共查询到20条相似文献,搜索用时 93 毫秒
1.
解析重金属污染来源是河流污染防治的重要基础。该文以滇池宝象河干流为研究对象,采集并分析了Zn、Cu、Ni、Pb、Cr 5种常见重金属在活泼态(可交换态及碳酸盐结合态、铁锰氧化物结合态、有机结合态)和残渣态下的含量。在利用相关性分析法、主成分分析法等分析方法的基础上,结合绝对主成分-多元线性回归受体模型(APCS-MLR)对其表层沉积物重金属来源进行了定量解析,结果表明:(1)研究区内5种重金属含量均超过背景值,其中Zn、Cu污染较为严重,Zn含量平均值为233.30 mg/kg,接近国家标准中土地污染筛选值250.00 mg/kg;Cu含量平均值为119.12 mg/kg,超过国家标准中土地污染筛选值100 mg/kg。(2)Zn、Ni、Pb、Cr污染主要来源于交通运输引起的大气沉降、汽油和油漆使用以及城市街道灰尘等;Cu污染主要来自农业农药使用和施肥、家畜养殖及农村生活垃圾等。(3)多元线性回归模型结果说明,"交通源"对Zn、Cr、Ni、Pb的贡献率分别为106.199%、281.404%、117.563%和100.266%;"农业源"对Cu的贡献率为154.682%。该结果与已有研... 相似文献
2.
石河子-昌吉地区地下水水质时空变化及污染源解析 总被引:1,自引:0,他引:1
为了探明新疆石河子-昌吉地区地下水水质时空变化并解析污染源,综合运用基于香农熵的贝叶斯水质评价模型、 Spearman秩相关系数、主成分分析和绝对主成分得分-多元线性回归受体模型(APCS-MLR)等方法,对23眼原位井2016~2021年逐年地下水水质数据进行分析.结果表明:(1)研究区多年地下水水质状况总体较好,潜水水质类别以Ⅰ类和Ⅱ类为主,承压水主要为Ⅰ类.(2)从时间看,2016年和2017年分别为潜水和承压水水质变化的关键时间节点,Ⅳ类和Ⅴ类水仅出现在节点之前,之后在Ⅰ~Ⅲ类水范围内波动.(3)从空间看,潜水水质优劣排序为:石河子市≈呼图壁县>玛纳斯县>昌吉市;承压水为:石河子市≈昌吉市>呼图壁县>玛纳斯县.(4)研究区多年地下水水质类别和主要水质指标在时空变化上基本对应,且异质性较强.(5)潜水水质主要受到溶滤作用(67.30%)、溶滤-迁移作用(10.89%)和农业-生活污染(9.44%)的影响,溶滤-富集作用(52.08%)、农业-生活污染(16.06%)和碱性环境的离子交换作用(12.64%)对承压水水质影响较大.尽管研究区多年水质状况整体呈改... 相似文献
3.
为识别永定河张家口段水体污染的主要来源并确定流域重点管控行业和优控单元,将受体模型与控制单元分区相结合,建立流域污染源解析方法。结合研究区水系分布、行政区划和数字高程模型(DEM)数据进行控制单元划分,利用聚类分析进行水质和污染源空间特征分析,通过因子分析和绝对主成分-多元线性回归(APCS-MLR)受体模型进行分区污染源识别与贡献率计算。结果表明:永定河张家口段按水质污染程度可分为污染较重的A区(洋河、清水河中下游)和污染较轻的B区(洋河、清水河上游及桑干河);A区受工业点源与面源混合影响,其中工业点源、农业种植贡献率分别为43%、44%;B区主要受面源影响,其中农村生活及旅游、农业种植、畜禽养殖贡献率分别为30%、18%、17%;由污染源空间特征,提出A区的重点管控行业为冶金和食品制造业,B区则为采矿业和食品制造业,确定覆盖阳原县的2、3号,覆盖涿鹿县北部和蔚县北部的5号,覆盖万全区的14号控制单元为面源污染优先防控单元。源解析与控制单元分区相结合的方法可较好地反映水质空间分异特征,提高源解析能力。 相似文献
4.
