首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycolate excreted by phytoplankton is a potentially important nutrient for bacteria in coastal and estuarine environments. The metabolism of glycolate by Pseudomonas sp., strain S227, originally isolated from the New York Bight Apex, has been studied. The specific growth rate for this strain on glycolate is 0.156 doublings h-1. The apparent Vmax and Km for glycolate uptake are 83.6 nmol min-1 mg cell protein-1 and 7.4x10-8 M, respectively. The preferential respiration of the carboxyl carbon (C-1) and the incroporation of the hydroxymethyl carbon (C-2) suggest that the glycerate pathway is used for growth on glycolate. Alternatively, another pathway can be utilized which results in the complete catabolism of glycolate. Glycolate and lactate metabolism are also closely linked either by a common metabolic pathway or a common transport system other than the monocarboxylate transport system. The magnesium ion concentration is also important in glycolate metabolism. The characteristics of glycolate metabolism observed in Pseudomonas sp., strain S227, are advantageous in coastal and estuarine environments where glycolate production is intermittent, and the concentrations are low.  相似文献   

2.
Growth and herbivory of heterotrophic dinoflagellates (Gymnodinium sp.) from the Weddell Sea and the Weddell/Scotia Confluence were studied in 1988 in 100-liter microcosms. The microcosms were screened through 200-µm or 20-µm mesh nets and incubated for 12 d at 1 °C under artificial light. Mean cell volume of dinoflagellates was 1 000 to 1 500µm3, and that of their phytoplankton prey 360 to 430µm3. Dinoflagellate growth rate followed a Holling type II functional response, with a maximum growth rate of 0.3 d–1 and half-saturation food concentrations of 1.0µg chlorophylla l–1, 50µg C l–1, or 1 500 cells ml–1. Carbon budgets based on14CO2 assimilation and biomasses of phytoplankton and heterotrophic dinoflagellates suggested a balance between phytoplankton grazing loss and dinoflagellate consumption, assuming a dinoflagellate carbon conversion efficiency of 40%. Applying this to the functional response yielded estimates of maximum ingestion rate (0.8µg Cµg–1 C d–1, or 6 pg C dinoflagellate–1 h–1) and maximum clearance (0.8 to 1.2 × 105 body volumes h–1, or 80 to 120 nl ind.–1 h–1). The microcosm experiments suggested that heterotrophic dinoflagellates may contribute significantly to maintenance of low phytoplankton biomass in the Southern Ocean.  相似文献   

3.
《Ecological modelling》2005,187(4):513-523
Phytoplankton growth in estuaries is controlled by factors such as flushing, salinity tolerance, light, nutrients and grazing. Here, we show that biodiversity of estuarine phytoplankton is related to flushing, and illustrate this for some European estuaries.The implications for the definition of reference conditions for quality elements in estuaries of different types are examined, leading to the conclusion that constraints on the number of estuarine and coastal types that may be defined for management purposes require that quality classes take into account natural variability within types, in order to be ecologically meaningful. We develop a screening model to predict the growth rate required for a phytoplankton species to be present under different flushing conditions and apply it to estuaries in the EU and US to show how changes in physical forcing may alter biodiversity. Additional results are presented on the consequences for eutrophication, showing that changes in residence time may interact with species-specific nutrient uptake rates to cause shifts in species composition, potentially leading to effects such as harmful algal blooms.We discuss applications for integrated coastal zone management, and propose an approach to normalization of estuarine phytoplankton composition as regards species numbers.  相似文献   

