首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微波辐射预处理对污泥结构及脱水性能的影响   总被引:34,自引:0,他引:34       下载免费PDF全文
将微波辐射用于污水污泥预处理,考察了辐射130s内污泥沉降、过滤脱水性能的变化,并通过粒度分布及污泥胞外聚合物含量变化探讨了相关机理,分析了微波辐射对污泥结构的破坏过程.结果表明,适宜的微波辐射可明显改善污泥结构及脱水性,900W微波辐射50s,SV减少48%,真空抽滤含水率由原泥直接抽滤的85%降为71%.污泥结构破坏是改善污泥脱水性的重要因素,胞外糖含量介于15.8~16.5mg/gMLSS时,污泥脱水性最佳.核酸能较好地指示微波辐射下污泥细胞壁开始破裂的时间,过量的微波辐射因破坏污泥的细胞壁结构、导致胞内物质大量溢出、污泥黏度增加,脱水性恶化.  相似文献   

2.
Citrate (Ct) was chosen as a typical chelator used in the Fe2+-peroxydisulfate (PDS) process to improve sludge dewaterability.The PDS-Fe2+-Ct process exhibited better performance in sludge dewatering than PDS-Fe2+.Specifically,with a PDS dosage of 1.2 mmol/g VS,the molar ratio of PDS/Fe2+and Ct/Fe2+were 4:5 and 1:4,respectively,the capillary suction time decreased from 155.8 to 24.8sec,and the sludge cake water content decreased from 82.62%t...  相似文献   

3.
To investigate the influences of alkaline pretreatment on anaerobic digestion (AD) and sludge dewaterability after AD, waste activated sludge was adjusted to different pH values (8, 9, 10, 11, 12) and placed at ambient temperature for 24 hr. The samples were then adjusted to the initial pH and subjected to 25 days of AD. The results showed that, when compared with the control (pH 6.8), total suspended solids (TSS) and volatile suspended solids (VSS) reduction following pretreatment at pH 9-11 increased by 10.7%-13.1% and 6.5%-12.8%, respectively, while biogas production improved by 7.2%-15.4%. Additionally, significant enhancement of sludge dewaterability after AD occurred when pretreatment at pH 8-9 was conducted. The proteins and carbohydrates transferred from the pellet and tightly bound extracellular polymeric substances (TB-EPS) fractions to the slime and loosely bound EPS (LB-EPS) fractions after pretreatment and during the AD process, and the concentrations of proteins and carbohydrates in the slime fraction had a good linear relationship with the normalized capillary suction time (CST). During the AD process, the normalized CST was positively correlated with the organic materials in the loosely bound fraction of the sludge matrix (R2≥qslant 0.700, p < 0.01), while it was negatively correlated with the organic materials in the tightly bound fraction (R2≥qslant 0.702, p < 0.01). These results suggest that alkaline pretreatment could break the EPS matrix and release inner organic materials, thus influencing the efficiency of the AD process and dewaterability after AD.  相似文献   

4.
Biopolymer solubilization is considered to be the rate-limiting stage of anaerobic digestion of waste activated sludge(WAS). Oxidation processes have been proven to be effective in disrupting sludge flocs and causing solubilization of the solid biopolymers. In this study,WAS was treated by NaNO2 or H2 O2 oxidation at p H of 2. The changes in extracellular polymeric substances properties and the speciation of heavy metals were investigated. The results revealed that both NaNO2 and H2 O2 treatments were effective in solubilizing organics in WAS, while the conversion of biopolymers in the two treatment processes was different. Free nitrous acid destroyed the gel network structure of EPS, and organic materials were released from the solid phase to the supernatant. Indigenous peroxidase catalyzed H2 O2 to produce hydroxyl radicals which caused significant solubilization of biopolymers, and the protein-like substances were further degraded into micro-molecule polypeptides or amino acids at high dosages of H2 O2. During the oxidation processes, Zn, Cd and Cu, with excellent mobility, tended to migrate to the supernatant, and thus were easy to remove through the liquid–solid separation process. Ni and As showed moderate migration ability, of which the residual fraction tended to transform into reducible and soluble fractions. With poor mobility, Cr and Pb mainly existed in the forms of residual and oxidizable fractions, which were difficult to dissolve and remove from WAS. Both NaNO2 and H2 O2 treatment resulted in the enhancement of sludge solubilization efficiency and heavy metal mobility in WAS, but different heavy metals showed distinct migration and transformation behaviors.  相似文献   

