首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently, the most common strategy when managing forests for biodiversity at the landscape scale is to maintain structural complexity within stands and provide a variety of seral stages across landscapes. Advances in ecological theory reveal that biodiversity at continental scales is strongly influenced by available energy (i.e., climate factors relating to heat and light and primary productivity). This paper explores how available energy and forest structural complexity may interact to drive biodiversity at a regional scale. We hypothesized that bird species richness exhibits a hump-shaped relationship with energy at the regional scale of the northwestern United States. As a result, we hypothesized that the relationship between energy and richness within a landscape is positive in energy-limited landscapes and flat or decreasing in energy-rich landscapes. Additionally, we hypothesized that structural complexity explains less of the variation in species richness in energy-limited environments and more in energy-rich environments and that the slope of the relationship between structural complexity and richness is greatest in energy-rich environments. We sampled bird communities and vegetation across seral stages and biophysical settings at each of five landscapes arrayed across a productivity gradient from the Pacific Coast to the Rocky Mountains within the five northwestern states of the contiguous United States. We analyzed the response of richness to structural complexity and energy covariates at each landscape. We found that (1) richness had a hump-shaped relationship with available energy across the northwestern United States, (2) the landscape-scale relationships between energy and richness were positive or hump shaped in energy-limited locations and were flat or negative in energy-rich locations, (3) forest structural complexity explained more of the variation in bird species richness in energy-rich landscapes, and (4) the slope of the relationship between forest structural complexity and richness was steepest in energy-limited locations. In energy-rich locations, forest managers will likely increase landscape-scale bird diversity by providing a range of forest structural complexity across all seral stages. In low-energy environments, bird diversity will likely be maximized by managing local high-energy hotspots judiciously and adjusting harvest intensities in other locations to compensate for slower regeneration rates.  相似文献   

2.
In this commentary, we discuss recent experiments on the reliability of bird song as a signal of aggressive intent during territorial conflicts. We outline relevant theoretical views on honest signaling, highlighting the vulnerability handicap hypothesis as a possible explanation for soft song’s reliability in predicting attack. We also sketch possible methods of testing whether soft song agrees with key predictions of the vulnerability handicap hypothesis. Finally, we suggest possible empirical refinements that may be useful in future studies of signals of intent, both in birds and in animals broadly. In particular, we argue that future studies of intent should strive to incorporate the following elements into their experimental design: (1) multi-modal signal components, (2) interaction dynamics, and (3) minimal time intervals. Simulated exchanges using dynamically interactive models may provide a powerful means of incorporating all three of these design features simultaneously.
Mark E. LaidreEmail:
  相似文献   

3.
4.
We advocate assessing the reliability of signals of aggressive intent by eliciting aggressive signaling from a subject, giving the subject an opportunity to attack a model, and testing whether the subject’s displays predict a subsequent attack. Using this design, we found that most singing behaviors are poor predictors of attack in song sparrows (Melospiza melodia). Laidre and Vehrencamp (Behav Ecol Sociobiol, DOI 10.1007/s00265-007-0539-3, 2008) suggested altering our experimental design to make the model more realistic; it remains to be seen whether such design changes would change the association between display and attack. Laidre and Vehrencamp (Behav Ecol Sociobiol, DOI 10.1007/s00265-007-0539-3, 2008) also suggested that the reliability of soft song, the one display that predicts attack in song sparrows, can be explained by a vulnerability cost. We question the rationale for a vulnerability cost for this display and suggest instead that soft song has a competing functions cost, in that, by using soft song to counter an intruder, a male sacrifices other possible functions of vocal signaling.  相似文献   