为全面了解松花江流域哈尔滨段的水质污染状况,根据2015年松花江流域哈尔滨段丰水期、平水期和枯水期的水质监测数据,采用主成分分析(PCA)对水质污染现状进行综合评价,并根据主成分分析计算得到的相关数据进行APCS-MLR(绝对主成分多元线性回归分析),量化主成分对各污染物的贡献率.在评价过程中,充分利用ArcGIS软件对不同断面水质状况进行可视化表征,展现水环境质量的空间特征,更加直观地表达水质的区域差异性.结果表明:松花江哈尔滨段水体的主要污染物包括CODCr、TN和NH3-N,丰水期第1主成分对其贡献率分别为69.97%、69.18%、74.23%,平水期为22.91%、22.21%、37.57%,枯水期为83.77%、83.60%、83.09%;6个断面中,朱顺屯断面的水质优于其他断面的水质,上游水质优于下游水质;研究水体水质总体上表现为丰水期优于枯水期.研究表明,污染物主要受到生活污水和该江段沿岸石化、汽车和造纸企业工业废水排放的影响.污染物主要来源于阿什河口内和呼兰河口内断面,干流水体水质优于支流水体. 相似文献
5.
为了有效防控山地城市复杂地质条件下的浅层地下水污染,明晰地下水污染的影响因素,基于重庆82个浅层地下水监测点的15项水质指标,运用绝对主成分-多元线性回归模型(APCS-MLR),解析不同水质指标的污染源因子,量化因子对地下水质的贡献率;基于地下水脆弱性理论,借助地理探测器识别岩溶区、非岩溶区地下水污染的关键影响因素. 结果表明:①重庆市浅层地下水受人类活动影响大,总大肠杆菌群、Fe、Mn等元素超标率在50%以上;②重庆市浅层地下水污染源因子主要包括淋溶富集-城镇生活污染因子(贡献率42%)、地质环境背景因子(17.83%)、工业污染因子(13.74%)、农业污染因子(6.78%),方差累计贡献率为80.34%;③重庆市浅层地下水污染强度空间分布总体呈现西部都市区及周边>中部>东南部>东北部的空间分布格局. 土地利用类型、坡度、土壤质地等3个因子对全域地下水污染具有较高的解释力,是浅层地下水污染的关键影响因子;④土地利用类型与降雨强度、土地利用类型与水力传导系数、土壤与坡度等双因子交互非线性增强了对重庆市浅层地下水污染的解释力. 研究显示:污染源强与路径因子相结合能更好地解释地下水污染差异化;地理探测器为识别地下水污染影响因子提供了有效的探索方法. 相似文献
6.
为揭示京杭运河上游桐乡段总磷浓度不能稳定达到GB 3838—2002《地表水环境质量标准》Ⅲ类标准的原因,在桐乡段干流布设24个采样点,入河支流布设18个采样点,开展水质加密监测,研究磷污染发生的时空变化规律;基于水质常规指标的主成分分析,以及各主成分因子中强载荷指标与三维荧光组分的相关性分析,对重点河段磷的主要污染源进行解析;并基于绝对主成分—多元线性回归模型,定量评价主要磷污染源的贡献率。结果表明:1)京杭运河上游桐乡段干流入境水总磷浓度为0.14~0.20 mg/L,沿程监测点5~7、9和21~24有明显变差趋势,最高浓度达0.40 mg/L;部分入河支流水质较差,总磷浓度达到0.44 mg/L。2)主成分分析得到3个主因子,因子1以氨氮、溶解态磷为主要载荷,与类蛋白质组分显著相关,代表生产生活污染;因子2以高锰酸盐指数、溶解态磷、颗粒态氮为主要载荷,与类腐殖质组分显著相关,代表农业源;因子3以颗粒态磷、颗粒态氮为主要载荷,与浊度显著相关,代表码头污染与底泥源。3)运河上游河段的磷污染主要发生在干流监测点5~7和9,主要为码头污染与底泥源,其在丰水期和平水期的贡献率分别为65.9%和31.8%;监测点21~24主要为农业源,其在丰水期和平水期的贡献率分别为34.0%和32.1%;此外,生产生活污染在丰水期也有较大影响,其对监测点5~7和9、21~24的贡献率分别为42.6%、31.8%。
相似文献7.