5.
为了解热活化过一硫酸盐(PMS)调理对厌氧消化污泥脱水性能的影响,本文以毛细吸水时间(CST)、污泥比阻(SRF)和泥饼含水率(WC)为评价指标,通过比较不同温度条件下(25~80℃)热活化PMS调理过程中PMS分解速率、自由基产生、胞外聚合物(EPS)含量和组成,以及污泥形貌特征和粒径分布等变化规律,探讨作用效果及机理.结果表明,热活化PMS调理能显著改善厌氧消化污泥的脱水性能,且温度的升高可增强脱水改善的程度.在温度80℃、PMS投加量4 mmol·g-1 DS(干物质)和处理5 min的条件下,厌氧消化污泥CST、SRF和WC分别从原始污泥的141 s、2.31×1013 m·kg-1、85%降至35 s、1.95×1012 m·kg-1和63%.热活化PMS调理过程中产生的SO4-·和·OH破坏了污泥絮体结构,大幅消减了TB-EPS中的蛋白质(尤其是芳香类蛋白和色氨酸类蛋白),同时污泥粒径的增大(100 μm→1000 μm)可能是厌氧消化污泥脱水性能提高的主要原因.该结果可为热活化过硫酸盐调理技术应用于厌氧消化污泥的高效脱水提供参考.  相似文献   

6.
Manganese ion (Mn2+) generated from metallurgical, steel making and chemical industries enters sewage treatment plants and affects the sludge activity and flocculation. The effect of Mn2+ on the removal of chemical oxygen demand (COD) and total phosphorus (TP) and sludge activity were investigated in anoxic zone of an anaerobic/anoxic/oxic (A2O) process. The compositions and structures of extracellular polymeric substances (EPS) were characterized using three-dimensional excitation emission matrix fluorescence spectroscopy (3D-EEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) to reveal the relationship among Mn2+, EPS and sludge flocculation.The results showed that low concentration of Mn2+ (<5 mg/L) improved removal efficiencies of COD and TP and increased the activity of alkaline phosphatase, acid phosphatase and dehydrogenase. Meanwhile, the addition of Mn2+ increased total EPS, sludge contact angle, Zeta potential and sludge particle size, and thus enhanced sludge flocculation. However, high concentration of Mn2+ (>10 mg/L) hindered microbial flocculation and reduced removal efficiencies of the pollutants. When Mn2+was 5 mg/L, removal efficiencies of COD and TP reached 65% and 90%, respectively. Sludge flocculation was the best and SVI was 70.56 mL/g. The changes of Mn2+ concentration caused deviation of groups’ compositions in LB-EPS and TB-EPS, where the main components were always protein (PN) and polysaccharide (PS). The addition of Mn2+ resulted in the degradation of humic acids. However, it did not give rise to significant morphology changes of EPS.  相似文献   

