首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Optimal harvesting strategies for an ungulate population are estimated using stochastic dynamic programming. Data on the Llano Basin white-tailed deer (Odocoileus virginianus) population were used to construct a 2-variable population dynamics model. The model provided the basis for estimating optimal harvesting strategies as a feedback function of the current values of the state variables (prefawning older deer and juveniles). Optimal harvest strategies were insensitive to assumptions about the probability distributions of the stochastic variable (rainfall). The response of the population components to harvesting and the returns obtained from applying optimal strategies were explored through simulation. Mean annual harvest is about 15% of the population. Simplified harvesting strategies based on age-ratios as well as a simplified version based on optimal strategies—but assuming persisting equilibrium juvenile deer density—were compared to optimal strategies through examining values of information. Simplified harvesting strategies lead to a lower harvest over a 50-year simulation period.  相似文献   

4.
广州市东部地区土地资源承载力研究   总被引:3,自引:0,他引:3  
应用土地遥感解译图,对广州市东部地区的土地利用现状进行分析;并根据广州总体发展战略规划,进行了东部地区土地资源承载力研究。结果表明,如果2020年广州市东部地区耕地保有面积达到基本农田保护区面积。则城市发展所需的土地资源可以满足规划要求。城市发展建设应先占用那些质量较差的农用地。  相似文献   

5.
Almaraz P  Oro D 《Ecology》2011,92(10):1948-1958
Theoretical and empirical evidence suggests that body size is a major life-history trait impacting on the structure and functioning of complex food webs. However, long-term analyses of size-dependent interactions within simpler network modules, for instance, competitive guilds, are scant. Here, we model the assembly dynamics of the largest breeding seabird community in the Mediterranean basin during the last 30 years. This unique data set allowed us to test, through a "natural experiment," whether body size drove the assembly and dynamics of an ecological guild growing from very low numbers after habitat protection. Although environmental stochasticity accounted for most of community variability, the population variance explained by interspecific interactions, albeit small, decreased sharply with increasing body size. Since we found a demographic gradient along a body size continuum, in which population density and stability increase with increasing body size, the numerical effects of interspecific interactions were proportionally higher on smaller species than on larger ones. Moreover, we found that the per capita interaction coefficients were larger the higher the size ratio among competing species, but only for the set of interactions in which the species exerting the effect was greater. This provides empirical evidence for long-term asymmetric interspecific competition, which ultimately prompted the local extinction of two small species during the study period. During the assembly process stochastic predation by generalist carnivores further triggered community reorganizations and global decays in population synchrony, which disrupted the pattern of interspecific interactions. These results suggest that the major patterns detected in complex food webs can hold as well for simpler sub-modules of these networks involving non-trophic interactions, and highlight the shifting ecological processes impacting on assembling vs. asymptotic communities.  相似文献   

6.
Irruptive population dynamics appear to be widespread in large herbivore populations, but there are few empirical examples from long time series with small measurement error and minimal harvests. We analyzed an 89-year time series of counts and known removals for pronghorn (Antilocapra americana) in Yellowstone National Park of the western United States during 1918-2006 using a suite of density-dependent, density-independent, and irruptive models to determine if the population exhibited irruptive dynamics. Information-theoretic model comparison techniques strongly supported irruptive population dynamics (Leopold model) and density dependence during 1918-1946, with the growth rate slowing after counts exceeded 600 animals. Concerns about sagebrush (Artemisia spp.) degradation led to removals of >1100 pronghorn during 1947-1966, and counts decreased from approximately 700 to 150. The best models for this period (Gompertz, Ricker) suggested that culls replaced intrinsic density-dependent mechanisms. Contrary to expectations, the population did not exhibit enhanced demographic vigor soon after the termination of the harvest program, with counts remaining between 100 and 190 animals during 1967 1981. However, the population irrupted (Caughley model with a one-year lag) to a peak abundance of approximately 600 pronghorn during 1982-1991, with a slowing in growth rate as counts exceeded 500. Numbers crashed to 235 pronghorn during 1992-1995, perhaps because important food resources (e.g., sagebrush) on the winter range were severely diminished by high densities of browsing elk, mule deer, and pronghorn. Pronghorn numbers remained relatively constant during 1996-2006, at a level (196-235) lower than peak abundance, but higher than numbers following the release from culling. The dynamics of this population supported the paradigm that irruption is a fundamental pattern of growth in many populations of large herbivores with high fecundity and delayed density-dependent effects on recruitment when forage and weather conditions become favorable after range expansion or release from harvesting. Incorporating known removals into population models that can describe a wide range of dynamics can greatly improve our interpretation of observed dynamics in intensively managed populations.  相似文献   

