing herbivores and the species composition and production of their resources. A number of these indirect effects are shown to be contingent on productivity of the system. We further present evidence that trait- and density-mediated indirect effects originating from a predator may be transmitted independently through different routes in a food web, particularly when spatial responses of the transmitting prey are involved. Finally, effects on prey growth due to trait responses to the predator varied from negative to positive in predictable ways as a function of time and indirect effects on the larger food web. These results indicate the important role that trait-mediated indirect effects can play in trophic cascades and keystone predator interactions, and we discuss how the mechanisms involved can be incorporated in theory.  相似文献   

10.
Conservation Implications of Host Use for Rare Parasitic Plants   总被引:3,自引:0,他引:3  
Both the study and management of parasites have historically focused on the control, and even elimination, of parasite populations. In contrast, rare parasitic plants represent an uncommon challenge for conservation biologists and managers who often wish to bolster populations of these parasites. Although parasitic plants may suffer any of the maladies known to affect small populations of plants, parasitic plants may also be limited by the additional suite of factors of host availability, host quality, host resistance to parasitism, and parasite preference. We describe studies that have examined parasite growth and reproductive performance with a variety of host species to argue that consideration of the host needs of parasitic plants is necessary for successful conservation of rare species using this mode of resource acquisition. Although it is clear that parasite performance varies greatly with the availability of different host species, little is known about the host requirements of most parasitic plants, and the relative importance of particular host species may not immediately be obvious. Further, because published host lists generally do not distinguish minor hosts from those that sustain parasite populations, such lists may be misleading for conservation efforts. We argue that successful conservation and restoration of parasitic plants may necessitate the management of thoughtfully selected host populations.  相似文献   

11.
Feeley KJ  Terborgh JW 《Ecology》2006,87(1):144-150
Habitat fragmentation can alter herbivore abundances, potentially causing changes in the plant community that can propagate through the food web and eventually influence other important taxonomic groups such as birds. Here we test the relationship between the density of red howler monkeys (Alouatta seniculus) and bird species richness on a large set of recently isolated land-bridge islands in Lago Guri, Venezuela (n = 29 islands). Several of these islands host relict populations of howler monkeys at densities up to more than 30 times greater than those on the mainland. These "hyperabundant" herbivores previously have been shown to have a strong positive influence on aboveground plant productivity. We predicted that this should lead to a positive, indirect effect of howler monkey density on bird species richness. After accounting for passive sampling (the tendency for species richness to be positively associated with island area, regardless of differences in habitat quality) we found a significant positive correlation between howler monkey density and bird species richness. A path analysis incorporating data on tree growth rates from a subset of islands (n = 9) supported the hypothesis that the effect of howler monkeys on the resident bird communities is indirect and is mediated through changes in plant productivity and habitat quality. These results highlight the potential for disparate taxonomic groups to be related through indirect interactions and trophic cascades.  相似文献   

12.
Elkinton JS  Parry D  Boettner GH 《Ecology》2006,87(10):2664-2672
Recent attention has focused on the harmful effects of introduced biological control agents on nontarget species. The parasitoid Compsilura concinnata is a notable example of such biological control gone wrong. Introduced in 1906 primarily for control of gypsy moth, Lymantria dispar, this tachinid fly now attacks more than 180 species of native Lepidoptera in North America. While it did not prevent outbreaks or spread of gypsy moth, we present reanalyzed historical data and experimental findings suggesting that parasitism by C. concinnata is the cause of the enigmatic near-extirpation of another of North America's most successful invaders, the browntail moth (Euproctis chrysorrhoea). From a range of approximately 160,000 km2 a century ago, browntail moth (BTM) populations currently exist only in two spatially restricted coastal enclaves, where they have persisted for decades. We experimentally established BTM populations within this area and found that they were largely free of mortality caused by C. concinnata. Experimental populations of BTM at inland sites outside of the currently occupied coastal enclaves were decimated by C. concinnata, a result consistent with our reanalysis of historical data on C. concinnata parasitism of the browntail moth. The role of C. concinnata in the disappearance of browntail moth outside these enclaves has not been reported before. Despite the beneficial role played by C. concinnata in reversing the browntail moth invasion, we do not advocate introduction of generalist biological control agents. Our findings illustrate that the impact of such organisms can be both unpredictable and far-reaching.  相似文献   