7.
Effects of sludge age on volatile fatty acids (VFAs) production and Phosphorus (P) release during anaerobic acidification of waste activated sludge (WAS) were investigated. Sequencing batch reactors (SBR) fed with simulating domestic sewage were applied to produce WAS of different sludge ages, and batch tests were used for anaerobic acidification. The maximum dissolved total organic carbon, release of  PO43+?P, and accumulation of acetate (C2), propionate (C3), butyrate (C4), and valerate (C5) decreased by 56.2%, 55.8%, 52.6%, 43.7%, 82.4% and 84.8%, respectively, as the sludge age of WAS increased from 5 to 40 days. Limited degradation of protein played a dominating role in decreasing DTOC and VFAs production. Moreover, the increase in molecular weight of organics and organic nitrogen content in the supernatant after acidification suggested that the refractory protein in WAS increased as sludge age extended. Although the production of C2, C3, C4, and C5 from WAS decreased as the sludge age increased, the proportions of C2 and C3 in VFAs increased, which might be due to the declined production of C5 from protein and the faded genus Dechlorobacter. Keeping sludge age of WAS at a relatively low level (<10 days) is more appropriate for anaerobic acidification of WAS as internal carbon sources and P resource.  相似文献   

8.
Extracellular polymeric substances (EPS) form a stable gel-like structure to combine with water molecules through steric hindrance, making the mechanical dewatering of wastewater sludge considerably difficult. Coagulation/flocculation has been widely applied in improving the sludge dewatering performance, while sludge properties (organic fraction and solution chemistry conditions) are highly changeable and have important effects on sludge flocculation process. In this work, the alkalinity effects on sludge conditioning with hydroxy-aluminum were comprehensively investigated, and the interaction mechanisms between EPS and hydroxy-aluminum with different speciation were unraveled. The results showed that the effectiveness of hydroxy-aluminum conditioning gradually deteriorated with increase in alkalinity. Meanwhile, the polymeric hydroxy-aluminum (Al13) and highly polymerized hydroxy-aluminum (Al30) were hydrolysed and converted into amorphous aluminum hydroxide (Al(OH)3), which changed the flocculation mechanism from charge neutralization and complexing adsorption to hydrogen bond interaction. Additionally, both Al13 and Al30 showed higher binding capacity for proteins and polysaccharides in EPS than monomeric aluminum and Al(OH)3. Al13 and Al30 coagulation changed the secondary structure of proteins in EPS, which caused a gelation reaction to increase molecular hydrophobicity of proteins and consequently sludge dewaterability. This study provided a guidance for optimizing the hydroxy-aluminum flocculation conditioning of sludge with high solution alkalinity.  相似文献   

9.
Ethanol-type sludge fermentation has recently attracted much attention because it can enhance direct interspecies electron transfer and thus improve the anaerobic digestion of waste activated sludge(WAS). In this paper, the enhancement of short-term ethanol-type fermentation of WAS via adding Saccharomyces was investigated. The experimental results show that the maximum ethanol production of 1030.8 ± 20.6 mg/L was achieved, with the optimum fermentation conditions of a p H of 5.1, temperature of...  相似文献   

10.
活性污泥胞外聚合物中蛋白质的探针分析方法   总被引:2,自引:0,他引:2  
沈荣 《环境科学学报》2008,28(1):192-196
应用微相吸附-光谱修正技术(Microsurface adsorption-spectral correction,简称MSASC),利用刚果红(Congo Red,简称CR)探针测定了活性污泥胞外聚合物(Extracellular polymeric substances,简称EPS)中蛋白质(Protein)的含量,与常用的Folin酚法比较,结果一致,蛋白加标回收率为94.5%~107.1%,相对标准偏差(RSD)<4.5%.对反应机理的分析和产物结合常数的计算结果表明,在pH 2.21时CR-Protein作用符合Langmuir单分子层吸附理论,产物的结合比79∶1,结合常数K=2.17×106,聚集形式为Protein·CR79,摩尔吸收系数ε664r=8.50×105L·mol-1·cm-1.  相似文献   

