首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The homogeneous degradation of the polychlorinated n-alkane, 1,2,9,10-tetrachlorodecane (T4C10), was studied in aqueous solutions of hydrogen peroxide, including Fenton and photo-Fenton reaction conditions. All solutions were adjusted to a pH of 2.8 and an ionic strength of 0.1 M NaClO4 prior to photolysis. T4C10 (2 x 10(-6) M) was substantially degraded by the H2O2/UV system (1.0 x 10(-2) M H2O2), with 60% disappearance in 20 min of irradiation in a photoreactor equipped with 300 nm lamps of light intensity 3.6 x 10(-5) Ein L(-1) min(-1) (established by ferrioxalate actinometry). The reaction produced stoichiometric amounts of chloride ion indicating complete dechlorination of the chlorinated n-alkane. T4C10 degraded very slowly under Fenton (Fe2+/H2O2/dark) and Fenton-like (Fe3+/H2O2/dark) conditions. However, when the same solutions were irradiated, T4C10 degraded more rapidly than in the H2O2/UV system, with 61% disappearance in 10 min of exposure. The rapid degradation is related to the enhanced degradation of hydrogen peroxide to oxidizing *OH radicals under photo-Fenton conditions. Degradation was inhibited in both the H2O2/UV and photo-Fenton systems by the addition of KI and tert-butyl alcohol due to *OH scavenging.  相似文献   

2.
Che H  Lee W 《Chemosphere》2011,82(8):1103-1108
Selective redox degradation of chlorinated aliphatics by Fenton reaction in pyrite suspension was investigated in a closed system. Carbon tetrachloride (CT) was used as a representative target of perchlorinated alkanes and trichloroethylene (TCE) was used as one of highly chlorinated alkenes. Degradation of CT in Fenton reaction was significantly enhanced by pyrite used as an iron source instead of soluble Fe. Pyrite Fenton showed 93% of CT removal in 140 min, while Fenton reaction with soluble Fe(II) showed 52% and that with Fe(III) 15%. Addition of 2-propanol to the pyrite Fenton system significantly inhibited degradation of TCE (99% to 44% of TCE removal), while degradation of CT was slightly improved by the 2-propanol addition (80-91% of CT removal). The result suggests that, unlike oxidative degradation of TCE by hydroxyl radical in pyrite Fenton system, an oxidation by the hydroxyl radical is not a main degradation mechanism for the degradation of CT in pyrite Fenton system but a reductive dechlorination by superoxide can rather be the one for the CT degradation. The degradation kinetics of CT in the pyrite Fenton system was decelerated (0.13-0.03 min−1), as initial suspension pH decreased from 3 to 2. The formation of superoxide during the CT degradation in the pyrite Fenton system was observed by electron spin resonance spectroscopy. The formation at initial pH 3 was greater than that at initial pH 2, which supported that superoxide was a main reductant for degradation of CT in the pyrite Fenton system.  相似文献   

3.
不同高级氧化法对水中低浓度药物甲硝唑降解过程的比较   总被引:3,自引:0,他引:3  
采用UV、H2O2、UV/H2O2、Fenton、UV/Fenton和UV/TiO2方法,对水中低浓度的药物甲硝唑进行降解。通过HPLC和UV-Vis光谱得到的甲硝唑去除率。详细讨论了Fe2+、TiO2和H2O2的初始浓度以及溶液的初始pH值对降解效率的影响。结果表明,UV/Fenton和UV/TiO2 2种系统对水中低浓度甲硝唑均有很好的去除效果,但前者的光催化效率更高。在甲硝唑浓度=6 μmol/L,H2O2和Fe2+的初始浓度分别为0.5 mg/L和2.94 μmol/L,pH=4的条件下,UV/Fenton方法对甲硝唑水溶液光催化的最佳效率为95.8%。  相似文献   