13.
Long JD  Hamilton RS  Mitchell JL 《Ecology》2007,88(5):1232-1240
Species may compete indirectly by altering the traits of a shared resource. For example, herbivore-induced responses in plants may make plants more resistant or susceptible to additional herbivorous insect species. Herbivore-induced plant responses can significantly affect interspecific competition and herbivore population dynamics. These herbivore-herbivore indirect interactions have been overlooked in aquatic ecosystems where previous studies used the same herbivore species to induce changes and to assess the effects of these changes. We asked whether seaweed grazing by one of two herbivorous, congeneric snail species (Littorina obtusata or Littorina littorea) with different feeding strategies and preferences would affect subsequent feeding preferences of three herbivore species (both snails and the isopod Idotea baltica) and population densities of three herbivore species (both snails and a third periwinkle snail, Lacuna vincta). In addition, we measured phlorotannin concentrations to test the hypothesis that these metabolites function as induced defenses in the Phaeophyceae. Snail herbivory induced cue-specific responses in apical tissues of the seaweed Fucus vesiculosus that affected the three herbivore species similarly. When compared to ungrazed controls, direct grazing by Littorina obtusata reduced seaweed palatability by at least 52% for both snail species and the isopod species. In contrast, direct grazing by L. littorea did not decrease seaweed palatability for any herbivore, indicating herbivore-specific responses. Previous grazing by L. obtusata reduced populations of L. littorea on outplanted seaweeds by 46% but had no effect on L. obtusata populations. Phlorotannins, a potential class of inducible chemicals in brown algae, were not more concentrated in grazed seaweed tissues, suggesting that some other trait was responsible for the induced resistance. Our results indicate that marine herbivores may compete via inducible responses in shared seaweeds. These plant-mediated interactions were asymmetric with a specialist (L. obtusata) competitively superior to a generalist (L. littorea).  相似文献   

14.
We tested the hypothesis that species loss at one trophic level will reduce the temporal stability of populations at other trophic levels. We examined the temporal stability of annual plant populations on plots that experimentally manipulated the functional diversity of seed-eating rodent consumers. Experimental reduction of rodent functional diversity destabilized populations of small-seeded plants but had less consistent effects on larger-seeded species. Small-seeded species also exhibited a greater number of years of zero abundance. Thus, experimental reduction of rodent functional diversity resulted in lower plant diversity. The decline in the temporal stability of small-seeded plants likely resulted from increased interspecific competition by large-seeded plants. These results demonstrate that the loss of species at one trophic level can lead to reduced richness at lower trophic levels via competition and reduced temporal stability.  相似文献   

15.
Males of most bushcricket species produce acoustic advertisement signals to attract females for mating. These signals can also increase conspicuousness to predators. In the genus Poecilimon (Orthoptera: Phaneropterinae) males are attacked by the parasitoid fly Therobia leonidei (Diptera: Tachinidae: Ormiini) which locates males by their calls. In Greece T.leonidei parasitizes several Poecilimon species with different song structures: we examined whether host choice is related to song structure by comparing parasitism rates in two closely related Poecilimon species. One of these species produces monosyllabic songs, the songs of the other species being polysyllabic. The tachinid fly parasitized the polysyllabic species to a greater extent. We demonstrate in a field-experiment that this preference for the polysyllabic species does not depend on local adaptations of the fly. The most probable explanation for the preference of the fly for the polysyllabic singing species seems to be better detection of longer songs. This result is discussed in the context of male song evolution. Received: 4 November 1997 / Accepted after revision: 22 March 1998  相似文献   

16.
Summary From 1983 to 1986 we monitored 284 European starling (Sturnus vulgaris) nests in New Jersey for evidence of intraspecific brood parasitism and egg removal during the laying period. Egg removal occurred significantly more often at nests where intraspecific brood parasitism was detected (12 of 35 nests, 34%) than at unparasitized nests (23 of 249 nests, 9%). Brood parasitism (92% of parasitized nests) and egg removal (74% of nests with egg removal) were most common at nests where egg laying began in April of each year (i.e., early nests). Egg removal occurred at 26 (19%) and brood parasitism at 32 (23%) of 138 early nests. Both brood parasitism and egg removal were concentrated during the first four days in the laying period when brood parasitism is most likely to be successful and when host nests are most vulnerable to parasitism (Romagnano 1987). Both parasitism and removal usually involved a single egg at each nest. We detected brood parasitism and egg removal on the same day at five of 12 nests (42%) where both were observed. Because starlings do not remove foreign eggs from their nests once they begin laying (Stouffer et al. 1987) we hypothesize that parasite females sometimes removed host eggs while parasitizing nests.  相似文献   

17.
Brown-headed Cowbirds, Molothrus ater , are brood parasites on many species of North American Passerines. Cowbird parasitism is frequently cited as a contributing factor in the decline of United States passerine populations, based on three lines of evidence. First, range expansion and population increases by Cowbirds in this century are dramatic and well documented. Second, increasing rates of parasitism have been discovered in a variety of host species populations. Finally, direct negative effects of parasitism on certain vulnerable species notably Kirtland's Warbler, Dendroica kirtlandii , have been demonstrated. It remains unproven, however, that Cowbirds have significant negative effects on more abundant and widely-distributed hosts.
We report here on the impact of Cowbird parasitism on populations of Nuttall's White-crowned Sparrow, Zonotrichia leucophrys nuttalli , in the San Francisco Bay Area. This widespread songbird is now subject to a 40–50% rate of parasitism in San Francisco, an increase from 5% only 15 years ago. Using known mortality and fecundity values, we calculate that this population of White-crowns cannot maintain its numbers when the parasitism rate exceeds approximately 20%. Present levels of parasitism thus appear to threaten the longevity survival of this adaptable Songbird in the San Francisco Bay Area.  相似文献   