11.
The changes of protein secondary structures in the extracellular polymeric substances(EPS) extracted from activated sludge by four different methods were studied by analyzing the amide I region(1700–1600 cm-1) of the Fourier transform infrared spectra and model protein test. The results showed the molecular weight distribution of organic matter extracted by centrifugation, heating and cation exchange resin(CER) was similar, while the EPS extracted by centrifugation(Control) and CER had similar fluorescent organic matter. The protein secondary structures of extracted EPS by the four methods were different. The similarities of protein secondary structures between the EPS extracted by CER with the Control were the highest among the four extracted EPS. Although the EPS yield extracted by formaldehyde + NaOH method were the highest, its protein secondary structures had the lowest similarity with those extracted by the Control. Additionally, the effects of centrifugation and CER extraction on the secondary structures of bovine serum albumin were also lower than that of other extraction processes. CER enables the second maximum extraction of EPS and maximum retention of the original secondary structure of proteins.  相似文献   

12.
In this study, a full-scale internal circulation(IC) reactor coupled with an external circulation system was developed to treat high-strength leachate from a municipal solid waste(MSW)incineration plant, in which anaerobic sludge granulation was intensively investigated. Results showed that the IC reactor achieved excellent treatment performance under high organic loading rates(OLR) of 21.06–25.16 kg chemical oxygen demand(COD)/(m3? day). The COD removal efficiency and biogas yield respectively reached 89.4%–93.4% and 0.42–0.50 m3/kg COD.The formation of extracellular polymeric substances(EPS) was closely associated with sludge granulation. Protein was the dominant component in sludge EPS, and its content was remarkably increased from 21.6 to 99.7 mg/g Volatile Suspended Solid(VSS) during the reactor operation. The sludge Zeta potential and hydrophobicity positively correlated with the protein/polysaccharide ratio in EPS, and they were respectively increased from-26.2 m V and 30.35% to-10.6 m V and 78.67%, which was beneficial to microbial aggregation. Three-dimensional fluorescence spectroscopy(3 D-EEM) and Fourier transform infrared spectroscopy(FT-IR)analysis further indicated the importance of protein-like EPS substances in the sludge granulation. Moreover, it was also found that the secondary structures of EPS proteins varied during the reactor operation.  相似文献   

13.
Organic polymeric flocculants are commonly used in improving dredged sludge dewaterability, but less attention has been paid to residual water quality. In this paper, the effects of cationic etherified starch (CS) and poly-dimethyl diallyl ammonium chloride (PDDA) on dredged sludge dewatering efficiency and residual water quality of Baiyangdian lake were comprehensively investigated and evaluated by analytic hierarchy process (AHP). The results indicated that PDDA had stronger electrical effect and flocculation performance compared with CS, resulting in more efficient dewatering performance. PDDA can reduce the pollutants of discharged residual water, while CS significantly promoted the increase of NH4+-N and NO3-N in the residual water. The increase of NH4+-N in the residual water of CS was due to the release of dredged sludge, while the increase of NO3-N was introduced by CS leaching. AHP showed that PDDA performed better in flocculation treatment of dredged sludge than other organic polymers. This work provides a method for optimization of flocculation treatment for dredged sludge dewaterability.  相似文献   

14.
To investigate the effect of ultrasonic pretreatment on anaerobic digestion and sludge dewaterability and further to probe into the influencing factors on sludge dewaterability, sludge flocs were stratified into four fractions: (1) slime; (2) loosely bound extracellular polymeric substances (LB-EPS); (3) tightly bound EPS (TB-EPS); and (4) EPS-free pellets. The results showed that ultrasonic pretreatment increased the anaerobic digestion efficiency by 7%–8%. Anaerobic digestion without ultrasonic pretreatment deteriorated the sludge dewaterability, with the capillary suction time (CST) increased from 1.42 to 47.3 (sec L)/g-TSS. The application of ultrasonic pretreatment firstly deteriorated the sludge dewaterability (normalized CST increased to 44.4 (sec L)/g-TSS), while subsequent anaerobic digestion offset this effect and ultimately decreased the normalized CST to 23.2 (sec L)/g-TSS. The dewaterability of unsonicated sludge correlated with protein (p = 0.003) and polysaccharide (p = 0.004) concentrations in the slime fraction, while that of sonicated sludge correlated with protein concentrations in the slime and LB-EPS fractions (p < 0.05). Fluorescent excitationemission matrix analysis showed that the fluorescence matters in the LB-EPS fraction significantly correlated with sludge dewaterability during anarobic digestion.  相似文献   