5.
6.
Bottom trawling is associated with reduced biomass and production in the marine benthic community. Abundance of hard-bodied organisms such as bivalves, crustaceans and echinoderms typically declines in favour of soft-bodied opportunists such as polychaetes. Trawling effects vary with habitat; impact and recovery time are typically greater for more complex substrates/communities and those with lower rates of natural disturbance. Benthic organisms represent the prey base of a large component of the demersal fish assemblage. Hence, trawling-induced change in benthic community structure and function may exert an indirect effect on feeding success and growth of important commercially exploited fishes such as plaice Pleuronectes platessa. We present habitat-specific mixed effects models of plaice length as a function of age, bottom-trawling effort, population density and near-bottom temperature, with sampling year and area, and fish sex incorporated as random effects. Across an observed gradient of trawling effort in the Celtic Sea, plaice on gravel habitat showed significant declines in length at age while plaice on sand habitat showed significant increases in length at age. Contrasting trawling effects likely reflect dietary differences between habitats. Plaice on sand substrates are known to consume predominately polychaetes, which may proliferate at moderate trawling intensity in this habitat. Conversely, plaice on gravel substrates are reported to consume more of the fragile organisms such as echinoderms and bivalves that show marked declines with bottom trawling. An indirect effect of trawling on prey availability and growth of demersal fish has substantial implications for fisheries sustainability via reduced ecosystem carrying capacity and production of commercial fish.  相似文献   

7.
Eelgrass, Zostera marina, produces two types of shoots: morphologically simple vegetative shoots and highly branched flowering (reproductive) shoots, the latter found only in summer months. We examined whether the abundance and diversity of mobile epifaunal assemblage are affected by the presence of flowering shoots in an eelgrass meadow of Otsuchi Bay, northeastern Japan. Comparisons of epifauna in natural vegetation revealed that density and species richness did not differ significantly between sites consisting of both flowering and vegetative shoots, and those only of vegetative shoots. A transplant experiment, conducted to examine the colonization rates of epifauna to defaunated eelgrass planted with different combination of vegetative and flowering shoots, showed no obvious variation in abundance and species richness. At species level, the density of some species such as a tanaid Zeuxo sp. and a polychaete Platynereis sp. was higher at sites and/or treatments with flowering shoots, whereas that of some gastropods, such as Lirularia iridescens and Siphonacmea oblongata was higher at sites without flowering shoots. The species-specific response led to dissimilarity of epifaunal assemblage between sites and among treatments with different densities of vegetative and flowering shoots. Similar patterns observed for natural vegetation and the transplant experiment suggest that the variation in assemblage structure is caused by habitat selection of each species, for example, the utilization of flowering shoots as feeding ground and nursery by Zeuxo sp.  相似文献   

8.
Changes in disturbance rates due to climate change may increase or decrease diversity, whereas permanent loss of habitat is generally believed to decrease diversity. It is, however, very likely that the effects of disturbances and habitat destruction interact. Understanding such combined effects is essential to predict the response of communities to global changes and in particular which functional types of species are most endangered. Using an individual-based spatially explicit community model, we investigate (1) whether diversity-disturbance curves alter when spatially uncorrelated or autocorrelated habitat destruction is added, and (2) which functional types of species are able to survive under these altered conditions. Model communities consisted of four functional types of species trading off between colonisation ability and competition strength. We found that habitat destruction may alter both height and shape of diversity-disturbance curves: maximum diversity at intermediate disturbance rates may shift to other disturbance rates or even split into two peaks giving rise to bimodal diversity-disturbance relationships with different sub-communities persisting at low and high disturbance rates. Diversity responded differentially depending on how the colonisation-competition trade-off was represented. Our results suggest that, for trade-offs in seed production rate, generally the best coloniser will better withstand the interacting effects of habitat destruction and changing disturbance rates; however, for trade-offs in mean dispersal distances, functional types characterized by intermediate abilities will perform best. We conclude that predictions of the impacts of changing disturbance rates on biodiversity depend on community structure and cannot be made without knowledge of concurrent permanent habitat destruction.  相似文献   

9.
10.
Software is a key factor in the functioning of today’s world. Software is supposed to have some characteristics such as: reliability, security, etc., but it is not at all easy to find energy efficiency considered as being one of software’s most important features. Aspects related to Green Software have begun to be considered vital and basic, due to pressure from a society which is becoming more and more aware of environmental problems. In this paper we want to explore whether software companies, responsible for developing software, are aligning their strategies with environmental concerns. To do so, we have checked the Corporate Social Responsibility (CSR) policies of the ten most important software companies and looked at these documents with reference to the UN’s sustainable development goals. A well-defined method for carrying out the analysis of the CSR policies led the authors to identify which of the sustainability actions proposed can be classified within any of the software sustainability dimensions. The analysis of these actions shows that sustainability is considered in most of the companies; nonetheless, most attention is currently devoted to hardware-based initiatives intended to reduce the carbon footprint of the hardware resources of the companies. In addition, green software initiatives are still not the priority, despite the influence of software on energy consumption, and in spite of its impact on the environment. Using the set of actions selected, a set of specific actions for software sustainability, to be included in the CSR of software companies, has been defined.  相似文献   