7.
Two types of demographic analyses, perturbation analysis and uncertainty analysis, can be conducted to gain insights about matrix population models and guide population management. Perturbation analysis studies how the perturbation of demographic parameters (survival, growth, and reproduction parameters) may affect the population projection, while uncertainty analysis evaluates how much uncertainty there is in population dynamic predictions and where the uncertainty comes from. Previously, both perturbation analysis and uncertainty analysis were conducted on the long-term population growth rate. However, the population may not reach its equilibrium state, especially when there is management by harvesting or hunting. Recently, there has been an increased interest in short-term transient dynamics, which can differ from asymptotic long-term dynamics. There are currently techniques to conduct perturbation analyses of short-term transient dynamics, but no techniques have been proposed for uncertainty analysis of such dynamics. In this study, we introduced an uncertainty analysis technique, the general Fourier Amplitude Sensitivity Test (FAST), to study uncertainties in transient population dynamics. The general FAST is able to identify the amount of uncertainty in transient dynamics and contributions by different demographic parameters. We applied the general FAST to a mountain goat (Oreamnos americanus) matrix population model to give a clear illustration of how uncertainty analysis can be conducted for transient dynamics arising from matrix population models.  相似文献   

8.
The construction of the Suez Canal caused extensive faunistic changes in the eastern Mediterranean Sea. Thirty species of Red Sea fishes are known to occur along the Mediterranean coast of Israel and Lebanon; 21 of them are common, and among them 16 appear regularly in the commercial catches. It is estimated that they constitute 21% of the Israeli trawl fishing and 8% of the inshore fishery. The construction of the Aswan High Dam in 1964 stopped the seasonal Nile floods of August–December. It was reported that, simultaneously, the Egyptian sardinella fishery collapsed. However, the Israeli sardinella fishery in post-Aswan years does not show any decrease in catches as compared with the period before 1964.This work was supported by the Smithsonian Institution, Washington, D.C., USA.The paper was read at the 22nd Congress of the International Commission for the Scientific Exploration of the Mediterranean, Rome, 30 November-8 December, 1970.Contribution No. 37 of the Israel Oceanographic and Limnological Research Ltd., Haifa, Israel.  相似文献   

9.
Small fishes in seasonally flooded environments such as the Everglades are capable of spreading into newly flooded areas and building up substantial biomass. Passive drift cannot account for the rapidity of observed population expansions. To test the ‘reaction-diffusion’ mechanism for spread of the fish, we estimated their diffusion coefficient and applied a reaction-diffusion model. This mechanism was also too weak to account for the spatial dynamics. Two other hypotheses were tested through modeling. The first—the ‘refuge mechanism’—hypothesizes that small remnant populations of small fishes survive the dry season in small permanent bodies of water (refugia), sites where the water level is otherwise below the surface. The second mechanism, which we call the ‘dynamic ideal free distribution mechanism’ is that consumption by the fish creates a prey density gradient and that fish taxis along this gradient can lead to rapid population expansion in space. We examined the two alternatives and concluded that although refugia may play an important role in recolonization by the fish population during reflooding, only the second, taxis in the direction of the flooding front, seems capable of matching empirical observations. This study has important implications for management of wetlands, as fish biomass is an essential support of higher trophic levels.  相似文献   