4.
The effects of Electrical Resistance Heating (ERH) on dechlorination of TCE and redox conditions were investigated in this study. Aquifer and groundwater samples were collected prior to and after ERH treatment, where sediments were heated to approximately 100 degrees C. Sediment samples were collected from three locations and examined in microcosms for 250 to 400 days of incubation. Redox activities, in terms of consumed electron acceptors, were low in unamended microcosms with field-heated sediments, although they increased upon lactate-amendment. TCE was not dechlorinated or stalled at cDCE with field-heated sediments, which was similar or lower compared to the degree of dechlorination in unheated microcosms. However, in microcosms which were bioaugmented with a mixed anaerobic dechlorinating culture (KB-1) and lactate, dechlorination past cDCE to ethene was observed in field-heated sediments. Dechlorination and redox activities in microcosms with field-heated sediments were furthermore compared with controlled laboratory-heated microcosms, which were heated to 100 degrees C for 10 days and then slowly cooled to 10 degrees C. In laboratory-heated microcosms, TCE was not dechlorinated and redox activities remained low in unamended and lactate-amended sediments, although organic carbon was released to the aqueous phase. In contrast, in field-heated sediments, high aqueous concentrations of organic carbon were not observed in unamended microcosms, and TCE was dechlorinated to cDCE upon lactate amendment. This suggests that dechlorinating microorganisms survived the ERH or that groundwater flow through field-heated sediments carried microorganisms into the treated area and transported dissolved organic carbon downstream.  相似文献   

5.
In this work a novel heterogeneous Fenton system based on Fe(0)/Fe3O4 composites is described. The composites with several Fe(0)/Fe3O4 ratios were prepared by two different methods, i.e. mechanical alloying of Fe(0) and Fe3O4 powders and controlled reduction of Fe3O4 with H2. Reaction studies and detailed Conversion Electron M?ssbauer surface characterization of the composites Fe(0)/Fe3O4, Fe(0), Fe3O4, alpha-Fe2O3 and gamma-Fe2O3 suggested that Fe2+surf species are essential to produce an active Fenton system. Kinetic studies for the oxidation of the dye methylene blue, used as an organic model molecule, and for the peroxide decomposition suggest that the reactions proceed via HO* radicals generated from Fe2+surf species and H2O2 in a Fenton like mechanism. The increase in activity caused by the addition of Fe(0) is discussed in terms of a creation of Fe2+surf species during the preparation of the composite and by an electron transfer mechanism from Fe(0) to Fe3+surf during the Fenton reaction to regenerate the Fe2+surf active species.  相似文献   

6.
以蒙脱土为载体制备负载型Fe/Al复合氧化物(FeAlOx/MMT)用于催化Fenton反应降解高浓度苯酚废水。实验结果表明,活性相FeAlOx中Fe/Al摩尔比为0.22时制备所得催化剂对Fenton反应具有最佳活性,且Fe/Al复合氧化物并未嵌入蒙脱土层间。在低温和高pH条件下催化体系存在诱导期,诱导期内FeAlOx/MMT缓释出Fe离子并进而由Fe离子催化溶液中的Fenton反应。通过对非均相催化降解苯酚废水的动力学研究发现,H2O2初始浓度、溶液的pH和反应温度对COD降解效率具有显著影响。调节降解过程中的温度序列和氧化剂引入程序能够缓解高温和高双氧水浓度双重因素耦合导致的HO.自消耗。在优化的降解条件下使用理论用量的H2O2可使得1 g/L的苯酚废水中苯酚降解率达到100%,而COD的降解率则达到97%。  相似文献   