4.
Ammonium concentrations of ∼1 M are commonly cited as being the threshold for inhibition of NO3 uptake, but the applicability of this threshold to phytoplankton from different taxonomic classes has rarely been examined. Additionally, little is known about the influence of environmental variables (e.g. growth temperature) on the interaction between ambient NH4 + and NO3 uptake. Four species of estuarine phytoplankton, two diatom [Chaetoceros sp., and Thalassiosira weissflogii (Grunow) Fryxell et Hasle] and two dinoflagellate [Prorocentrum minimum (Pavillard) Schiller, and Gyrodinium uncatenum Hulburt], were grown on NO3 at several different temperatures (4, 10, 15, or 20 °C), and the impact of NH4 + additions on NO3 uptake/assimilation (non-TCA-extracted) and assimilation (TCA-extracted) was assessed. For all species at all temperatures, NO3 uptake/assimilation and assimilation rates decreased in a roughly exponential manner with increasing NH4 + concentrations but were not completely inhibited even at elevated NH4 + concentrations of 200 μM. Estimated half-inhibition concentrations (K i) were significantly greater in the diatom species (mean ± SE; 2.70 ± 0.67 μM) than in the dinoflagellate species (1.26 ± 0.55 μM). Half-inhibition constants were positively related to temperature-limited relative growth rate although not significantly. The observed inhibition of NO3 uptake and assimilation, as a percentage of NO3 uptake in the absence of NH4 +, averaged about 80% and ranged from 49 to 100%. For all species, a significant (P < 0.001) positive correlation was found between percent inhibition of NO3 assimilation and temperature-limited relative growth rate. Two experiments on Chesapeake Bay phytoplankton during an April 1998 diatom bloom showed that in short-term (∼1 h) temperature manipulation experiments, percent inhibition of NO3 uptake/assimilation was also positively related (P = 0.05) to experimental temperature. The observed relationships between temperature-limited relative growth rate and percent inhibition of NO3 assimilation rates for the species tested suggest that at the enzyme level, the inhibitory mechanism of NO3 assimilation is similar among species, but at the whole cell level may be regulated by species-specific differences in the accumulation of internal metabolites. These findings add not only to our understanding of species-specific variability and the role of growth temperature, but also provide additional data with which to evaluate current models of NH4 + and NO3 interactions. Received: 31 August 1998 / Accepted: 7 December 1998  相似文献   

5.
We grew marineSynechococcus Clones WH7803 and WH8018 at 150µE m–2 s–1 in dilute batch cultures with NH 4 + as the limiting nutrient. The maximal uptake capacities for NH 4 + and NO 3 - were measured in frequent experiments during log and stationary phases of growth. Clone WH7803, originally isolated from oceanic waters, had a specific uptake rate of NH 4 + that approximated the maximum (log phase) specific growth rate (ca ~ 0.025 h–1). NO 3 - uptake was observed only after nitrogen in the media was depleted; the NO 3 uptake capacity was ca 12% the capacity for NH 4 + uptake throughout the nitrogen depleted period. Growth was arrested upon nitrogen depletion, but resumed soon after reinoculation into fresh media, even after 5 d of starvation. Clone WH8018, originally isolated from coastal waters, revealed a five-fold enhancement in the NH 4 + uptake rate relative to growth rate at the time of nitrogen depletion. As nitrogen starvation proceeded, this enhancement was reduced. This clone, too, was able to take up NO 3 - once nitrogen in the media was depleted, but only after ca 20 h. Growth continued for a limited period during nitrogen depletion, but nitrogen-starved cells were slow to recover upon reinoculation into fresh media. We speculate that clonal differences may reflect differences in the molecular regulation of nitrogen assimilation.  相似文献   

6.
E. Sahlsten 《Marine Biology》1987,96(3):433-439
The uptake rates of the three nitrogen compounds ammonium, nitrate, and urea were measured in the oligotrophic North Central Pacific Gyre in August–September 1985. The measurements were performed by using 15N-labelled substrates and incubating for short-time periods (3 to 4 h) under simulated in situ conditions. Ambient concentrations of the nitrogenous nutrients were generally below 0.10 mol l-1. The average total daily nitrogen uptake rate, integrated over the euphotic zone, was 12.5 mmol N m-2 d-1. Diel studies in the upper water mass resulted in a calculated phytoplankton growth rate of 1.3 d-1. Ammonium was the dominating nutrient, accounting for on the average 54% of the total nitrogen uptake, while urea uptake represented 32% and nitrate 14%. Ammonium uptake rates at a coastal station off the Hawaiian Islands were very close to the rates found at the oceanic station. Organisms <3 m dominated the nitrogen assimilation, being responsible for about 75% of the ammonium uptake. The nitrogen uptake rates in this study seem to be higher than those found by earlier investigations in the area, but correlated well with other productivity measurements performed during the same cruise.  相似文献   