10.
In recent decades, dozens of studies have involved attempts to introduce native and desirable nonnative plant species into grasslands dominated by invasive weeds. The newly introduced plants have proved capable of establishing, but because they are rarely monitored for more than four years, it is unknown if they have a high likelihood of persisting and suppressing invaders for the long-term. Beyond invaded grasslands, this lack of long-term monitoring is a general problem plaguing efforts to reintroduce a range of taxa into a range of ecosystems. We introduced species from seed and then periodically measured plant abundances for nine years at one site and 15 years at a second site. To our knowledge, our 15-year data are the longest to date from a seeding experiment in invaded, never-cultivated grassland. At one site, three seeded grasses maintained high densities for three or more years, but then all or nearly all individuals died. At the second site, one grass performed similarly, but two other grasses proliferated and at least one greatly suppressed the dominant invader (Centaurea maculosa). In one study, our point estimate suggests that the seeded grass Thinopyrum intermedium reduced C. maculosa biomass by 93% 15 years after seeding. In some cases, data from three and fewer years after seeding falsely suggested that seeded species were capable of persisting within the invaded grassland. In other cases, data from as late as nine years after seeding falsely suggested seeded populations would not become large enough to suppress the invader. These results show that seeded species sometimes persist and suppress invaders for long periods, but short-term data cannot predict if, when, or where this will occur. Because short-term data are not predictive of long-term seeded species performances, additional long-term data are needed to identify effective practices, traits, and species for revegetating invaded grasslands.  相似文献   

11.
Lindegren M  Ostman O  Gårdmark A 《Ecology》2011,92(7):1407-1413
Small pelagic fish occupy a central position in marine ecosystems worldwide, largely by determining the energy transfer from lower trophic levels to predators at the top of the food web, including humans. Population dynamics of small pelagic fish may therefore be regulated neither strictly bottom-up nor top-down, but rather through multiple external and internal drivers. While in many studies single drivers have been identified, potential synergies of multiple factors, as well as their relative importance in regulating population dynamics of small pelagic fish, is a largely unresolved issue. Using a statistical, age-structured modeling approach, we demonstrate the relative importance and influence of bottom-up (e.g., climate, zooplankton availability) and top-down (i.e., fishing and predation) factors on the population dynamics of Bothnian Sea herring (Clupea harengus) throughout its life cycle. Our results indicate significant bottom-up effects of zooplankton and interspecific competition from sprat (Sprattus sprattus), particularly on younger age classes of herring. Although top-down forcing through fishing and predation by grey seals (Halichoerus grypus) and Atlantic cod (Gadus morhua) also was evident, these factors were less important than resource availability and interspecific competition. Understanding key ecological processes and interactions is fundamental to ecosystem-based management practices necessary to promote sustainable exploitation of small pelagic fish.  相似文献   

12.
Individual based model of slug population and spatial dynamics   总被引:1,自引:0,他引:1  
The slug, Deroceras reticulatum, is one of the most important pests of agricultural and horticultural crops in UK and Europe. In this paper, a spatially explicit individual based model (IbM) is developed to study the dynamics of a population of D. reticulatum. The IbM establishes a virtual field within which slug spatial dynamics and changes in abundance were simulated. The strong dependence of slug behaviour on environmental conditions is built into the model, which is based upon previous work on the environmental dependence of slug population dynamics. The simulation results show that the IbM described well changes in the slug population. The IbM proved capable of describing slug populations over 3.5 years, including the presence, magnitude and duration of D. reticulatum population crashes within this period. Moreover, the model was capable of reproducing slug population dynamics at two sites, with distinct weather and some 100 km apart, with minor changes in initialisation values but no change in model structure and parameter values. A study of field heterogeneity, which might simulate various field designs, indicated the importance of spatial structuring to slug population dynamics and the utility of the IbM for simulating a range of potential spatial management treatments for slug control to maximise crop yield. This IbM system performs well and is currently being used as part of an integrated approach to predict slug population dynamics and control in the UK.  相似文献   