7.
Catalytic dechlorination kinetics of p-dichlorobenzene over Pd/Fe catalysts   总被引:4,自引:0,他引:4  
Xu X  Zhou H  He P  Wang D 《Chemosphere》2005,58(8):1135-1140
p-Dichlorobenzene (p-DCB) was dechlorinated using Pd/Fe bimetallic catalytic reductants synthesized by chemical deposition. Batch experiments demonstrated that the Pd/Fe bimetallic particles could effectively dechlorinate p-DCB, p-DCB and its intermediate chlorobenzene were removed completely at a Pd loading of 0.02% (weight ratio of Pd to Fe) and Pd/Fe power to solution ratio about 4g 75 ml-1 in 90 min. Dechlorination was affected by various factors such as the reaction temperature, pH, Pd loading percentage over Fe and the introduction of Pd/Fe catalysts et al. Chlorobenzene represents partially stable dechlorinated intermediates in the generation of benzene and part of p-DCB was dechlorinated to benzene indirectly on the surface of Pd/Fe. The dechlorination of p-DCB took place on the surface of the Pd/Fe bimetallic particles in a pseudo-first-order reaction, the activation energy of the dechlorination reaction was determined to be 80.0 kJ mol-1 at the temperature range of 287-313 K.  相似文献   

8.
建立数学模型分析UV-Fenton对金属切削液废水的降解   总被引:2,自引:0,他引:2  
采用UV/Fenton技术处理金属切削液废水,并通过正交实验和单因素实验得到了最佳工作条件为:pH=2.5,H2O2(浓度30%)投加量=127.5 mL/L,Fe2+投加量=24.8 mmol/L,总反应时间=3 h,投加次数6次,此条件下金属切削液废水COD去除率达到95%。最后,通过正交实验数据和单因素模型方程利用1st Opt进行多元非线性拟合建立UV/Fen-ton对金属切削液废水COD降解率的数学模型方程,然后进行分析讨论。  相似文献   

9.
Ma X  Zheng M  Liu W  Qian Y  Zhao X  Zhang B 《Chemosphere》2005,60(6):796-801
Dechlorination of hexachlorobenzene (HCB) was achieved by a mixture of commercial CaO and alpha-Fe2O3 (CaO/alpha-Fe2O3) in closed systems at temperatures of 300 degrees C and 350 degrees C, which exhibited a synergic effect compared to CaO or alpha-Fe2O3 alone, and the dechlorination efficiency was dramatically enhanced. When CaO and alpha-Fe2O3 coexisted, HCB was dechlorinated by about 98% after 0.5 h reaction at 300 degrees C. All TeCB-, TrCB-, and DCB-isomers were detected, showing the presence of more than one dechlorination pathway. The pathway to form 1,2,4-TrCB must be a major pathway because the greatest amount of 1,2,4-TrCB was detected. There existed discrepancy of the material balance between the starting and dechlorinated materials. It implies that besides dechlorination other decomposition processes may be present. The mechanism of synergic effect of calcium and iron oxides was investigated.  相似文献   

10.
A microcosm study was conducted to evaluate dechlorination of trichloroethene (TCE) to ethene and survival of dechlorinating bacteria after a thermal treatment in order to explore the potential for post-thermal bioremediation. Unamended microcosms containing groundwater and aquifer material from a contaminated site dechlorinated TCE to cis-1,2-dichloroethene (cDCE), while lactate-amended microcosms dechlorinated TCE to cDCE or ethene. A thermal treatment was simulated by heating a sub-set of microcosms to 100 degrees C for 10d followed by cooling to 10 degrees C over 150 d. The heated microcosms demonstrated no dechlorination when unamended. However, when amended with lactate, cDCE was produced in 2 out of 6 microcosms within 300 d after heating. Dechlorination of TCE to cDCE thus occurred in fewer heated (2 out of 12) than unheated (10 out of 12) microcosms. In unheated microcosms, the presence of dechlorinating microorganisms, including Dehalococcoides, was confirmed using nested PCR of 16S rRNA genes. Dechlorinating microorganisms were detected in fewer microcosms after heating, and Dehalococcoides were not detected in any microcosms after heating. Dechlorination may therefore be limited after a thermal treatment in areas that have been heated to 100 degrees C. Thus, inflow of groundwater containing dechlorinating microorganisms and/or bioaugmention may be needed for anaerobic dechlorination to occur after a thermal treatment.  相似文献   