APCS-MLR结合PMF模型解析厦门杏林湾近郊流域沉积物金属来源 总被引:1,自引:3,他引:1
城市化、工业化和农业集约化的快速发展,导致排入近郊流域水体中的金属不断增多.为了及时阻断污染源头,制定有针对性的风险缓解措施,准确识别和量化复杂环境内沉积物中金属的污染来源显得尤其重要.对厦门杏林湾近郊流域水系表层沉积物中14个金属元素(Cd、 Cu、 Sr、 Zn、 U、 Pb、 Th、 Ni、 Be、 Co、 Cr、 Rb、 V和Mo)含量进行分析测定.综合运用相关性分析、聚类分析、绝对主成分-多元线性回归(APCS-MLR)和正定矩阵因子分解法(PMF)等多种方法,识别和定量解析污染源及贡献.近郊流域水系沉积物中大部分金属元素含量超过厦门市C层土壤环境背景值,各金属在不同区域(许溪、苎溪、后溪和杏林湾)分布存在差异,平水期和丰水期的苎溪区域样点的表层沉积物中,变异系数大的Cr、 Cu、 Zn、 Mo和Cd元素含量比其他区域的含量高,其中,Cu和Cd污染较为严重;丰水期的整体区域沉积物中金属的富集程度相比于平水期有所下降,Cu和Cd在两个时期均为显著富集;相关性分析、聚类分析和主成分分析表明,杏林湾近郊流域水系表层沉积物中金属污染来源较为复杂. Ni、 Cu、 Zn和Pb主要来源于... 相似文献
8.
暴雨前后河南北部河流水质分异特征及其污染源解析 总被引:1,自引:1,他引:1
为了探究暴雨前后河南北部河流水质分异特征并对其污染源进行识别,选取了暴雨前后6个监测断面和8个水质指标的监测数据,利用箱线图、相关性分析和绝对主成分-多元线性回归模型等方法分析了暴雨前后河南北部河流水质指标的差异性及其变化过程,并计算了污染源的绝对贡献率.结果表明,pH、 DO、 EC和TN的值暴雨后比暴雨前有所降低,而浊度、高锰酸盐指数、 NH+4-N和TP的值暴雨后比暴雨前有所增加,其中TP的变化率最大为177.17%; DO、高锰酸盐指数、 NH+4-N和TP暴雨后处于Ⅳ类及以上水质标准占比明显增加,增加幅度分别为65.12%、 34.26%、 15.29%和37.46%;各监测断面水质指标在暴雨前后均有不同程度的差异性,其中pH值的差异性最小,而浊度、 NH+4-N和TP的差异性较大;暴雨后pH和DO与其他水质指标的相关性有所增加,而浊度、高锰酸盐指数、 NH+4-N、 TP和TN相互间的相关性在暴雨后有... 相似文献
9.