11.
In current debates on emerging technologies for plant breeding in Europe, much attention has been given to the regulatory status of these techniques and their public acceptance. At present, both genetically modified plants with cisgenic approaches—using genes from crossable species—as well as transgenic approaches—using genes from different species—fall under GMO regulation in the EU and both are mandatorily labelled as GMOs. Researchers involved in the early development of cisgenic GM plants convey the message that the potential use and acceptance of cisgenic approaches will be seriously hindered if GMO regulations are not adjusted. Although the similar treatment and labelling of transgenic and cisgenic plants may be a legitimate concern for the marketability of a cisgenic GM plant, there are concerns around their commercialization that reach beyond the current focus on (de)regulation. In this paper, we will use the development of the cisgenic GM potato that aims to overcome ‘late blight’—the most devastating potato disease worldwide—as a case to argue that it is important to recognize, reflect and respond to broader concerns than the dominant focus on the regulatory ‘burden’ and consumer acceptance. Based on insights we gained from discussing this case with diverse stakeholders within the agricultural sector and potato production in Norway during a series of workshops, we elaborate on additional issues such as the (technical) solution offered; different understandings of the late blight problem; the durability of the potato plant resistance; and patenting and ownership. Hence, this paper contributes to empirical knowledge on stakeholder perspectives on emerging plant breeding technologies, underscoring the importance to broaden the scope of the debate on the opportunities and challenges of agricultural biotechnologies, such as cisgenic GM plants. The paper offers policy-relevant input to ongoing efforts to broaden the scope of risk assessments of agricultural biotechnologies. We aim to contribute to the recognition of the complex socio-ecological, legal and political dimensions in which these technological developments are entangled as a means to acknowledge, discuss and respond to these concerns and thereby contribute to more comprehensive and responsible developments within agricultural biotechnology.  相似文献   

12.
The Amur tiger (Panthera tigris altaica) is a flagship species of the boreal forest ecosystem in northeastern China and Russia Far East. During the past century, the tiger population has declined sharply from more than 3000 to fewer than 600 individuals, and its habitat has become much smaller and greatly fragmented. Poaching, habitat degradation, habitat loss, and habitat fragmentation have been widely recognized as the primary causes for the observed population decline. Using a population viability analysis tool (RAMAS/GIS), we simulated the effects of poaching, habitat degradation, habitat loss, and habitat fragmentation on the population dynamics and extinction risk of the Amur tiger, and then explored the relative effectiveness of three conservation strategies involving improving habitat quality and establishing movement corridors in China and Russia. A series of controlled simulation experiments were performed based on the current spatial distribution of habitat and field-observed vital rates. Our results showed that the Amur tiger population could be viable for the next 100 years if the current habitat area and quality were well-maintained, with poaching strictly prohibited of the tigers and their main prey species. Poaching and habitat degradation (mainly prey scarcity) had the largest negative impacts on the tiger population persistence. While the effect of habitat loss was also substantial, habitat fragmentation per se had less influence on the long-term fate of the tiger population. However, to sustain the subpopulations in both Russia and China would take much greater conservation efforts. The viability of the Chinese population of tigers would rely heavily on its connectivity with the largest patch on the other side of the border. Improving the habitat quality of small patches only or increasing habitat connectivity through movement corridors alone would not be enough to guarantee the long-term population persistence of the Amur tiger in both Russia and China. The only conservation strategy that allowed for long-term persistence of tigers in both countries required both the improvement of habitat quality and the establishment of a transnational reserve network. Our study provides new insights into the metapopulation dynamics and persistence of the Amur tiger, which should be useful in landscape and conservation planning for protecting the biggest cat species in the world.  相似文献   