11.
Degradation of dyes in aqueous solutions by the Fenton process   总被引:3,自引:0,他引:3  
Xu XR  Li HB  Wang WH  Gu JD 《Chemosphere》2004,57(7):595-600
Degradation of 20 different dyes in aqueous solutions by the Fenton process was performed. These dyes include 6 types: acidic, reactive, direct, cationic, disperse and vat dyes. The former four types of dyes were decolorized and their TOC values were decreased greatly, while the color and TOC removals of the latter two types were lower. The catalytic activities of four metal ions on the degradation efficiencies of Vat Blue BO, which was chosen as a model dye because of its lowest color and TOC removals, were compared in the dark and under the ultraviolet light irradiation. The catalytic ability of different metals was Fe2+>Cu2+>Mn2+>Ag+ in the dark, and the same sequence was obtained under irradiation condition with greater degradation efficiency. Furthermore, the efficiencies of three oxidation processes, including H2O2/UV, Fe2+/H2O2 and Fe2+/H2O2/UV were compared. The results showed that the oxidation by Fe2+/H2O2/UV was the strongest, and even greater than the arithmetic sum of the other two processes, which suggests the synergistic effect of ultraviolet and ferrous ions on the degradation reaction.  相似文献   

12.
Liu X  Zhao W  Sun K  Zhang G  Zhao Y 《Chemosphere》2011,82(5):773-777
The conventional hydrothermal reaction with iron powder, NaOH and H2O as reactants was reported to occur at temperature above 423 K, and iron oxides (Fe3O4 and NaFeO2) and hydrogen were produced. In this study, microwave heating was adopted to take the place of conventional heating to induce the hydrothermal reaction. Under microwave irradiation, NaOH and H2O absorbed microwave energy by space charge polarization and dipolar polarization and instantly converted it into thermal energy, which initiated the hydrothermal reaction that involved with zero-valent iron. X-ray diffraction (XRD) analysis found Fe3O4/NaFeO2 and confirmed the occurrence of microwave-induced hydrothermal reaction. The developed microwave-hydrothermal reaction was employed for the dechlorination of PCBs. Hexadecane containing 100 mg L−1 of Aroclor1254 was used as simulative transformer oil, and the dechlorination of PCBs was evaluated by GC/ECD, GC/MS and ion chromatography. For PCBs in 10 mL simulative transformer oil, almost complete dechlorination was achieved by 750 W microwave irradiation for 10 min, with 0.3 g iron powder, 0.3 g NaOH and 0.6 mL H2O added. The effects of important factors including microwave power and the amounts of reactants added, on the dechlorination degree were investigated, moreover, the dechlorination mechanism was suggested. Microwave irradiation combined with the common and cheap materials, iron powder, NaOH and H2O, might provide a fast and cost-effective method for the treatment of PCBs-containing wastes.  相似文献   