13.
Swordfish (Xiphias gladius) were tagged with satellite "pop-off" tags that release from the fish after a preprogrammed time, float to the sea surface, and transmit present position and archived temperature data. Swordfish were tagged on the "Charleston Bump," a topographic feature on the Blake Plateau east of South Carolina and Georgia. This feature is an important swordfishing ground and may be a spawning and nursery area. Swordfish were tagged in spring of 2000 to determine movements in relation to the Charleston Bump, and tags were programmed to pop off the fish at 30 days (n=10 tags), 60 days (n=10), and 90 days (n=9). Although four swordfish were found in the vicinity of the Charleston Bump up to 90 days after tagging, most moved considerable distances to the east and northeast and were subsequently located in association with offshore seamounts, submarine canyons of the Middle Atlantic Bight, and with thermal fronts of the northern wall of the Gulf Stream. The longest minimum (i.e., straight-line) distance tracked was 2,497 km, and maximum speed inferred from tracking was 34 km/day. Seawater temperature data archived by the tags reflected diel vertical migrations in swordfish.  相似文献   

14.
We introduce a renewable resource sector into an endogenous growth model of a small economy, deriving the transitional dynamic equilibrium. The model generates a long-run equilibrium in which a resource sector of limited size can coexist with constant ongoing growth elsewhere. The key feature of the model is the allocation of labor between harvesting the resource and its use in the final output sector. This naturally generates the empirically observed negative relationship between resource abundance and growth. We examine both the dynamic and long-run responses of the economy to various shocks pertaining to technological production conditions and resource sector parameters.  相似文献   

15.
Geographical gradients in the stability of cyclic populations of herbivores and their predators may relate to the degree of specialization of predators. However, such changes are usually associated with transition from specialist to generalist predator species, rather than from geographical variation in dietary breadth of specialist predators. Canada lynx (Lynx canadensis) and snowshoe hare (Lepus americanus) populations undergo cyclic fluctuations in northern parts of their range, but cycles are either greatly attenuated or lost altogether in the southern boreal forest where prey diversity is higher. We tested the influence of prey specialization on population cycles by measuring the stable carbon and nitrogen isotope ratios in lynx and their prey, estimating the contribution of hares to lynx diet across their range, and correlating this degree of specialization to the strength of their population cycles. Hares dominated the lynx diet across their range, but specialization on hares decreased in southern and western populations. The degree of specialization correlated with cyclic signal strength indicated by spectral analysis of lynx harvest data, but overall variability of lynx harvest (the standard deviation of natural-log-transformed harvest numbers) did not change significantly with dietary specialization. Thus, as alternative prey became more important in the lynx diet, the fluctuations became decoupled from a regular cycle but did not become less variable. Our results support the hypothesis that alternative prey decrease population cycle regularity but emphasize that such changes may be driven by dietary shifts among dominant specialist predators rather than exclusively through changes in the predator community.  相似文献   

16.
Jones J  Doran PJ  Holmes RT 《Ecology》2007,88(10):2505-2515
Synchrony in population fluctuations has been identified as an important component of population dynamics. In a previous study, we determined that local-scale (<15-km) spatial synchrony of bird populations in New England was correlated with synchronous fluctuations in lepidopteran larvae abundance and with the North Atlantic Oscillation. Here we address five questions that extend the scope of our earlier study using North American Breeding Bird Survey data. First, do bird populations in eastern North America exhibit spatial synchrony in abundances at scales beyond those we have documented previously? Second, does spatial synchrony depend on what population metric is analyzed (e.g., abundance, growth rate, or variability)? Third, is there geographic concordance in where species exhibit synchrony? Fourth, for those species that exhibit significant geographic concordance, are there landscape and habitat variables that contribute to the observed patterns? Fifth, is spatial synchrony affected by a species' life history traits? Significant spatial synchrony was common and its magnitude was dependent on the population metric analyzed. Twenty-four of 29 species examined exhibited significant synchrony in population abundance: mean local autocorrelation (rho)= 0.15; mean spatial extent (mean distance where rho=0) = 420.7 km. Five of the 29 species exhibited significant synchrony in annual population growth rate (mean local autocorrelation = 0.06, mean distance = 457.8 km). Ten of the 29 species exhibited significant synchrony in population abundance variability (mean local autocorrelation = 0.49, mean distance = 413.8 km). Analyses of landscape structure indicated that habitat variables were infrequent contributors to spatial synchrony. Likewise, we detected no effects of life history traits on synchrony in population abundance or growth rate. However, short-distance migrants exhibited more spatially extensive synchrony in population variability than either year-round residents or long-distance migrants. The dissimilarity of the spatial extent of synchrony across species suggests that most populations are not regulated at similar spatial scales. The spatial scale of the population synchrony patterns we describe is likely larger than the actual scale of population regulation, and in turn, the scale of population regulation is undoubtedly larger than the scale of individual ecological requirements.  相似文献   

