共查询到20条相似文献,搜索用时 20 毫秒
1.
Competition–colonization models can address the population dynamics of remnants following habitat destruction. Spatially explicit versions have produced qualifications of the extinction debt issue and limited hyperdynamism in populations following habitat destruction. Although spatially explicit, these efforts examined few indicators of the spatial structure of the landscape. An existing model is modified here to represent a difference in niche adaptations as well as the competition–colonization tradeoff. Several landscape metrics are calculated at each iteration. Although the addition of niche differentiation did not change the qualitative outcome of the model, the spatial metrics show that some aspects of landscape structure, i.e., average patch area and proximity, become hyperdynamic and remain so. Small fluctuations in species populations are magnified in their spatial expression because the landscape is simplified. 相似文献
2.
Human-induced habitat loss and degradation are major threats to wetland species as reflected in the fact that wetlands have declined by more than 50% in Europe and North America during the last century. Both current and historic land-use patterns are likely to be significant determinants of wetland species' distributions; however their relative importance is often unknown. We studied the importance of local (study pond) and landscape (current and 18th-century landscape) characteristics in explaining the occurrence and species richness of amphibians (Rana arvalis, Bufo bufo, and Triturus vulgaris) on the Swedish island of Gotland, where more than 40% of wetlands have been lost since the 18th century. Current local habitat characteristics were the strongest determinants of occurrence for all study species. Additionally, species occurrence was related to current and historic landscape characteristics, which generally explained equal amounts of the variation in species-occurrence data. The proportions of both current and historic arable land were negative determinants of amphibian occurrence and species richness, indicating that agricultural land use may have an overall negative impact on amphibians, and that amphibians may occur less frequently in areas with a long agricultural history. Likewise, historic forest area was positively related to B. bufo occurrence and species richness, whereas current forests had no significant effects, suggesting that there may be a lag in the response of amphibians to agriculture-mediated habitat loss. Our results suggest that historic land-use patterns may influence current amphibian populations and that inclusion of historic land-use information could be a valuable tool in future studies on amphibian-habitat relations. 相似文献
3.
Defining patch mosaic functional types to predict invasion patterns in a forest landscape. 总被引:2,自引:0,他引:2
Olivier Chabrerie Frédéric Roulier Hélène Hoeblich Emmanuelle Sebert-Cuvillier Déborah Closset-Kopp Isabelle Leblanc Jér?me Jaminon Guillaume Decocq 《Ecological applications》2007,17(2):464-481
Alien plant invasions contribute significantly to global changes by often affecting biodiversity and ecosystem processes. Operational methods for identifying landscape attributes that promote or constrain plant invasions are urgently needed to predict their future spread and manage them efficiently. We combined landscape and functional ecology concepts to define patch mosaic functional types (PMFTs) as groups of cells showing the same response to a plant invasion in a heterogeneous forest landscape. The invasion of a European temperate forest by the American black cherry (Prunus serotina) has been chosen as a case study. A set of variables was collected, mapped using a Geographic Information System, and analyzed with multivariate analyses to correlate landscape traits with Prunus serotina abundance in each cell of a grid overlaid on the forest. A risk index was derived and mapped for three invasion levels: seedling colonization, tree establishment, and ecosystem invasion. Five PMFTs were identified and characterized by a set of traits related to soil properties, land use, disturbance, and invasion history. Scots pine plantations on podzols were the most invasible, while cells dominated by hydromorphic or calcareous soils were the most resistant. Most colonized patch mosaics provided suitable conditions for future establishment and invasion. Being strongly spatially connected, suitable patches provide corridors for Prunus serotina to colonize new parts of the forest. Conversely, the most resistant PMFTs were spatially agglomerated in the south of the forest and could act as a barrier. Colonization, establishment, and invasion risk maps were finally obtained by combining partial risks associated with each landscape trait at the cell scale. Within a heterogeneous landscape, we defined and organized PMFTs into a hierarchy, according to their associated risk for colonization, establishment, or invasion by a given invasive species. Each hierarchical level should be associated with a management strategy aiming at reducing one or more partial risk. Monitoring safe areas, extending cutting rotations, harvesting recently colonized stands tree by tree, promoting a multilayered understory vegetation, cutting down reproducing alien trees, favoring shade-tolerant, fast-growing, native tree species, removing alien trees at the leading edge, and proposing soil enrichment or irrigation in heavily invaded areas are recommended. 相似文献
4.