13.
BACKGROUND: Chlorophenols (CPs) constitute a group of organic pollutants that are introduced into the environment as a result of several man-made activities, such as uncontrolled use of pesticides and herbicides, and as byproducts in the paper pulp bleaching. Promising removal technologies of chlorinated aromatics consist in the application of advanced oxidation processes (AOPs) that can provide an almost total degradation of a variety of contaminants. Among these, wide application find Fenton systems based on generation of reactive species having a high oxidizing power, such as hydroxyl radical HO*. Our objective was that of determining the overall degradation efficiency of the model compound 2,4-dichlorophenol (DCP) by thermal Fenton-type oxidation systems with a view toward defining in more details relevant process parameters, the effect of reaction temperature and of co-catalyst Cu2+. METHODS: Reaction conditions were similar to those generally adopted as optimal in many practical applications, i.e. pollutant/Fe2+ (as FeSO4) ratio ca. 20, Fe2+/Cu2+ (co-catalyst) 2:1, pH adjusted and controlled at pH 3, and H2O2 in excess (up to four-fold over the stoichiometric amount required for complete mineralization). RESULTS AND DISCUSSION: The results demonstrate that it is advantageous to carry out the reaction at a temperature markedly higher (70 degrees C) than ambient. The stepwise addition of H2O2 in aliquots yields an efficient transformation, while allowing a convenient control of the reaction exothermicity. Under these conditions, the essentially complete removal of the initial DCP is accomplished using just one equiv of H2O2 during 15 min; excess H2O2 (5 equivalents) yields extensive substrate mineralization. Also relevant, at 70 degrees C dechlorination of the initial DCP (and of derived reaction intermediates) is remarkably extensive (3-5% residual TOX), already with the addition of 1 equiv of H2O2. At the end of the reaction, IC and IC-MS analyses of the solution reveal that only low-molecular weight carboxylic acid (acetic, formic, oxalic, malonic, tartaric, etc.) contribute to the residual TOC. CONCLUSIONS: The whole of the results herein point to the advantage of performing the process at temperatures substantially higher than ambient (70 degrees C). Under the conditions adopted, almost complete degradation of the initial toxic compound can be achieved using hydrogen peroxide in fair excess (e.g., 3.5 equiv H2O2). RECOMMENDATIONS AND OUTLOOK: In applying practical Fenton-type degradation systems to heavily polluted wastes, either for the pre-treatment of waters with a high COD value prior to biodegradation or for complete mineralization of pollutants, the set up of appropriate reaction conditions appears to be a key factor. Also, it is desirable to keep the concentration of iron salts within the lower limits in order to minimize the production and disposal of iron oxide sludges.  相似文献   

14.
UV-Fenton体系预处理四氢呋喃废水实验研究   总被引:1,自引:0,他引:1  
采用UV-Fenton体系预处理四氢呋喃废水,实验结果表明,pH值、反应时间、Fe2+和H2O2投加量等因素对处理效果有较大的影响。实验确定的最佳反应条件为:原水pH=5,Fe2+投加量2.5 mmol/L,H2O2投加量12 mmol/L,反应时间90 min,连续曝气,在此条件下,COD去除率可达85%左右。经UV-Fenton体系处理后,废水的B/C值由0.16增至0.47,可生化性提高,可满足后续生化处理的要求。  相似文献   