15.
Vivianite is often found in reducing environments rich in iron and phosphorus from organic debris degradation or phosphorus mineral dissolution. The formation of vivianite is essential to the geochemical cycling of phosphorus and iron elements in natural environments. In this study, extracellular polymeric substances (EPS) were selected as the source of phosphorus. Microcosm experiments were conducted to test the evolution of mineralogy during the reduction of polyferric sulfate flocs (PFS) by Shewanella oneidensis MR-1 (S. oneidensis MR-1) at EPS concentrations of 0, 0.03, and 0.3 g/L. Vivianite was found to be the secondary mineral in EPS treatment when there was no phosphate in the media. The EPS DNA served as the phosphorus source and DNA-supplied phosphate could induce the formation of vivianite. EPS impedes PFS aggregation, contains redox proteins and stores electron shuttle, and thus greatly promotes the formation of minerals and enhances the reduction of Fe(III). At EPS concentration of 0, 0.03, and 0.3 g/L, the produced HCl-extractable Fe(II) was 107.9, 111.0, and 115.2 mg/L, respectively. However, when the microcosms remained unstirred, vivianite can be formed without the addition of EPS. In unstirred systems, the EPS secreted by S. oneidensis MR-1 could agglomerate at some areas, resulting in the formation of vivianite in the proximity of microbial cells. It was found that vivianite can be generated biogenetically by S. oneidensis MR-1 strain and EPS may play a key role in iron reduction and concentrating phosphorus in the oligotrophic ecosystems where quiescent conditions prevail.  相似文献   

16.
Four batch experiments of hydrolysis and acidification were carried out to investigate the distributions of proteins (PN) and polysaccharides (PS) in the sludge, the PN/PS ratio, the particle sizes, and their relationship with sludge dewaterability (as determined by capillary suction time, CST). The sludge flocs were stratified through centrifugation- and ultrasound-based method into four fractions: (1) slime, (2) loosely bound extracellular polymeric substances (LB-EPS), (3) tightly bound EPS (TB-EPS), and (4) pellet. The results showed that PN was mainly partitioned in the pellet (80.7%) and TB-EPS (9.6%) fractions, while PS distributed evenly in the four fractions. During hydrolysis and acidification, PN was transferred from the pellet and TB-EPS fractions to the slime fraction, but PS had no significant transfer trends. The mean particle sizes of the sludge flocs decreased with hydrolysis and acidification. The pH had a more significant influence on the dewaterability of sludge flocs than temperature. Sludge dewaterability during hydrolysis and acidification processes greatly deteriorated from 9.7 s at raw sludge to 340–450 s under alkaline conditions. However, it was just slightly increased under acidic conditions. Further investigation suggested that CST was a ected by soluble PN, soluble PN/PS, and particle sizes of sludge flocs, but was a ected slightly by total PN, PS, or PN/PS in the whole sludge flocs and other fractions (except slime).  相似文献   

17.
Widespread use of azole fungicides and low removal efficiency in wastewater treatment plants (WWTPs) have led to the elevated concentration of azole fungicides in receiving environment. However, there was limited research about the removal mechanism of azole fungicides in the biological treatment of WWTPs. Imidazole fungicide climbazole and triazole fungicide fluconazole were selected to investigate the biodegradation mechanism of azole fungicides in activated sludge under aerobic conditions. Climbazole was found to be adsorbed to solid sludge and resulted in quick biodegradation. The degradation of climbazole in the aerobic activated sludge system was fitted well by the first-order kinetic model with a half-life of 5.3 days, while fluconazole tended to stay in liquid and had only about 30% of loss within 77 days incubation. Ten biotransformation products of climbazole were identified by high resolution mass spectrometry using suspect and non-target screening method. But no biodegradation products of fluconazole were identified due to its limited removal. The possible biodegradation pathways for climbazole were proposed based on the products identification and pathway prediction system, and involves oxidative dehalogenation, side chain oxidation and azole ring loss. The findings from this study suggest that it should be a concern for the persistence of fluconazole in the environment.  相似文献   