The unrestricted use of agrochemicals in crop fields lowers the overall prospects of survival and yield of wetland fish species like Anabas testudineus. In the present study, the impact of different doses of SUMIDON-40, an organophosphate (OP) pesticide on the hematopoiesis of Anabas testudineus has been examined. The small lymphoid hemoblast and consequently the polychromatophilic erythroblasts decreased significantly at both sublethal and LC50 dose-treated fish. The percentage of mature erythrocyte also fell significantly in the pesticide-treated groups. The erythropoietic efficiency was increased in fish exposed to sublethal dose but fell in fish exposed to LC50 dose. Among leucocytes, the percentage of neutrophils rose in Anabas testudineus in both treatment groups and percentage of macrophage decreased significantly only in LC50 dose-treated group. The percentage of lymphocyte increased significantly in sublethal dose-treated groups. The overall leukopoietic efficiency, however, was elevated significantly in both treatment groups. These facts clearly indicated that pesticides affected the overall process of hematopoiesis in this fish species. Flow cytometric analysis of cell cycle in pronephric kidney cells confirmed changes in percentage of cell death and DNA synthesis following pesticide exposure. Data indicate that habitat deterioration from agrochemicals impedes the hematopoiesis in this species resulting in reduced tolerance in their usually hypoxic habitat environment. 相似文献
5.
The forest succession model FORDYN is developed based on TREEDEV model. TREEDEV is a process-based tree growth model, that calculates tree growth based on carbon and nitrogen balance, and is calculated using on the photo-production of leaves, respiration, nitrogen content of all organisms and that in soil, and other losses due to respiration, litter and renewal of stems, branches, leaves and roots. In the FORDYN model succession is divided into three phases called early, middle and late succession, and the transition between these three succession phases is distinguished by a difference in leaf area index. As a verification of the model we used the characteristics and available data of a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve (DHS-BR). The model was validated with natural forest data. In addition, a sensitivity analysis was performed in which 30 independent variables were varied and analyzed in connection with their influence on 16 dependent variables describing forest conditions. The simulation results describe the changes in total biomass, carbon and nitrogen change in plant–litter–soil system of an undisturbed monsoon evergreen broad-leaved forest during succession. We compared these findings with simulation in which different logging management strategies were used. The results show that having a longer logging cycle, delaying the first logging time and a smaller logging fraction the scenario can contribute to a sustainable forest development, while still having a positive economic yield. 相似文献
6.
Associations of forest bird species richness with housing and landscape patterns across the USA. 总被引:3,自引:0,他引:3
A M Pidgeon V C Radeloff C H Flather C A Lepczyk M K Clayton T J Hawbaker R B Hammer 《Ecological applications》2007,17(7):1989-2010
In the United States, housing density has substantially increased in and adjacent to forests. Our goal in this study was to identify how housing density and human populations are associated with avian diversity. We compared these associations to those between landscape pattern and avian diversity, and we examined how these associations vary across the conterminous forested United States. Using data from the North American Breeding Bird Survey, the U.S. Census, and the National Land Cover Database, we focused on forest and woodland bird communities and conducted our analysis at multiple levels of model specificity, first using a coarse-thematic resolution (basic models), then using a larger number of fine-thematic resolution variables (refined models). We found that housing development was associated with forest bird species richness in all forested ecoregions of the conterminous United States. However, there were important differences among ecoregions. In the basic models, housing density accounted for < 5% of variance in avian species richness. In refined models, 85% of models included housing density and/or residential land cover as significant variables. The strongest guild response was demonstrated in the Adirondack-New England ecoregion, where 29% of variation in richness of the permanent resident guild was associated with housing density. Model improvements due to regional stratification were most pronounced for cavity nesters and short-distance migrants, suggesting that these guilds may be especially sensitive to regional processes. The varying patterns of association between avian richness and attributes associated with landscape structure suggested that landscape context was an important mediating factor affecting how biodiversity responds to landscape changes. Our analysis suggested that simple, broadly applicable, land use recommendations cannot be derived from our results. Rather, anticipating future avian response to land use intensification (or reversion to native vegetation) has to be conditioned on the current landscape context and the species group of interest. Our results show that housing density and residential land cover were significant predictors of forest bird species richness, and their prediction strengths are likely to increase as development continues. 相似文献
7.