13.
 One of the best-known features of diatom biology is the reduction in mean cell size during vegetative multiplication by binary fission. We examined changes in copper toxicity and copper accumulation during cell-size reduction in Haslea ostrearia (Simonsen), a pennate diatom responsible for greening in oyster-ponds. We selected three strains with apical axes of different lengths: 40 μm (S40), 65 μm (S65) and 85 μm (S85). Each strain was grown separately in batch culture and exposed to a range of copper overloads (0 to 1.57 μM) that were added to the culture immediately after cell inoculation. Significant differences in sensitivity to copper were observed among the three strains. S85 exhibited highest sensitivity, followed by S40, while S65 displayed the highest tolerance. After 5 to 6 d exposure to 0.47 μM copper, chlorophyll a, carbohydrate, protein and lipid content per g dry weight had not changed in any of the three strains studied, except for a decrease of 16% in chlorophyll a in S85. At the end of the growth period with 0.47 μM copper, the amount of metal per unit surface area was similar for all strains, but the quantity of intracellular copper per g dry weight was lower in S65 cells than in S40 and S85 cells. Notable differences in the kinetics of both adsorbed and intracellular copper were observed between S40 and S85. Our results suggest that tolerance mechanisms may change during the vegetative life of H. ostrearia. The differential sensitivities of the strains suggest that copper pollution may alter the cell composition of natural populations of H. ostrearia by inducing selection for smaller cell size. Since auxosporulation results in the formation of larger cells with a higher sensitivity to copper, H. ostrearia could gradually disappear from copper-contaminated environments. In addition, by inducing smaller cell size, copper contamination would have an impact on filter-feeders such as oysters, whose diet is largely composed of diatoms. Received: 26 March 1999 / Accepted: 2 December 1999  相似文献   

14.
The preferences exhibited by cleaner fishes for particular client species and the high variability in rates at which various clients visit cleaning stations have remained largely unexplained. In this study, we assessed the relative importance of client ectoparasite load and mucus characteristics for the behaviour of cleaning gobies, Elacatinus spp, and their fish clients on a Barbadian fringing reef. Client species with high ectoparasite loads visited cleaning stations more often than less parasitised species. This effect was independent of body size. Frequency of visits to cleaning stations was not related to client mucus characteristics. These results suggest that the main motivation for clients to interact with cleaners is ectoparasite removal. Cleaners did not preferentially clean clients with higher ectoparasite load or better mucus, nor did they spend more time inspecting such clients. The interests of cleaners and clients therefore appear to be inconsistent. This may be due to the generally low rate of ectoparasitism on Barbadian fish compared to fish of other regions. Cleaning gobies fed at a lower rate on client species with higher loads of gnathiid isopod larvae, which may be explained if cleaners switch from eating ectoparasites to other items, such as mucus, on clients with few ectoparasites. Our estimates of caloric and protein content of fish mucus suggest that it may be as valuable a food source per unit weight as ectoparasites. However, no data are available to compare the value of each item per unit feeding time. The fact that clients with few ectoparasites still visit cleaners, albeit at a low rate, suggests that the cost of mucus removal may be low, compared to the benefit of incidental parasite removal. Thus, the outcome of cleaning interactions may remain positive, even in areas characterised by naturally low parasitism on clients.  相似文献   

15.
In this paper, we explored how aridity influences the regional deforestation and land-use patterns (i.e. crops/pastures) in South American Dry Chaco. To do this, we contrasted land use during last decade (2001–2012) with a spatially explicit aridity index, which we complemented with a crop water balance model. Land-use classifications were performed by considering the temporal variability of NDVI from MODIS satellites, showing that 40 and 60% of deforested land was assigned to crops and pastures, respectively. Results indicate that although the regional deforestation pattern was not associated with the aridity gradient, with drier areas similarly deforested as wetter areas, contrasting differences were observed in the use of this land, with crops mostly located (90%) in wetter areas and pastures evenly distributed across the whole aridity gradient. This research highlighted the strong effect of water limitations on the land-use option after deforestation and may help to set the basis for future land-use planning policies.  相似文献   

16.
It is becoming increasingly popular to consider species interactions when managing ecological foodwebs. Such an approach is useful in determining how management can affect multiple species, with either beneficial or detrimental consequences. Identifying such actions is particularly valuable in the context of conservation decision making as funding is severely limited. This paper outlines a new approach that simplifies the resource allocation problem in a two species system for a range of species interactions: independent, mutualism, predator-prey, and competitive exclusion. We assume that both species are endangered and we do not account for decisions over time. We find that optimal funding allocation is to the conservation of the species with the highest marginal gain in expected probability of survival and that, across all except mutualist interaction types, optimal conservation funding allocation differs between species. Loss in efficiency from ignoring species interactions was most severe in predator-prey systems. The funding problem we address, where an ecosystem includes multiple threatened species, will only become more commonplace as increasing numbers of species worldwide become threatened.  相似文献   