17.
Enchytraeids are regarded as keystone soil organisms in forest ecosystems. Their abundance and biomass fluctuate widely. Predicting the consequences of anthropogenic disturbances requires an understanding of the mechanisms underlying enchytraeid population dynamics. Here I develop a simple model, which predicts that the type of dynamics is controlled by resource input rate. If fungal resource input is a discrete event once a year, an exponential growth phase is followed by starvation and sharp decline of enchytraeid abundance. Model simulations with three different forcing functions were compared to field data. Initial parameter values were obtained from various independent sources, and parameters were estimated by minimizing the residual sum of squares. The best fitting model with resource addition once a year explained 39% of the variation in enchytraeid biomass over an 8-year study period. Further, variation in rainfall explained 59% of the variation in R2 of the exponential phase models, which is also an index of the stability of population size-structure. The results emphasize the importance of resource limitation for enchytraeid population dynamics and support the hypothesis that the mortality during the decline phase is size-dependent.  相似文献   

18.
Biology and population dynamics of the intertidal isopod Cirolana harfordi   总被引:1,自引:0,他引:1  
The distribution of Cirolana harfordi (Lockington) populations is determined largely by the availability of loose boulders on sandy beaches. The isopods swim out from under the rocks at high tide to feed. Their diet consists primarily of minute polychaetes and crustaceans. In addition, the isopods locate and utilize any available dead animal matter in the surf zone. Breeding occurs throughout most of the year, except for a brief lull in the fall. Females produce 1 or 2 broods of 18 to 68 young during their 2-year life-span. Marsupial incubation lasts 3 to 4 months. The population size and structure remained relatively constant from one year to the next. Mortality rates estimated for juveniles, males and females showed that newly emergent young and post-reproductive females suffer the greatest losses (up to 75% mortality per month).  相似文献   

19.
The energetics and population dynamics of a barnacle (Balanus glandula Darwin) population in British Columbia, Canada, were studied. Consumption, energy flow, production and mortality were 6844.6, 6667.0, 2896.5 and 2522.8 Kcal m-2 year-1, respectively. These energy flow and production values are among the highest for animal populations reported, and therefore strongly suggest the functional importance of E. glandula in littoral systems. The young age groups of the first-year settlements were most important in contributing to the energy flow, production and reproduction of the entire population. Most of the assimilated energy in the older age groups was used in respiration.  相似文献   

20.
Twombly S  Wang G  Hobbs NT 《Ecology》2007,88(3):658-670
Understanding the processes that control species abundance and distribution is a major challenge in ecology, yet for a large number of potentially important organisms, we know little about the biotic and abiotic factors that influence population size. One group of aquatic organisms that defies traditional demographic analyses is the Crustacea, particularly those with complex life cycles. We used likelihood techniques and information theoretics to evaluate a suite of models representing alternative hypotheses on factors controlling the abundance of two copepod crustaceans in a small, tropical floodplain lake. Quantitative zooplankton samples were collected at three stations in a Venezuelan floodplain lake from June through December 1984; the average sampling interval was two days. We constructed a series of models with stage structure that incorporated six biotic and abiotic covariates in various combinations to account for temporal changes in abundance of these target species and in their population growth rates. Our analysis produced several novel insights into copepod population dynamics. We found that multiple forces affected the abundance of particular stages, that these factors differed between species as well as among stages within each species, and that biotic processes had the largest effects on copepod population dynamics. Density dependence had a large effect on the survival of Oithona amazonica copepodites and on population growth rate of Diaptomus negrensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号