首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
为明晰不同粒径纳米银(AgNPs)对欧洲亚硝化毛杆菌(Nitrosomonas europaea)的毒性效应,采用室内培养方式,探究10nm和50nm的AgNPs对N.europaea生长、氮转化能力、细胞结构、活性氧生成和功能基因表达的影响.结果表明,AgNPs暴露抑制N.europaea生长,随着暴露时间的延长,细菌生长抑制率增加,在4h达到最大值;培养基中NH4+向NO2-转化速率减缓,N.europaea的铵态氮转化能力降低;扫描电镜(SEM)图像显示AgNPs造成部分细菌表面塌陷且有孔洞,细胞膜受损严重;透射电镜(TEM)图像显示AgNPs造成细菌内部核物质消融,细胞质膜界限模糊;流式细胞仪(FCM)检测发现AgNPs增加细胞内活性氧的生成;qRT-PCR技术对AgNPs暴露后N.europaea功能基因amoA、hao、merA表达进行测定,发现AgNPs抑制N.europaea功能基因的转录表达.综上所述,AgNPs通过与细胞膜相互作用和产生氧化应激损伤N.europaea,抑制amoA和merA的表达,进而影响铵态氮转化过程,且小粒径AgNPs的毒性强于大粒径.  相似文献   

2.
对1株具有铁氧化和好氧反硝化功能的反硝化无色杆菌2-5(Achromobacter denitrificans strain 2-5)强化SBR反应器脱氮性能与细菌群落结构的影响进行研究。结果表明:在SBR反应器中,添加Fe0和Achromobacter denitrificans strain 2-5能提高SBR反应器对NH4+-N和TN的去除效果,与普通SBR反应器相比,NH4+-N和TN的平均去除率分别提高了4.13%、15.73%。通过高通量测序分析,发现各反应器微生物群落结构组成存在差异。从门水平来看,变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)为优势菌门。添加Fe0和Achromobacter denitrificans strain 2-5使反应器中具有好氧反硝化功能的细菌多样性增加,强化了SBR反应器的脱氮效果,研究结果为Fe0促进好氧反硝化菌生长,强化污水脱氮提供了依据,有利于好氧反硝化菌的实际应用。  相似文献   

3.
氢自养反硝化去除饮用水中硝酸盐的试验研究   总被引:2,自引:2,他引:0  
陆彩霞  顾平 《环境科学》2008,29(3):671-676
研究了附着生长型序批式反应器内以氢气为电子供体的自养反硝化技术对饮用水中NO3的去除效果.采用透气膜作为氢气的扩散装置,增强氢气的传质效率,降低其爆炸的危险性.结果表明,氢自养反硝化技术能够有效地去除饮用水中的NO-3,NO-3;-N和TN的最高去除速率分别达6.45 mg/(L·h)和4.89 mg/(L·h),NO-2-N有累积,最大累积量达11.58 mg/L.反应结束时,出水pH值为10.56,DOC增长了0.91 mg/L.建立了NO-3和NO-2还原反应的零级动力学模型,动力学常数分别为0.33~0.60 g/(g·d)和0.37~O.45 g/(g·d).氢气压力大于40 kPa时,My-3-N和TN的去除速率变化不大,分别为(5.97±0.08)mg/(L·h)和(4.25±O.04)mg/(L·h);氢气压力为25 kPa时,NO-3和TN的去除速率均显著降低.进水pH值为6抑制了反硝化反应,NO-3-N的去除速率仅为1.83 mg/(L·h);pH值高于8利于反硝化进行,No-3-N的去除速率为3.13 mg/(L.h).  相似文献   

4.
为考察自养脱氮污泥亚硝化活性快速恢复的策略,在3个反应器内分别采用不同的方法对经过长期冷冻保存后的污泥进行了恢复活性的研究.其中R1为MBR(膜生物反应器),采用低ρ(DO)(0.30 mg/L)连续流恢复策略;R2为SBR(序批式反应器),采用低ρ(DO)(0.30 mg/L)间歇流恢复策略;R3为SBR,采用低ρ(NH4+-N)预培养-高曝气-低ρ(DO)运行三阶段的恢复策略.结果表明,R1的恢复时间为46 d,NH4+-N氧化速率达到4.99 mg/(h·g)(以N计),最终ρ(MLSS)达到5.43 g/L;R2的恢复时间为39 d,NH4+-N氧化速率达到4.61 mg/(h·g),最终ρ(MLSS)达到4.47 g/L;R3的恢复时间为48 d,NH4+-N氧化速率达到5.64 mg/(h·g),最终ρ(MLSS)达到5.16 g/L. 3个反应器均能长期抑制亚硝酸盐氧化细菌的活性,使亚硝化稳定运行. 3个反应器中,R3恢复所需时间最长,但污泥活性最好; R1中的污泥活性较低,但是膜组件有效截留了污泥,达到了最高的ρ(MLSS).研究显示,通过厌氧预培养后转为膜生物反应器连续流运行的策略,可有助于污泥的极大保留及污泥活性的最大恢复.   相似文献   