7.
Chlorella autotrophica Shihira and Krauss (clone 580), a euryhaline microalga from the marine coastal environment is subject to large fluctuations in external salinity and nitrogen supply. The alga exhibits maximum growth at salinities lower than 100% ASW (artificial seawater). Cells divide faster and show higher cell yields when the supply of either NH 4 + or NO 3 - is increased above 0.2 mM. Cells growing on NH 4 + show high levels of NADPH-glutamate dehydrogenase (GDH) activity, and the levels of glutamine synthetase (GS) are decreased to very low levels under these conditions. Methionine sulfoximine (MSX), an inhibitor of GS, has little effect on cell division and nitrogen assimilation of cells growing on NH 4 + . Cells growing on NO 3 - , however, show marked inhibition (65%) in nitrogen assimilation in the presence of 5 mM MSX. This MSX concentration also causes growth retardation and a progressive decrease in cell protein and nitrogen content. GS is almost completely inhibited by 5 mM MSX in both NH 4 + and NO 3 - -grown cells. Cells growing on NH 4 + maintain high levels of NADPH-GDH activity in the presence of MSX. NADPH-GDH activity in MSX-treated NO 3 - -grown cells increases, and, in the presence of 5 mM MSX, reaches 40% of the level found in NH 4 + -grown cells. These results are consistent with NADPH-GDH providing an alternate pathway for NH 4 + assimilation by this marine Chlorella species.  相似文献   

8.
Current estimates indicate that atmospheric nitrogen deposition is responsible for 26 to over 70% of new nitrogen (N) input to North Carolina estuaries and coastal waters. Concentrations of N in coastal rainfall events in a 2-yr period (August 1990 to 1992) ranged from 0.7 to 144 M for NO 3 - and 0.5 to 164 M for NH 4 + . The 15N values of the NO 3 - and the NH 4 + were determined in 15 rain events. NH4 + values averaged-3.13 (range:-12.5 to+3.6), while NO 3 - plus dissolved organic N fractions had an average 15N of+1.0 (range:-2.0 to+4.7). The uptake of this isotopically light N into particulate N, in parallel with primary productivity and biomass (as chlorophyll a) determinetions, was examined in microcosm and mesocosm bioassays. As phytoplankton productivity and biomass increased with added rainwater N, the 15N of particulate N decreased. To investigate the effects of significant atmospheric N loading with stable isotope tracers, we measured the 15N of the>1 m fraction from surrounding coastal waters. Owing to the episodic nature of atmospheric deposition and the great variation in N loading with each event, a simple assessment of the atmospheric contribution was not possible. During a period in which rainfall inputs were significant and frequent (August 1992), 15N values were several more negative than during periods of drought (Fall 1990). These experiments and observations emphasize the contribution of atmospheric nitrogen deposition to new production in coastal waters.  相似文献   

9.
The seasonal abundance, distribution, maturity, growth and population dynamics of the euphausiidsThysanoessa raschi (M. Sars, 1864),T. inermis (Krøyer, 1846) andMeganyctiphanes norvegica (M. Sars, 1857) were studied in Ísafjord-deep, a fjord in northwest Iceland, from February 1987 to February 1988. Sampling was made at nine stations along the length of the fjord at approximately monthly intervals, along with hydrographic measurements and water sampling for nutrient analysis and measurements of chlorophylla concentrations. Spring warming of the water began in late May and maximum temperatures (8° to 10°C) were observed in late July–September. The phytoplankton spring-bloom started in early April, and the highest chlorophylla levels were measured in early May (7.0 mg m–3). A small increase was observed in the chlorophylla content in August. The greatest abundance of juveniles and males and females of all three species was observed during January and February 1988, during which period the euphausiids were concentrated in the middle and inner parts of the fjord. Euphausiid eggs were first recorded in the plankton in mid-May, and the greatest abundance ofThysanoessa spp. larvae occurred at the end of May. Larvae ofM. norvegica were not observed in Ísafjord-deep, indicating that recruitment of this species was occurring from outside the fjord.T. raschi andT. inermis had a life span of just over 2 yr; the life span ofM. norvegica was more difficult to determine. Almost all femaleT. raschi were mature at the age of 1 yr, while mostT. inermis females appeared not to mature until 2 yr of age. Most males of both species took part in breeding at 1 yr of age. The maximum carapace length ofT. raschi andT. inermis was 8 to 9 and 9 to 10 mm, respectively. The largestM. norvegica had a carapace length of 9 to 10 mm. The spawning of the euphausiids in Ísafjord-deep appeared to be closely related to the phytoplankton spring bloom; water temperature appeared to have no influence on spawning.  相似文献   