18.
Herbivory limits recruitment in an old-field seed addition experiment   总被引:2,自引:0,他引:2  
MacDougall AS  Wilson SD 《Ecology》2007,88(5):1105-1111
Environmental variability can promote coexistence by creating establishment sites for rare plants, but low diversity in anthropogenic grasslands suggests that this variability may be eliminated (homogenization hypothesis) or inaccessible (barrier hypothesis). We explore these alternatives on the northern Great Plains, where 11 million hectares have been transformed by multiple environmental changes, but the causes of species loss are unclear. In a degraded grassland, we increased environmental variability by manipulating competition and herbivory along gradients of fertility and disturbance, and we circumvented dispersal barriers by adding 1.2 million seeds of five functionally distinct species at varying densities. The experiment ended after 12 weeks due to the direct and indirect effects of unapparent small native herbivores, which were barriers to population establishment by the added species. The direct cause of recruitment failure was browsing. The indirect cause was associated with competition from invasive plants that appeared to be more tolerant or resistant to herbivory. Variability in fertility, disturbance, propagule pressure, and competition had relatively minor impacts on colonization by the added species because herbivores controlled recruitment in most environments. Recruitment outside the herbivore exclosures was mostly by unpalatable exotics, suggesting a possible link between invasion success and herbivore resistance for some introduced plants.  相似文献   

19.
Apparent competition is an indirect interaction between 2 or more prey species through a shared predator, and it is increasingly recognized as a mechanism of the decline and extinction of many species. Through case studies, we evaluated the effectiveness of 4 management strategies for species affected by apparent competition: predator control, reduction in the abundances of alternate prey, simultaneous control of predators and alternate prey, and no active management of predators or alternate prey. Solely reducing predator abundances rapidly increased abundances of alternate and rare prey, but observed increases are likely short‐lived due to fast increases in predator abundance following the cessation of control efforts. Substantial reductions of an abundant alternate prey resulted in increased predation on endangered huemul (Hippocamelus bisulcus) deer in Chilean Patagonia, which highlights potential risks associated with solely reducing alternate prey species. Simultaneous removal of predators and alternate prey increased survival of island foxes (Urocyon littoralis) in California (U.S.A.) above a threshold required for population recovery. In the absence of active management, populations of rare woodland caribou (Rangifer tarandus caribou) continued to decline in British Columbia, Canada. On the basis of the cases we examined, we suggest the simultaneous control of predators and alternate prey is the management strategy most likely to increase abundances and probabilities of persistence of rare prey over the long term. Knowing the mechanisms driving changes in species’ abundances before implementing any management intervention is critical. We suggest scientists can best contribute to the conservation of species affected by apparent competition by clearly communicating the biological and demographic forces at play to policy makers responsible for the implementation of proposed management actions. Estrategias de Conservación para Especies Afectadas por Competencia Aparente  相似文献   

20.
Abstract: Some species have insufficient defenses against climate change, emerging infectious diseases, and non‐native species because they have not been exposed to these factors over their evolutionary history, and this can decrease their likelihood of persistence. Captive breeding programs are sometimes used to reintroduce individuals back into the wild; however, successful captive breeding and reintroduction can be difficult because species or populations often cannot coexist with non‐native pathogens and herbivores without artificial selection. In captive breeding programs, breeders can select for host defenses that prevent or reduce pathogen or herbivore burden (i.e., resistance) or traits that limit the effects of parasitism or herbivory on host fitness (i.e., tolerance). We propose that selection for host tolerance may enhance the success of reintroduction or translocation because tolerant hosts generally have neutral effects on introduced pathogens and herbivores. The release of resistant hosts would have detrimental effects on their natural enemies, promoting rapid evolution to circumvent the host resistance that may reduce the long‐term probability of persistence of the reintroduced or translocated species. We examined 2 case studies, one on the pathogenic amphibian chytrid fungus ( Batrachochytrium dendrobatidis [Bd]) and the other on the herbivorous cactus moth ( Cactoblastis cactorum) in the United States, where it is not native. In each case study, we provide recommendations for how captive breeders and managers could go about selecting for host tolerance. Selecting for tolerance may offer a promising tool to rescue hosts species from invasive natural enemies as well as new natural enemies associated with climate change‐induced range shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号