5.
针对养猪废水厌氧消化液高ρ(NH4+-N)的特点,构建了上层填充沸石强化硝化、下层填充砖渣强化反硝化的功能分区型人工湿地,考察其启动阶段运行性能、硝化区及反硝化区污染物去除性能. 结果表明,湿地以间歇方式运行(饱和液位无变化),启动后NO3--N的产生速率为0.014 6 kg/(m3·d),湿地底部出水的ρ(NO3--N)平均值为14.94 mg/L,明显低于沸石层的21.77 mg/L. CODCr主要在湿地上层硝化区被去除,平均去除率为64.82%. 随着湿地启动,下层由于反硝化作用消耗的有机物增至56.67 mg/L. 在进水期的前15 min,CODCr、NH4+-N、TP的去除率最大,NO3--N溶出量(以ρ计)最高,达42.30 mg/L. 沸石层10、20和30 cm处硝化速率基本稳定,沸石层的Eh均在400 mV以上. 与间歇方式相比,湿地以潮汐流方式(进水期与落干期时间比为1 h∶23 h)运行时,CODCr和TN去除率分别由78.45%和41.99%升至82.62%和53.41%. 研究显示,功能分区型人工湿地通过上层硝化、下层反硝化方式可有效去除养殖废水厌氧消化液中的NH4+-N.   相似文献   

6.
伍玲丽  张旭  舒昆慧  张丽  司友斌 《环境科学》2019,40(6):2939-2947
为研究纳米银对土壤硝化微生物及其氮转化的影响,采用土壤培养方式,对不同剂量纳米银(10、50、100 mg·kg~(-1))和银离子(1、5、10 mg·kg~(-1))暴露下黄棕壤和水稻土硝化细菌数量、土壤酶活性、amoA基因丰度、NH_4~+-N与NO_3~--N含量变化以及土壤潜在氨氧化速率进行研究.结果表明,纳米银和银离子暴露后,2种土壤亚硝酸细菌和硝酸细菌数量显著减少;土壤酶活性受到抑制,对脲酶的影响大于过氧化氢酶;土壤氨氧化细菌(AOB)和氨氧化古菌(AOA)的amoA基因丰度均降低,对AOB基因丰度的影响大于AOA.在2种土壤中外源添加(NH_4)_2SO_4时,随着纳米银和银离子暴露剂量增加,土壤NH_4~+-N含量累积,NO_3~--N含量减少,氨氧化速率降低,铵态氮向硝态氮的转化受阻.综上所述,纳米银和银离子对土壤硝化微生物产生毒害作用并影响铵态氮转化,且影响程度与土壤理化性质有关.  相似文献   

7.
氨氧化细菌的富集培养及影响因素的研究   总被引:1,自引:0,他引:1  
采用间歇培养方式,对富集氨氧化细菌的过程进行了研究,并探讨了温度、初始pH值、DO、碱度、进水氨氮浓度对短程硝化作用的影响.实验发现:氨氧化细菌富集完成后,氨氧化速率达到22.8 mg/(L·h),亚硝酸盐积累率在80%左右,氨氧化细菌的数量可提高至富集前的32.6倍.此外,对影响因素的研究发现,当温度30℃、pH=8.5、DO=0.5 mg/L、HCO3-/NH4+-N(摩尔比)=1.67、进水氨氮小于400 mg/L时,有利于实现短程硝化.  相似文献   