为实现对吉兰泰盐湖盆地地下水污染源的识别与管理,系统采集区域内71个地下水样品,测定16项地下水质关键指标;以GB/T 14848—2017《地下水质量标准》中的Ⅲ类标准为依据确定特征污染物,利用因子分析(FA)确定地下水水质指标的因子分类,以地质统计学插值绘图揭示不同污染源的空间分布特征,运用APCS-MLR(绝对主成分得分多元线性回归)量化不同污染源的贡献率.结果表明:研究区内ρ(Cr6+)、ρ(As)、ρ(NH4+)、ρ(F-)、ρ(Cl-)、ρ(NO2-)、ρ(CODMn)、ρ(TDS)、pH等9项地下水水质指标均存在超标现象,其中ρ(NH4+)、ρ(Cl-)、ρ(F-)超标较为严重.通过因子分析法筛选出影响研究区地下水水质的6个公因子,即溶滤-富集作用因子(F1,贡献率为24.61%)、农业活动因子(F2,贡献率为20.38%)、原生地质-农业生产、生活污染因子(F3,贡献率为11.72%)、工业生产污染因子(F4,贡献率为10.38%)、地质环境背景因子(F5,贡献率为10.78%)、原生地质因子(F6,贡献率为10.61%),其中F1、F5、F6为环境影响因子,F2、F3、F4为人类活动影响因子.采用因子得分函数计算得到因子得分,巴音乌拉山一带整体污染因子得分较高,乌兰布和沙漠存在点状高值区,图格力高勒沟谷上游也存在一定程度的污染,而盐湖盆地东南大部分区域水质相对较好,其分布与变化受到天然因素和人类活动的双重影响.利用APCS-MLR得到各水质指标预测值与实测值的R2(线性拟合优度)均大于0.7,APCS-MLR可较好地评估各因子对水质的贡献率.研究显示,因子分析与APCS-MLR相结合可以有效地对地下水化学组分进行定性识别与定量解析. 相似文献
10.
为探明云南金子河流域耕地土壤重金属污染现状与主要来源,有效开展土壤污染防治, 通过土壤采样与数据统计分析评价了金子河流域典型耕地的重金属污染风险,采用指示克里格方法阐明了研究区重金属元素的空间分布,使用主成分分析-多元线性回归(PCA-MLR)模型进行土壤重金属源解析,并量化其贡献率. 内梅罗综合污染指数法评价结果表明,本研究区中90.79%的土壤点位为重度污染,土壤整体处于重度污染水平. 指示克里格插值结果显示,元素Cd、As、Pb污染的高概率区域主要分布在研究区西部与西南部,Cd、Pb污染的高概率区域主要分布在研究区北部,而Cd、As、Pb污染的低概率区域主要分布在研究区东部及东南部. PCA-MLR模型解析重金属污染来源包括:研究区整体自然源贡献率为12.79%,工业源贡献率为87.21%;东岸自然源、工业源贡献率分别为92.46%、7.54%,西岸自然源、工业源贡献率分别为8.98%、91.02%. 研究显示,金子河流域西岸区域的重金属污染风险明显高于东岸区域,分区域进行源解析可以有效揭示局部污染特性,更为准确地识别污染来源. 相似文献
11.
长江流域平原区水网密布、渔业发达,养殖池塘造成的氮磷污染问题突出,是河湖富营养化的重要污染源之一;从大空间尺度,精细化估算养殖池塘的氮磷污染负荷,对水污染的精准防控具有重要意义.以长江流域为研究区,依托Google Earth Engine遥感大数据平台,构建了基于机器学习算法的养殖池塘识别模型,精细化识别了长江流域养殖池塘的分布与类型;梳理养殖坑塘的氮磷污染研究案例,针对长江流域养殖坑塘的特征,构建氮磷污染负荷的估算方法,评估氮磷污染负荷的时空分布.研究结果表明:2021年,长江流域养殖池塘总面积为14567km2,包括鱼塘5820 km2、虾蟹塘8747 km2、氮磷排放量分别为95059、16224 t;中部地区的氮磷污染负荷最大,东部地区次之,西部地区最小.本研究是遥感大数据在大尺度污染负荷定量分析的尝试应用,方法适用于其它类型污染负荷的估算. 相似文献
12.
采用WRF-CMAQ模式对珠江三角洲地区2015年1月进行数值模拟,结合CMAQ的集成源解析方法ISAM对S、N及其干沉降的来源贡献进行分析.结果表明:珠江三角洲地区S、N干沉降量高值主要分布在广佛交界处以及珠江口附近,其逐日变化趋势主要受质量浓度变化影响,但在部分时间段受干沉降速率的影响亦相当显著.珠江三角洲区域内排放源对于S干沉降的平均贡献占比为36.2%,与其质量浓度区域内贡献占比相当,SO2干沉降速率增加以及背景风场变弱会使区域内贡献占比增加;区域内源对于N干沉降的平均贡献占比为32.4%,远小于其质量浓度区域内贡献占比,当NO2质量浓度减少,使得HNO3的质量浓度和干沉降量减少时,区域内贡献占比增加.对于珠江三角洲典型城市,广州S干沉降的本地贡献为27.7%,N为14.2%;江门S干沉降的本地贡献为9.6%,N为8.8%.2个城市对比而言,广州受本地的影响较江门显著,江门受其上风方向广州和佛山两市输送的影响显著,但当背景风场减弱时,江门本地贡献会有明显增加. 相似文献
13.