18.
Effect of ultrasonic pretreatment on sludge dewaterability was determined and the fate of extracellular polymeric substances (EPS) matrix in mesophilic anaerobic digestion after ultrasonic pretreatment was studied. Characteristics of proteins (PN), polysaccharides (PS), excitation-emission matrix (EEM) fluorescence spectroscopy and molecular weight (MW) distribution of dissolved organic matters (DOM) in different EPS fractions were evaluated. The results showed that after ultrasonic pretreatment, the normalized capillary suction time (CST) decreased from 44.4 to 11.1 (sec·L)/g total suspended solids (TSS) during anaerobic digestion, indicating that sludge dewaterability was greatly improved. The normalized CST was significantly correlated with PN concentration (R2 = 0.92, p 0.01) and the PN/PS ratio (R2 = 0.84, p 0.01) in the loosely bound EPS (LB-EPS) fraction. Meanwhile, the average MW of DOM in the LB- EPS and tightly bound EPS (TB-EPS) fractions also had a good correlation with the normalized CST (R2 0.66, p 0.01). According to EEM fluorescence spectroscopy, tryptophan-like substances intensities in the slime, LB-EPS and TB-EPS fractions were correlated with the normalized CST. The organic matters in the EPS matrix played an important role in influencing sludge dewaterability.  相似文献   

19.
Cathodic reduction of CO2 and anodic oxidation of organic matters are crucial to methane-producing microbial electrolysis cell (MEC) applied in anaerobic digestion of waste activated sludge. However, cathodic CO2 reduction is usually restrained by slow metabolism rates of H2-utilizing methanogens and low electron-capturing capacity of CO2, which consequently slows down the anodic oxidation that participates to sludge disintegration. Herein, a strategy with adding nitrate as electron acceptor to foster electronic transfer between the anode and cathode was proposed to improve anodic oxidation. Results showed that the average efficiency of anodic oxidation in the nitrate-added MEC increased by 55.9%. Accordingly, volatile suspended solid removal efficiency in the nitrate-added MEC was 21.9% higher than that of control MEC. Although the initial cumulative methane production in the nitrate-added MEC was lower than that of control MEC, the cumulative methane production in 24?days was 8.9% higher. Fourier transform infrared spectroscopy analysis indicated that anodic oxidation of MEC with nitrate accelerated the disintegration of sludge flocs and cell walls. Calculation on current signal further revealed that anodic oxidation driven by cathodic nitrate reduction was the main mechanism responsible for the improved sludge digestion.  相似文献   

20.
This study investigated a combined low-thermal and CaO2 pretreatment to enhance the volatile fatty acid (VFA) production from waste activated sludge (WAS). The fermentative product was added to a sequencing batch reactor (SBR) as an external carbon source to enhance nitrogen removal. The results showed that the combined pretreatment improved WAS solubilization, releasing more biodegradable substrates, such as proteins and polysaccharides, from TB-EPS to LB-EPS and S-EPS. The maximum VFA production of 3529 ± 188 mg COD/L was obtained in the combined pretreatment (0.2 g CaO2/g VS + 70 °C for 60 min), which was 2.1 and 1.4-fold of that obtained from the sole low-thermal pretreatment and the control test, respectively. Consequently, when the fermentative liquid was added as an external denitrification carbon source, the effluent total nitrogen decreased to Class A of the discharge standard for pollutants in rural wastewater treatment plants in most areas of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号