8.
利用SBR(序批式反应器)研究了不同ρ(NaCl)、曝气时间、ρ(CODCr)、进水ρ(NH4+-N)对AGS(好氧颗粒污泥)短程硝化反硝化的影响. 结果表明,在pH、温度和ρ(DO)为8.0、30 ℃和3 mg/L条件下,以及ρ(NaCl)、曝气时间、ρ(CODCr)和ρ(NH4+-N)为20 g/L、8 h、600 mg/L和70 mg/L时,ηA(NH4+-N去除率)和NAR(NO2--N积累率)达到最佳. 当进水ρ(NaCl)为10 g/L时,NOB(亚硝酸盐氧化菌)被完全抑制,AOB(氨氧化菌)能够保持正常活性. ρ(CODCr)较高时能够促进NAR的提高. 经过116 d的培养,AGS短程硝化反硝化的耐盐极限为50 g/L,此时ηA小于50%,AOB被严重抑制,AGS丧失硝化能力. AGS的同步硝化反硝化作用明显,SND(同步硝化反硝化率)平均值为24.2%,SNDV(同步硝化反硝化比速率)平均值为0.63 h-1,低ρ(DO)比高ρ(DO)下的SND同步硝化反硝化作用更为明显.   相似文献   

9.
采用可表达绿色荧光蛋白的大肠杆菌(lac::GFP)为模型,研究了新鲜的和经氯化钠溶液老化的纳米银(AgNPs)生物有效性。经0、0.5、1、2μg/m L新鲜的AgNPs处理大肠杆菌10 h后,利用酶标仪、荧光显微镜、流式细胞仪和质粒抽提试剂盒检测AgNPs毒性。经不同浓度氯化钠(Cl/Ag摩尔比分别为0、100、500、800)老化12 d后的AgNPs(0、0.5、1、2μg/m L)及其离心后相应上清处理大肠杆菌10 h后,利用紫外可见分光光度计检测AgNPs在Na Cl溶液中吸收光谱,并用酶标仪和流式细胞仪统计细菌GFP抑制率。结果表明:AgNPs抑制大肠杆菌GFP表达,影响重组质粒复制,即有显著的生长抑制作用;氯离子的存在可加速AgNPs溶解,且在老化过程中,随着Cl/Ag比例增大,AgNPs的抑制作用有所下降。  相似文献   

10.
ABS树脂废水有机物反硝化潜势及降解特性   总被引:1,自引:0,他引:1       下载免费PDF全文
为优化ABS树脂废水的生物脱氮工艺,测定了废水的反硝化潜势,分析了废水反硝化阶段有机物的降解特性. 结果表明,ABS树脂废水的反硝化碳源充足,并且含有易降解有机物和慢速降解有机物等具有不同反硝化速率的有机物. 在废水ρ(SCOD)(SCOD为溶解性化学需氧量)为755.4~1 043.3 mg/L,ρ(TN)为86.1~111.1 mg/L的情况下,总反硝化潜势为95.4~144.6 mg/L (以NO3--N计),其中易降解有机物的反硝化速率为3.4~4.6 mg/(g·h) (以NO3--N计),反硝化潜势为33.2~49.7 mg/L;2类慢速降解有机物的反硝化速率分别为2.2~3.2和0.4~0.9 mg/(g·h),反硝化潜势之和为62.2~94.9 mg/L. 反硝化过程中,废水SCOD的去除率为48.9%~62.8%,ON(有机氮)去除率为81.5%~95.7%. 腈类物质得到明显降解,并生成大量NH4+-N,是反硝化碳源的重要组成部分. 三维荧光光谱表明,废水中的芳香族有机物苯环结构在反硝化条件下未得到有效降解,但在好氧条件下得到快速降解.   相似文献   

11.
UASB-MBR组合工艺处理模拟黄连素废水   总被引:1,自引:0,他引:1  
采用升流式厌氧污泥床-膜生物反应器(UASB-MBR)组合工艺处理模拟黄连素废水,模拟废水中有机污染物由葡萄糖和黄连素配制,以葡萄糖作为初级能源物质,通过微生物协同降解作用去除废水中的黄连素.在水力停留时间(HRT)为24 h,进水ρ(CODCr),ρ(NH4+-N)和ρ(黄连素)分别为1 717~4 393,91.8~158.7和64.4~276.8 mg/L,废水中黄连素的ρ(CODCr)贡献率为7.5%~25.0%的条件下,组合工艺可实现ρ(CODCr),ρ(NH4+-N)和ρ(黄连素)的去除率分别为92.5%~95.9%,67.0%~98.9%和99%以上,废水中黄连素主要通过UASB去除,去除率为95.2%~98.9%.在进水CODCr负荷为0.54~1.88 kg/(m3·d),黄连素负荷为0.71~12.42 g/(m3·d)的条件下,MBR可保证出水ρ(CODCr),ρ(黄连素)和ρ(NH4+-N)分别低于50,1.0和2.0 mg/L;随着MBR进水ρ(黄连素)升至3.45~12.42 mg/L,在黄连素的微生物毒性胁迫作用下,MBR中污泥呈由分散态向聚集态的转变.   相似文献   