17.
The influence of catchment variables on lake organisms is understudied. The terrestrial zone in the vicinity of lakes is, however, probably highly important for biota due to the effects on water chemistry and to various processes operating across ecosystem boundaries. We examined the relative importance of lake and catchment variables, as well as large-scale geographical factors, on the taxa richness of phyto- and zooplankton in 100 small lakes in Finland. In variation partitioning, the variability of phytoplankton richness was most strongly related to the effects of lake variables, the joint effects of lake and catchment variables, and the joint effects of all three groups of variables. Zooplankton richness, in turn, was most strongly related to the effects of lake and catchment variables and the joint effect of lake and catchment variables. The exact results of the variation partitioning depended on the catchment sizes considered in the regression models. Among lake variables, planktonic richness was strongly related to variables indicating productivity. Among catchment variables, the normalized difference vegetation index (NDVI), indicating catchment productivity, showed a relatively strong association with planktonic richness. These results provide evidence that catchment variables such as the NDVI may be efficient predictors of planktonic richness in small lakes. It is possible that individual lakes embedded in a highly productive landscape have higher taxa richness than solitary, potentially productive lakes because of the high influx of dispersing propagules from the regional pool. We also suggest that catchment variables may respond to environmental changes at different scales than the lake variables, and explicit consideration of catchment productivity would therefore be useful when planning research and monitoring programs for freshwater organisms.  相似文献   

18.
19.
● This study summarizes and evaluates different approaches that indicate O3 formation. ● Isopleth and sensitivity methods are useful but have many prerequisites. ● AOC is a better indicator of photochemical reactions leading to O3 formation. Tropospheric ozone (O3) concentration is increasing in China along with dramatic changes in precursor emissions and meteorological conditions, adversely affecting human health and ecosystems. O3 is formed from the complex nonlinear photochemical reactions from nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs). Although the mechanism of O3 formation is rather clear, describing and analyzing its changes and formation potential at fine spatial and temporal resolution is still a challenge today. In this study, we briefly summarized and evaluated different approaches that indicate O3 formation regimes. We identify that atmospheric oxidation capacity (AOC) is a better indicator of photochemical reactions leading to the formation of O3 and other secondary pollutants. Results show that AOC has a prominent positive relationship to O3 in the major city clusters in China, with a goodness of fit (R2) up to 0.6. This outcome provides a novel perspective in characterizing O3 formation and has significant implications for formulating control strategies of secondary pollutants.  相似文献   

20.
Though it is known that flower scent not only attracts pollinators but also herbivores, little is known about the importance of flower scent on the distribution of leaf herbivores among individuals within a plant species. In this study we determined the distribution of galls induced by the sawfly Pontania proxima (Serville 1823) (Hymenoptera, Tenthredinidae, Nematinae) on flowering and non-flowering representatives of several clones belonging to Salix fragilis and S. × rubens (Salicaceae). Further, amounts and composition of scent of flowering and non-flowering twigs were compared (dynamic headspace-gas chromatography–mass spectrometry, DHS-GC–MS), and a scent sample collected from flowering twigs of S. fragilis was tested by coupled gas chromatography and electroantennographic detection (GC-EAD) on the antennae of P. proxima females. The results show that the presence of flower catkins on plants led to a higher degree of allocation with galls, but the number of galls differed not between flowering and non-flowering plants. The DHS-GC–MS analyses revealed that the total amount of flower scent emitted per flowering twig is about 90 times higher than the scent emitted by a non-flowering twig. Further, several compounds were emitted only by flowering but not by non-flowering twigs. In the GC-EAD analyses, antennae consistently responded not only to green leaf volatiles, but also to compounds emitted only by the flowers (e.g. 1,4-dimethoxybenzene). These flower scent compounds are suggested to affect the host plant choice by attracting more sawflies from the distance to flowering plants compared to non-flowering plants. The EAD-active compounds emitted from vegetative plant parts are assumed to act as long-distance signals especially when flowers are absent on host plants, e.g. during the oviposition period of the second generation of P. proxima.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号