10.
The vertical distribution of chlorophylla, copepods, dissolved free amino acid concentration and the fixation of14C by phytoplankton were monitored in the springs of 1983, 1987 and 1988 in the Ushant front region, shelf edge of the Celtic Sea and central Irish Sea, respectively. In each area, two stations characterized by mixed and stratified water conditions were compared. Vertical distributions of amino acids coincided with the distribution of copepods. A positive and significant correlation was found between the abudance of copepods and the concentration of amino acids dissolved in seawater. A negative and significant correlation was found between chlorophylla and the concentration of amino acids. Enrichment of amino acids ( 20 to 500 nM l–1 at specific depths) due to aspartic and glutamic acids, glutamine and ornithine, was assumed to reflect copepod feeding activity and faecal production. At these depths, the natural concentration and diversity of amino acids, including aspartic acid, glutamic acid, asparagine, serine, histidine, glutamine, arginine, threonine, glycine, alanine, tyrosine, valine, phenylalanine, ornithine and lysine, were high enough and in the correct proportions for triggering feeding and swimming and swarming behavior of copepods, as well as their remote detection of food at the micro- and meso-scales (1 to 10 m). This accumulation of amino acids also constitutes a potential additional source of organic nitrogen for bacteria and phytoplankton.  相似文献   

11.
The storage of nitrate by phytoplankton cells during the early phases of upwelling was studied in coastal stations off northern Spain (southern Bay of Biscay) between 1990 and 1994. In this region, a persistent upwelling during summer is characterised by intermittent pulses of variable intensity, and increased nutrient concentrations in the surface layer. The main effect of an upwelling pulse on phytoplankton distribution is the shifting of the chlorophyll a and primary production maxima to near the surface. When the upwelling relaxes, thermal stratification of the water column occurs, and a distinct subsurface chlorophyll maximum develops below the production maximum. An accumulation of intracellular nitrate characterized the early phases of upwelling (mean = 2.73 μmol N m−3), maximum concentrations being attained at depths where biomass and production values were moderate. In contrast, phytoplankton cells from non-upwelling situations contained significantly lower concentrations of intracellular nitrate (mean = 0.17 μmol N m−3). The variations in the intracellular pool of nitrate may result from the differential allocation of resources within the cell as a result of variations in the energy available, since the uptake and assimilation of nitrate is a relatively expensive process involving several enzymatic systems. We hypothesize that nitrate storage by phytoplankton cells is characteristic of early phases of upwelling and is linked to patterns of carbon fixation. Average nitrogen budgets for upwelling and non-upwelling situations indicate that intracellular nitrate reserves are not responsible for maintaining high phytoplankton growth rates, since they only account for <2% of daily primary production during upwelling events. Received: 28 August 1996 / Accepted 3 December 1996  相似文献   