15.
INTENTION, GOAL, SCOPE, BACKGROUND: Since the intermediate products of some compounds can be more toxic and/or refractory than the original compund itself, the development of innovative oxidation technologies which are capable of transforming such compounds into harmless end products, is gaining more importance every day. Advanced oxidation processes are one of these technologies. However, it is necessary to optimize the reaction conditions for these technologies in order to be cost-effective. OBJECTIVE: The main objectives of this study were to see if complete mineralization of 4-chlorophenol with AOPs was possible using low pressure mercury vapour lamps, to make a comparison of different AOPs, to observe the effect of the existence of other ions on degradation efficiency and to optimize reaction conditions. METHODS: In this study, photochemical advanced oxidation processes (AOPs) utilizing the combinations of UV, UV/H2O2 and UV/H2O2/Fe2+ (photo-Fenton process) were investigated in labscale experiments for the degradation and mineralization of 4-chlorophenol. Evaluations were based on the reduction of 4-chlorophenol and total organic carbon. The major parameters investigated were the initial 4-chlorophenol concentration, pH, hydrogen peroxide and iron doses and the effect of the presence of radical scavengers. RESULTS AND DISCUSSION: It was observed that the 4-chlorophenol degradation efficiency decreased with increasing concentration and was independent of the initial solution pH in the UV process. 4-chlorophenol oxidation efficiency for an initial concentration of 100 mgl(-1) was around 89% after 300 min of irradiation in the UV process and no mineralization was achieved. The efficiency increased to > 99% with the UV/H2O2 process in 60 min of irradiation, although mineralization efficiency was still around 75% after 300 min of reaction time. Although the H2O2/4-CP molar ratio was kept constant, increasing initial 4-chlorophenol concentration decreased the treatment efficiency. It was observed that basic pHs were favourable in the UV/H2O2 process. The results showed that the photo-Fenton process was the most effective treatment process under acidic conditions. Complete disappearance of 100 mgl(-1) of 4-chlorophenol was achieved in 2.5 min and almost complete mineralization (96%) was also possible after only 45 min of irradiation. The efficiency was negatively affected from H2O2 in the UV/H2O2 process and Fe2+ in the photo-Fenton process over a certain concentration. The highest negative effect was observed with solutions containing PO4 triple ions. Required reaction times for complete disappearance of 100 mgl(-1) 4-chlorophenol increased from 2.5 min for an ion-free solution to 30 min for solutions containing 100 mgl(-1) PO4 triple ion and from 45 min to more than 240 min for complete mineralization. The photodegradation of 4-chlorophenol was found to follow the first-order law. CONCLUSION: The results of this study showed that UV irradiation alone can degrade 4-CP, although at very slow rates, but cannot mineralize the compound. The addition of hydrogen peroxide to the system, the so-called UV/H2O2 process, significantly enhances the 4-CP degradation rate, but still requires relatively long reaction periods for complete mineralization. The photo-Fenton process, the combination of homogeneous systems of UV/H2O2/Fe2+ compounds, produces the highest photochemical elimination rate of 4-CP and complete mineralization is possible to achieve in quite shorter reaction periods when compared with the UV/H2O2 process. RECOMMENDATIONS AND OUTLOOK: It is more cost effective to use these processes for only purposes such as toxicity reduction, enhancement of biodegradability, decolorization and micropollutant removal. However the most important point is the optimization of the reaction conditions for the process of concern. In such a case, AOPs can be used in combination with a biological treatment systems as a pre- or post treatment unit providing the cheapest treatment option. The AOP applied, for instance, can be used for toxicity reduction and the biological unit for chemical oxygen demand (COD) removal.  相似文献   

16.
Aguiar A  Ferraz A 《Chemosphere》2007,66(5):947-954
Several phenol derivatives were evaluated regarding their capacities for Fe(3+) and Cu(2+) reduction. Selected compounds were assayed in Fenton-like reactions to degrade Azure B. 3,4-Dihydroxyphenylacetic, 2,5-dihydroxyterephtalic, gallic, chromotropic and 3-hydroxyanthranilic acids were the most efficient reducers of both metallic ions. The reaction system composed of 3-hydroxyanthranilic acid/Fe(3+)/H(2)O(2) was able to degrade Azure B at higher levels than the conventional Fenton reaction (87% and 75% of decolorization after 20min reaction, respectively). Gallic and syringic acids, catechol and vanillin induced Azure B degradations at lower levels as compared with conventional Fenton reaction. Azure B was not degraded in the presence of 10% (v/v) methanol or ethanol, which are OH radical scavengers, confirming the participation of this radical in the degradation reactions. Iron-containing reactions consumed substantially more H(2)O(2) than reactions containing copper. In iron-containing reactions, even the systems that caused a limited degradation of the dye consumed high concentrations of H(2)O(2). On the other hand, the reactions containing Fe(3+), H(2)O(2) and 3-hydroxyanthranilic acid or 3,4-dihydroxyphenylacetic acid were the most efficient on degradation of Azure B and also presented the highest H(2)O(2) consumption. These results indicate that H(2)O(2) consumption occurs even when the dye is not extensively degraded, suggesting that part of the generated OH radicals reacts with the own phenol derivative instead of Azure B.  相似文献   