12.
为探究"稀土王国"江西省赣南地区离子型稀土矿对周边水体环境的影响,以离子型稀土矿分布密集区定南县濂江月子河流域和龙迳河龙头流域为研究对象,综合分析研究区特征污染物ρ(NH4+-N)空间分布特征,采用相关性分析和主成分分析揭示其主要污染来源及影响因素.结果表明:①离子型稀土矿停产整顿半年后,濂江月子河流域和龙迳河龙头流域ρ(NH4+-N)超过1.00和2.00 mg/L的采样点分别达72%和68%;pH范围为2.95~7.66,平均值分别为6.23和5.53,水体总体上偏酸性;ρ(TN)、ρ(NH4+-N)、EC与ρ(NO3--N)变异系数较大,均介于0.80~1.50之间.②相关性分析结果显示,ρ(NH4+-N)与ρ(TN)、EC均呈极显著正相关(P < 0.01);ρ(NH4+-N)与pH呈显著负相关(P < 0.05).③流经稀土尾矿区的水体中ρ(NH4+-N)随距离增加呈现明显的空间梯度分布特征,即距稀土矿区边界200 m处水体中ρ(NH4+-N)最高(12.20~200.00 mg/L),其次为1.15 km内(3.69~11.80 mg/L)及3.5 km以上水体(0.80~1.51 mg/L),矿区周边未受到采矿活动影响的水体中ρ(NH4+-N)最低(0.03~0.15 mg/L).④PCA结果表明,2条河流的主要环境影响因子为ρ(TN)、ρ(NH4+-N)、pH和EC,主要受到周边稀土矿山尾矿的强烈影响.研究显示,离子型稀土矿原位浸矿开采停产半年后,重点小流域水体中ρ(NH4+-N)高概率超标的现状仍然存在,受稀土开采活动影响较大.建议进一步开展重点小流域NH4+-N剩余"库容"精算和矿山周边地表水定期监测.   相似文献   

13.
香溪河沉积物-水界面的营养盐交换特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究香溪河库湾沉积物-水界面的营养盐交换特征,于2016年6月采集香溪河库湾上覆水和沉积物间隙水样品,分析不同形态氮、磷的空间分布特征并进行相关性分析,计算沉积物-水界面氮、磷的释放通量.结果表明:香溪河库湾上覆水和沉积物间隙水中ρ(TP)的变化范围分别为0.484~0.927和0.511~2.220 mg/L,ρ(TN)的变化范围分别为0.739~4.302和3.571~14.011 mg/L;上覆水和沉积物间隙水中氮、磷质量浓度在沿程和垂向上具有一定的变化规律,上游区域沉积物间隙水中氮、磷质量浓度大于下游区域,沉积物间隙水中氮、磷质量浓度明显大于上覆水;香溪河沉积物总体上表现为PO43--P和NH4+-N的"源",中下游区域沉积物表现为NO3--N的"源",而中上游区域表现为NO3--N的"汇";PO43--P的释放通量范围为0.129~0.339 mg/(m2·d),NH4+-N的释放通量范围为0.213~1.415 mg/(m2·d),NO3--N的释放通量范围为-1.109~3.446 mg/(m2·d).研究显示,上覆水的环境条件对于沉积物-水界面营养盐交换存在一定的影响,但影响程度各有不同.   相似文献   

14.
探究NH4+-N冲击对微压反应器(MPR)污染物去除效率的影响,通过提高单周期瞬时进水NH4+-N浓度至40,50 mg/L,对MPR进行冲击。结果表明:常规负荷下,MPR具有良好的污染物去除效果。冲击周期降解历时数据显示,在进水40 mg/L NH4+-N冲击周期内进水ρ(COD)、ρ(NH4+-N)、ρ(TP)分别为192.58,40.96,2.52 mg/L,出水分别为38.16,0.70,0.26 mg/L,去除效果无显著变化,出水TN浓度上升至16.04 mg/L。增加NH4+-N冲击浓度至50 mg/L,冲击周期内NH4+-N降解速率不变,反硝化速率提高,出水ρ(NH4+-N)、ρ(TN)升高至4.95,17.62 mg/L,TN降解主要受碳源不足影响;TP去除效果无变化,冲击后57个周期内除磷系统受到影响,出水TP出现较大波动,最高浓度达到2.6 mg/L。以上结果表明,MPR系统受到NH4+-N冲击后1个周期内,脱氮性能即可恢复,说明冲击对脱氮系统造成了可逆的短期影响,但对除磷系统造成不可逆的长期影响。  相似文献   