12.
At two fixed stations in the Equatorial Atlantic Ocean (0°–4° W), the physical, chemical and biological properties of the euphotic layer were determined for 14 d (Station A: 5–18 February, 1979) and 13 d (Station B: 20 October–7 November, 1979), respectively. The stability of the water column allowed comparison of 3 different “systems”: (i) a well-illuminated and nitrate-depleted mixed layer; (ii) a chlorophyll maximum layer (chl a max) in the thermocline which is poorly illuminated (6.3% of surface irradiance); (iii) a well-illuminated but nitrate-rich (>0.9 μg-at l-1) mixed layer. In each layer the particulate organic carbon (COP), nitrogen (NOP) and phosphorus (POP) contents were measured and compared with the phytoplankton biomass. In the chlorophyll maximum layer, the phytoplankton biomass contributed significantly to the total particulate organic matter (between 55 and 75%). In the nitrate-depleted mixed layer, the results varied according to whether the regression technique [COP=f(chl a)] was used, or the chl a synthesis during the incubation of the samples. With the former technique, the phytoplankton carbon (C p) content appeared minimal, because the y intercept, computed using all the data of the water column, was probably overestimated for this layer. POP would be more associated with living protoplasm than with carbon and nitrogen in the three layers. In the chlorophyll a maximum layer it constitutes a valuable detritus-free biomass measurement, since 80% of the POP consist of phytoplankton phosphorus. The assimilation numbers (NA=μg C μg chl a -1 h-1) were high in all three layers, but the highest values were recorded in the nitrate-depleted mixed layer (NA=15 μg C μg chl a -1 h-1). In the chlorophyll maximum layer, light would be a limiting factor during incubation: between 1025 and 8.1024 quanta m-2 d-1 NA and light are positively correlated independant of nitrate concentration. The growth rates of phytoplankton (μ) were estimated and compared to the maximum expected growth rate. Our main conclusion was that despite very low biomass and nutrient content, the mixed layer was in a highly dynamic state, as evidenced by high rates of phytoplankton growth and short nutrient turnover times (1 d or less for PO-P4 in the mixed layer versus 3 d in the thermocline). The presence of nitrate in the water column allows the development of a higher phytoplankton biomass but does not increase growth rate.  相似文献   

13.
The spatial distribution of the C/N ratios and variations in δ13C and δ15N of suspended particulate matter were used to characterise their source in Asia’s largest brackish water lagoon, Chilika, India. In addition, the significance of re-mineralised nutrients in the primary productivity of the shallow lagoon was also determined through quantification of the subsurface nitrogen uptake conditions at two relatively stable locations in the lagoon. The results indicated that the influence of terrestrial organic matter was the maximum in the northern sector and was relatively limited at the central and southern part of the lagoon. In situ 15N uptake experiments (daytime) under biogeochemically stable conditions revealed that the N uptake by phytoplankton ranged between 0.24 and 1.01?mM?m?3?h?1 during pre-monsoon and post-monsoon seasons. New production and regenerated production in the shallow lagoon was also estimated by calculating f-ratios (ratio of nitrate assimilation by phytoplankton to total nitrogenous nutrient assimilation, have been estimated), which varied from 0.52 in the post-monsoon to 0.38 in the pre-monsoon. Lowering of the f-ratio from post- to pre-monsoon indicated a dominance of mineralisation over the new production.  相似文献   

14.
Fast-growing macroalgae, including Ulva lactuca Linnaeus, respond rapidly to changes in nutrient conditions, particularly to short-term N supply. This ability to rapidly take up and assimilate N contributes to the increasing occurrence of macroalgal blooms in heavily N loaded coastal ecosystems. To determine whether long-term nutrient histories affect short-term responses in activity of N-assimilating enzymes, including nitrate reductase (NRA) and glutamine synthetase activity (GSA), internal N storage, and macroalgal growth, we conducted an in situ nitrate fertilization experiment between 7 and 22 July 2004, with fronds of U. lactuca collected from estuaries with high and low N loads in Waquoit Bay, Cape Cod, Massachusetts, USA (N 41° and W 70°). Initial NRA, GSA, % N, δ15N, and growth of U. lactuca fronds were higher in the site where nitrate was in high supply. Differences in NRA persisted even after short-term experimental enrichment. Differences in internal N pools, δ15N, and growth, in contrast, mirrored the changes of nutrient supply. The rate of turnover of the internal N content of U. lactuca was quite short (<2 d), and turnover of enzyme activity may have been even shorter. N isotopic fractionation by U. lactuca appeared to be of small magnitude, unlike the case of phytoplankton, and similar to that of vascular plants. δ15N was a better indicator of short-term response to external and internal nutrient supplies in U. lactuca than enzyme activity or N content, and may reliably detect rapid changes in N availability, source, and uptake and assimilation processes.  相似文献   