17.
Zhang F  Chen J  Zhang H  Ni Y  Liang X 《Chemosphere》2007,68(9):1716-1722
Dechlorination of octachlorodibenzo-p-dioxin (OCDD) was carried out in ethanol-water (v/v=1:1) solution of NaOH in the presence of Pd/C catalysts with the use of H(2). The substrate was dechlorinated with Pd/C under mild conditions (atmospheric pressure and <100 degrees C) to give a chlorine-free product, dibenzo-p-dioxin (DD), in high yields. After reaction of 3h at 50 degrees C, 95.9% OCDD was degraded to low dechlorinated congeners and the yield of DD was 77.4%. We have also studied the dechlorination selectivity of chlorine atoms on the different substituted positions and postulated the dechlorination pathway of OCDD. For OCDD, the 2-position has higher reactivity than 1-position, but the difference is very small. From the distribution statistics of the intermediates during the reaction, we postulate that the steric effect plays an important role during the reaction and affect the dechlorination pathway of OCDD.  相似文献   

18.
Fenton组合工艺处理焦化厂生化出水的应用研究   总被引:2,自引:1,他引:1  
比较了Fenton氧化、Fenton氧化+活性炭及Fenton氧化+生物活性炭工艺对焦化厂生化出水的处理效果.结果表明,Fe2+、H2O2的投加量分别为56、27.2 mg/L时,Fenton氧化工艺对水样的UV254、颜色度(VIS380)、COD和总氰均有较好的去除效果;Fenton氧化+活性炭工艺在有效去除UV254、VIS380、COD和总氰的同时,能强化活性炭的吸附效果,并能显著提高水样的生化性能;Fenton氧化+生物活性炭工艺能有效去除UVM254,VIS380、COD与总氰,使出水达到<污水综合排放标准>(GB 8978-1996)一级标准.  相似文献   

19.
A study was conducted to explore some of the basic processes of polychlorinated biphenyl (PCB) destruction by a new technology termed electrochemical peroxidation process (ECP). ECP represents an enhancement of the classic Fenton reaction (H2O2 + Fe2+) in which iron is electrochemically generated by steel electrodes. Focus was on the extent of adsorption of a mixture of Aroclor 1248 on steel electrodes in comparison to iron filings. Commercially available zero-valent iron filings rapidly adsorbed PCBs from an aqueous solution of Aroclor 1248. Within 4 h, all the PCBs were adsorbed at 1%, 5%, and 10% Fe0 (w/v) concentrations. Little difference in adsorption was found between acidic (2.3) and unamended solutions (pH 5.5), even though significant differences in iron oxidation state and Fe2+ concentrations were measured in solution. PCB adsorption also occurs on steel electrodes regardless of the pH or electric current applied (AC or DC), suggesting the combination of oxidizing (free radical-mediated reactions) and reducing (dechlorination reactions) iron-mediated degradation pathways may be possible. Extraction of the iron powder after 48 h of contact time yielded the progressive recovery of biphenyl with increasing Fe mass(from 0.4% to 3.5%) and changes of the PCB congener-specific pattern as a consequence of dechlorination. A variety of daughter congeners similar to those accumulated during anaerobic microbial dechlorination of Aroclor 1248 in contaminated sediments indicate preferential removal of meta- and para-chlorines.  相似文献   

20.
Chen WS  Juan CN  Wei KM 《Chemosphere》2005,60(8):1072-1079
Fenton's reagent, UV/H2O2 and UV/Fenton's reagent were employed to mineralize dinitrotoluene (DNT) isomers and 2,4,6-trinitrotoluene (TNT) of spent acid in toluene nitration process. The bench-scale experiments were conducted to elucidate the influence of various operating variables on the performance of removal of total organic compounds (TOC) from spent acid, including reaction temperature, concentration of ferrous ion and H2O2 dosage. It is remarkable that organic compounds were completely mineralized by Fenton oxidation, of which removal efficiency is superior to that of UV/H2O2. Nevertheless, it makes slight difference between Fenton oxidation and UV/Fenton oxidation. According to the spectra identified by gas chromatograph/mass spectrometer (GC/MS), it is proposed that oxidative degradation of DNT isomers leads to o-, m-, p-mononitrotoluene (MNT) and 1,3-dinitrobenzene respectively. Besides, the oxidation of 2,4,6-TNT gives the 1,3,5-trinitrobenzene intermediate. Apparently, Fenton oxidation is promising for purification of spent acid industrially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号