采用WRF-CMAQ模式对珠江三角洲地区2015年1月进行数值模拟,结合CMAQ的集成源解析方法ISAM对S、N及其干沉降的来源贡献进行分析.结果表明:珠江三角洲地区S、N干沉降量高值主要分布在广佛交界处以及珠江口附近,其逐日变化趋势主要受质量浓度变化影响,但在部分时间段受干沉降速率的影响亦相当显著.珠江三角洲区域内排放源对于S干沉降的平均贡献占比为36.2%,与其质量浓度区域内贡献占比相当,SO2干沉降速率增加以及背景风场变弱会使区域内贡献占比增加;区域内源对于N干沉降的平均贡献占比为32.4%,远小于其质量浓度区域内贡献占比,当NO2质量浓度减少,使得HNO3的质量浓度和干沉降量减少时,区域内贡献占比增加.对于珠江三角洲典型城市,广州S干沉降的本地贡献为27.7%,N为14.2%;江门S干沉降的本地贡献为9.6%,N为8.8%.2个城市对比而言,广州受本地的影响较江门显著,江门受其上风方向广州和佛山两市输送的影响显著,但当背景风场减弱时,江门本地贡献会有明显增加. 相似文献
14.
过量氮输入是水体氮污染的关键驱动因子,解析氮输入的结构和时空变化模式成为氮素环境管理的重要基础和难点.基于1952—2016年长江经济带各地区氮活动数据,分别构建了天然氮输入和人为氮输入模型,评估了氮输入负荷的时空变化特征.结果表明:①长江经济带氮输入负荷总体越过EKC曲线拐点进入由增长向下降的发展阶段,拐点出现在人均GDP为35777~36299元·人-1时,发生时间为"十二五"时期,主要原因是化肥和食物输入下降;②氮输入负荷存在显著的时空差异,东部地区表现为倒U型,中部为S型,西部为J型,表明氮负荷存在从东向西的空间转移,西部地区成为氮输入负荷增长的热点地区,这与东部地区化肥施用量下降有关;③人为输入是长江经济带氮输入的主要来源,输入量及其占总输入的比例均呈现显著的增长趋势,空间上表现为从西到东部逐步递增的变化规律,与氮驱动力分布一致;④植被的多年平均固氮量为1771 kg·km-2·a-1,其中,非农作物的固氮速率为763 kg·km-2·a-1,植被固氮量的年际波动较小,天然输入对长江经济带总体氮输入影响较小. 相似文献
15.
利用2009~2010年的地表水体理化监测数据,采用因子分析(PCA)和绝对主成分多元线性回归分析(APCS-MLR)方法,在分区基础上分析了辽河流域9种理化因子的空间分布和污染源特征.通过主成分分析,根据变量的因子载荷与采样点的因子得分,识别出了污染地表水体的天然和人为污染源信息;其中,I区87.11%污染来源于点源、有机物和营养物质,其次为土壤风化、侵蚀,Ⅲ区72.10%来源于农业面源的农业营养物质,其次为矿物质污染和生物化学影响,IV区77.83%的污染来源于点源有机物,其次为点源的营养物质.通过主成分多元线性回归分析,获得了每种水质指标对污染类型的贡献率,较好地估计了主要因子对水质的污染程度,可以为科学合理的河流水质管理提供技术支持. 相似文献
16.