15.
The magnitude and physiological characteristics of biological nitrogen fixation have been studied in the oligotrophic waters of the North pacific gyre. The filamentous blue-green algae Trichodesmium spp. and Richelia intracellularis were the important nitrogen-fixing phytoplankton. Most of the nitrogen fixation occurs in the upper 40 m of the water column, with detectable fixation as deep as 90 m, which corresponds to about the 1 % light depth. There was no evidence of photoinhibition of nitrogen fixation, although CO2 reduction was depressed slightly at the highest light levels. The rate of nitrogen fixation in the water column varied throughout the day, being highest in mid-morning and in late afternoon. Relatively high fixation rates were also found during periods of darkness. Elevated oxygen concentrations had a marked inhibitory effect on rates of nitrogen fixation, a pO2 of 0.4 atm causing a 75% inhibition. Data from studies of nitrogen fixation and assimilation rates of 15N-labelled nitrate, ammonium, and urea indicate that nitrogen fixation furnished about 3% of the total daily fixed nitrogen requirement for phytoplankton growth. Studies with isolated colonies of Trichodesmium spp. indicated that 100% of their nitrogen requirement was met by nitrogen fixation. Chemical composition of the Trichodesmium colonies showed that the C:N ratio was 4.1 and that their phosphorus content relative to carbon or nitrogen was much lower than that of the total particulate material in the water column. Elevated ratios of carbon: adenosine triphosphate (ATP) also suggest that phosphorus deficiency may be limiting the growth of Trichodesmium. The magnitude of nitrogen fixation in the gyre is seasonally dependent, with high rates in late summer and autumn. At these times the water column is stratified, with phosphate and nitrate barely detectable in the upper 100 m. Our data suggest that during these months of stratification, biological fixation of nitrogen amounts to about 33 g-at N/m2/day.  相似文献   

16.
The abundance and taxonomic diversity of phytoplankton has been studied in relation to sewage pollution (proximity to outfalls) south of Beirut, Lebanon. Surface-water samples were collected from a series of beach stations extending from the American University of Beirut to 20 km south from June, 1973 to July, 1974. Samples were preserved, concentrated by settling, and the concentration of each taxon of phytoplankton enumerated in an inverted microscope. Water samples from the vicinity of two major sewer outfalls (Carlton and Khalde sewers) showed very high concentrations of NH4 +, NO2 -, NO3 - and PO4 -3, a greater total concentration of phytoplankton, and a lower taxonomic diversity than samples remote from outfalls. A considerable variation in the occurrence of species and dominance occurred along the pollution gradient. Blue-green algae and dinoflagellates were dominant in polluted waters, while diatoms dominated in cleaner water away from major sewage outflow. From the dominance and relative distribution of the taxa along the pollution gradient, certain taxa (Oscillatoria spp., Spirulina spp., Phormidium spp., Synochococcus custos and S. elongatus, Gymnodinium spp., and Prorocentrum spp.) emerge as indicator species of pollution. These changes correspond to a typical degradation of a complex community to a less mature state by the inflow of nutrient-rich sewage (eutrophication) along a coastal region about 10 km long.  相似文献   

17.
Grazing impact of microzooplankton on phytoplankton was investigated on the Grand Bank, Newfoundland, Canada, in April, July and October 1984, using a seawater dilution method. In April a large proportion of chlorophylla was in the microplankton size fraction (> 20µm) while in mid-summer and fall most was in the nanoplankton size fraction (< 20µm). Diatoms were the dominant phytoplankters in April, while undetermined flagellates and coccolithophores were abundant in other seasons. Major grazers were oligotrichous ciliates in all seasons. Instantaneous grazing rates on nanophytoplankton, as measured by changes in chlorophylla, varied from 0.12 to 0.43 d–1 and those on microphytoplankton from 0.19 to 0.68 d–1. Grazing rates did not change over 24 and 48 h intervals. This level of grazing corresponded to a daily loss of about 20 and 30% of standing stock of chlorophylla and about 50 and 70% loss of potential production in the two size fractions respectively. Taxon-specific grazing rates, calculated from microscopic enumeration, showed that small diatoms were grazed heavily, and their growth was controlled by grazing in late spring. In late summer and fall, undetermined flagellates and coccolithophores were also grazed at high rates but their growth rates were higher than the grazing rates, and therefore, were not controlled by microzooplankton. In general, microzooplankton grazed on whatever appropriate sized food was dominant in the experimental water. Their potential ability to control the growth of certain food species may be one of the causes determining the species composition of phytoplankton communities.  相似文献   