15.
一株高适应性Nitrosomonas eutropha CZ-4的脱氨特性   总被引:1,自引:0,他引:1  
熊英  向斯  程凯 《中国环境科学》2019,39(8):3365-3372
从垃圾渗滤液中分离得到了一株亚硝化单胞菌Nitrosomonas eutropha CZ-4,其16S rDNA序列与N.eutropha C91的相似性达99%.研究了pH值、温度、游离亚硝酸浓度、盐度等对其生长的影响,并测试了其在垃圾渗滤液、黑臭水和富营养化湖水中的脱氨效果.结果表明,该菌的最适生长pH值为7.3~8.7,最适生长温度为30.9℃,游离亚硝酸和盐度对该菌的半数抑制浓度分别约为0.11mg/L与2%.在最佳发酵条件下,该菌的最大氨氮去除速率为58mg/(L·h),最短倍增时间为8.2h;在不同类型的污水/地表水(初始氨氮浓度为0.66~603mg/L)中,该菌的最大氨氮去除速率为11.4mg/(L·h),最短倍增时间为10.9h,最低残余氨氮浓度为0.11mg/L.  相似文献   

16.
为深入认识河流NH4+-N的转化降解过程,以生物量、温度和c(NH4+-N)这3项因子为对象,开展河流底泥潜在硝化速率模型研究.采集典型污染河流底泥样品,设置3个生物量梯度(高、中、低)、5个c(NH4+-N)梯度(0.13、0.63、1.13、2.13、4.13 mmol/L)、4个温度梯度(15、20、30、40℃),测定不同条件下河流底泥潜在硝化速率,并进一步构建了潜在硝化速率模型,定量分析了生物量、温度和c(NH4+-N)对潜在硝化速率的影响.结果表明:①生物量对底泥的潜在硝化速率有显著影响,高、中、低生物量条件下,河流底泥潜在硝化速率范围分别为0.10~0.26、0.03~0.16和0.02~0.07 μmol/h.②底泥潜在硝化速率随温度呈现指数增长,但高温具有抑制作用,各温度梯度下k(硝化速率常数)分别为5.9、9.3、18.1、10.6 μmol/(g·h),15~30℃范围内θ(温度校正系数)为1.074.③c(NH4+-N)对潜在硝化速率的限制作用符合Monod方程,高、中、低生物量条件下Ks(半饱和浓度)的平均值分别为0.02、0.05、0.13 mmol/L.研究显示,潜在硝化速率模型较好反映了生物量、温度和c(NH4+-N)对河流底泥潜在硝化速率的影响,为定量认识底泥硝化能力提供了有效手段.   相似文献   

17.
将膨胀颗粒污泥床(EGSB)和曝气生物滤池(BAF)集成,EGSB出水进入BAF进行短程硝化,BAF出水外回流至EGSB反应器为后者提供亚硝态氮,在不需外部投加亚硝态氮的条件下,实现厌氧氨氧化、甲烷化和短程硝化反硝化的耦合, 系统地处理ρ(氨氮)为50 mg/L和ρ(CODCr)为500 mg/L的合成废水.结果表明:当外回流比为200%时,系统CODCr,氨氮和总氮的去除率分别为92.4%,97.4%和80.6%;出水ρ(氨氮),ρ(亚硝态氮),ρ(硝态氮)和ρ(CODCr)分别为1.05,4.30,2.56和35.3 mg/L;CODCr,总氮和氨氮的去除负荷速率分别为1.770,0.137和0.164 kg/(m3·d). 与传统的活性污泥过程相比,EGSB-BAF集成系统回收甲烷1.03  L/d,占系统CODCr去除量的37.0%;在系统总氮的去除过程中,厌氧氨氧化途径占35.9%,短程反硝化途径占47.4%,全程反硝化途径占16.7%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号