高原湖泊典型农业小流域氮、磷排放特征研究——以凤羽河小流域为例 总被引:5,自引:1,他引:5
通过对凤羽河小流域出水口断面进行定位连续监测,计算流域出水量和氮磷排放量,解析了流域氮磷排放量的时间变化特征,以期为小流域氮磷排放量计算、农业管理措施调控、削减流域氮磷排放量提供科学依据.结果表明,凤羽河小流域年度水流量为0.99亿m3,7—9月雨季水流量占全年的43.70%.小流域总氮(TN)的年排放量为139.8 t,可溶性总氮(DTN)是氮的主要排放形式,占TN的71.16%,颗粒态氮(PN)占TN的28.84%.小流域总磷(TP)的年排放量为27.7 t,颗粒态磷(PP)是磷的主要排放形式,占TP的76.47%,可溶性总磷(DTP)占TP的23.53%.7—9月雨季氮磷排放量占全年总量的比例分别为55.33%和77.81%.降雨是影响流域径流过程的重要因素,同时,流域内农业管理措施对径流量和氮磷排放具有较大影响. 相似文献
17.
长江中下游平原三个湖泊表层沉积物对磷的吸附特征 总被引:17,自引:2,他引:17
以长江中下游太湖、巢湖和龙感湖等3个湖泊表层沉积物(0~1cm)为对象,研究了不同沉积物对湖水中磷的吸附特性,并探讨了沉积物表面特性和化学组分等因素对磷的吸附行为的影响.结果表明:表层沉积物对磷的吸附作用主要发生在快吸附过程的前1~2h之内;湖泊表层沉积物对磷的吸附基本符合修正后的Langmuir型等温方程,不同采样点的表层沉积物中本底磷吸附量(QNAP)以及磷饱和吸附量(Qmax)差别显著,与采样点所处环境条件有很大关系.同时,沉积物的饱和吸附量与比表面积、活性铁、铝含量和有机质含量有较好的正相关性,相关系数分别为0 92,0 98,0 78和0 96;活性铁、铝含量与有机质含量之间也有较好的正相关性;颗粒物Zeta电位在一定程度上影响沉积物对磷的吸附能力. 相似文献
18.
19.
为掌握“十三五”以来长江流域的水环境质量时序变化和空间分布特征,基于国家生态环境监测网2016—2019年长江流域615个可比断面监测数据,从流域主要污染特征、主要超标指标浓度时空变化等方面分析了长江流域水质变化情况.结果表明:2016—2019年,长江流域水质总体好转.依据GB 3838—2002《地表水环境质量标准》评价,Ⅰ~Ⅲ类水质断面比例上升7.2百分点,劣Ⅴ类下降2.8百分点.TP、NH3-N和COD是长江流域的主要超标指标,2019年三者的浓度较2016年分别下降了28.3%、35.0%和8.0%;从流域不同级别河流来看,三者浓度在干流均为最低;从干流来看,三者浓度较高的断面主要分布在长江中游;TP和COD污染主要来自面源,NH3-N主要来自点源.研究期间,TP对长江流域水环境污染贡献最大,其断面超标率一直排在首位.针对流域水质分布特征,建议继续加强流域内TP防控,重点加强中游污染治理;同时,优化流域产业结构,进一步改善流域水质和生态环境质量. 相似文献
20.
氮(N)与磷(P)的化学计量学特征反映了N、P在生态系统过程中的耦合关系。当前对于长江水系中全流域N与P摩尔质量比(N:P)的时空衍化规律及其对人类活动的响应机制仍然缺乏科学认知,难以满足长江流域生态保护的治理理论和管理实践需求。根据长江水系水质监测数据和河流水沙数据,从全流域尺度上阐述长江水系N:P的时空分布特征,识别关键控制因素。结果表明:长江干流的N:P从上游到下游呈下降趋势,均值为92±78,大通站N:P输出为47±16;影响长江水系N:P空间变化的主要因素包括支流汇入、沿途面源输入、城市污水输入、磷矿开采活动以及水库拦截;颗粒态P和溶解态N的输入和截留控制着长江干流N:P的季节性差异。从生态化学计量学的角度,揭示人类活动对长江水系营养盐迁移转化的影响,可为未来长江流域生态修复和治理保护工作提供理论参考。 相似文献