18.
Dissolved nutrients, Chl-a and primary productivity were measured from seven transects along the coastal waters of the southeastern Arabian Sea during northeast monsoon. Ten major estuaries were chosen to study the influence of estuarine discharge on the nutrient dynamics in the coastal waters. The mean water discharge of the estuaries in the north (64.8?±?18?×?105?m3?d?1) was found to be higher than those in the south (30.6?±?21.4?×?105?m3?d?1), whereas the nutrient concentrations were found to be higher in the estuaries of the south. The results from the offshore waters were discussed in accordance with the depth contour classification, that is, shelf (depth?≤?30?m) and slope waters (depth?≥?30?m). Our results suggest that the estuarine discharge plays a major role in the nutrient distribution in near shore shelf waters, whereas in shelf and slope waters, it was mainly controlled by in situ biological processes. The inorganic form of N to P ratios were found to be higher than Redfield ratio in slope waters when compared with shelf waters, suggesting that PO43? (<0.15?µmol?L?1) is a limiting nutrient for primary production. The multivariate statistical analysis revealed that the nutrient dynamics in the coastal waters was controlled by both biological and physical processes.  相似文献   

19.
In recent studies, we developed a combined nutrient removal-marine aquaculture process for the tertiary treatment of wastewater and the production of commercially important shellfish. Part of this process consists of an outdoor mass cultivation system for marine algae. During our previous experiments we observed that marine diatoms almost exclusively are the dominant algal species in our outdoor cultures. To better understand this phenomenon of diatom dominance we grew 16 species of marine algae in continuous monoculture under laboratory conditions simulating to some degree the conditions prevailing in our outdoor experiments. Species such as Skeletonema costatum, Monochrysis lutheri and Tetraselmis sp., which were never dominant in our outdoor cultures, grew as well in monoculture, as Phaeodactylum tricornutum, frequently, the prevalent species outdoors. However, when monocultures of Dunaliella tertiolecta and Thalassiosira pseudonana (3H) were purposely contaminated with P. tricornutum, the latter species quickly became dominant. It is suggested that a complex interaction of environmental factors is usually responsible for the dominance of a particular species; one such factor may be the nitrogen source in the growth media. Under conditions of virtually, complete nitrogen assimilation, the carbon: nitrogen ratio in the algae was high (7 to 8) when NO 3 - –N was the source of nitrogen, and low (4 to 6) when NH 4 + –N was the prime form of nitrogen. When algal growth was low, resulting in a large inorganic nitrogen residue, the carbon:nitrogen ratio was low regardless of whether NO 3 - –N or NH 4 + –N was the main nitrogen source.Contribution No. 3297 from the Woods Hole Oceanographic Institution.  相似文献   

20.
The influence of nutrient deprivation on cell-cycle progression was examined in two phytoplankton species, the diatom Thalassiosira weissflogii (actin) and the coccolithophorid Hymenomonas carterae (cocco II). The diatom was starved for nitrogen, silicon or both, whereas only nitrogen limitation was examined in H. carterae. In both species, nitrogen-starved cells were arrested in the early part of the cell cycle (G1 phase). In the diatom, silicon-starvation arrested cells in late G1 phase and also in the last part of the cell cycle (G2+M). In all cases, cell-cycle arrest could be reversed by addition of fresh medium, but cell-cycling times during the first generation were increased in comparison to those in nutrient replete, steady-state growth conditions. These results supply evidence for simultaneous dual-nutrient limitation of population growth and provide a mechanistic interpretation for the division patterns observed in cultures where nutrients are supplied periodically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号