Jeffrey A Hicke Jennifer C Jenkins Dennis S Ojima Mark Ducey 《Ecological applications》2007,17(8):2387-2402
In the western United States, forest ecosystems are subject to a variety of forcing mechanisms that drive dynamics, including climate change, land-use/land-cover change, atmospheric pollution, and disturbance. To understand the impacts of these stressors, it is crucial to develop assessments of forest properties to establish baselines, determine the extent of changes, and provide information to ecosystem modeling activities. Here we report on spatial patterns of characteristics of forest ecosystems in the western United States, including area, stand age, forest type, and carbon stocks, and comparisons of these patterns with those from satellite imagery and simulation models. The USDA Forest Service collected ground-based measurements of tree and plot information in recent decades as part of nationwide forest inventories. Using these measurements together with a methodology for estimating carbon stocks for each tree measured, we mapped county-level patterns across the western United States. Because forest ecosystem properties are often significantly different between hardwood and softwood species, we describe patterns of each. The stand age distribution peaked at 60-100 years across the region, with hardwoods typically younger than softwoods. Forest carbon density was highest along the coast region of northern California, Oregon, and Washington and lowest in the arid regions of the Southwest and along the edge of the Great Plains. These results quantify the spatial variability of forest characteristics important for understanding large-scale ecosystem processes and their controlling mechanisms. To illustrate other uses of the inventory-derived forest characteristics, we compared them against examples of independently derived estimates. Forest cover compared well with satellite-derived values when only productive stands were included in the inventory estimates. Forest types derived from satellite observations were similar to our inventory results, though the inventory database suggested more heterogeneity. Carbon stocks from the Century model were in good agreement with inventory results except in the Pacific Northwest and part of the Sierra Nevada, where it appears that harvesting and fire in the 20th century (processes not included in the model runs) reduced measured stand ages and carbon stocks compared to simulations. 相似文献
8.
The model of spatial distribution of main forest soil groups in Croatia was developed as a function of basic pedogenetic factors: lithological substratum, macroclimate and relief. Used data about soil group, lithological substratum, terrain slope and aspect were collected on 1881 soil profiles. Macroclimatic data were estimated for each soil profile by spatial interpolation between meteorological stations. Feedforward neural networks were used as modelling tool. The final model has total classification correctness of 63.5% for training data set and 62.3% for independent test data set. The best result (86.4%) was achieved for fluvisols which are strongly spatially correlated with alluvial sediment in a flood plains. The worst result was achieved for luvisol (14.2%) which mainly comprised very old soils, probably developed under pedogenetic factors different from actual. The model was applied on entire Croatian territory aiming at construction of potential spatial distribution of main forest soils (without human impact), which was compared by the potential spatial distribution of major forest types modelled independently. 相似文献
9.
10.
Tropical forest destruction and fragmentation of habitat patches may reduce population persistence at the landscape level. Given the complex nature of simultaneously evaluating the effects of these factors on biotic populations, statistical presence/absence modelling has become an important tool in conservation biology. This study uses logistic regression to evaluate the independent effects of tropical forest cover and fragmentation on bird occurrence in eastern Guatemala. Logistic regression models were constructed for 10 species with varying response to habitat alteration. Predictive variables quantified forest cover, fragmentation and their interaction at three different radii (200, 500 and 1000 m scales) of 112 points where presence of target species was determined. Most species elicited a response to the 1000 m scale, which was greater than most species’ reported territory size. Thus, their presence at the landscape scale is probably regulated by extra-territorial phenomena, such as dispersal. Although proportion of forest cover was the most important predictor of species’ presence, there was strong evidence of area-independent and -dependent fragmentation effects on species presence, results that contrast with other studies from northernmost latitudes. Species’ habitat breadth was positively correlated with AIC model values, indicating a better fit for species more restricted to tropical forest. Species with a narrower habitat breadth also elicited stronger negative responses to forest loss. Habitat breadth is thus a simple measure that can be directly related to species’ vulnerability to landscape modification. Model predictive accuracy was acceptable for 4 of 10 species, which were in turn those with narrower habitat breadths. 相似文献
11.
The importance of spatial autocorrelation,extent and resolution in predicting forest bird occurrence 总被引:3,自引:0,他引:3
Concerns about declines in forest biodiversity underscore the need for accurate estimates of the distribution and abundance of organisms at large scales and at resolutions that are fine enough to be appropriate for management. This paper addresses three major objectives: (i) to determine whether the resolution of typical air photo-derived forest inventory is sufficient for the accurate prediction of site occupancy by forest birds. We compared prediction success of habitat models using air photo variables to models with variables derived from finer resolution, ground-sampled vegetation plots. (ii) To test whether incorporating spatial autocorrelation into habitat models via autologistic regression increases prediction success. (iii) To determine whether landscape structure is an important factor in predicting bird distribution in forest-dominated landscapes. Models were tested locally (Greater Fundy Ecosystem [GFE]) using cross-validation, and regionally using an independent data set from an area located ca. 250 km to the northwest (Riley Brook [RB]). We found significant positive spatial autocorrelation in the residuals of at least one habitat model for 76% (16/21) of species examined. In these cases, the logistic regression assumption of spatially independent errors was violated. Logistic models that ignored spatial autocorrelation tended to overestimate habitat effects. Though overall prediction success was higher for autologistic models than logistic models in the GFE, the difference was only significantly improved for one species. Further, the inclusion of spatial covariates did little to improve model performance in the geographically discrete study area. For 62% (13/21) of species examined, landscape variables were significant predictors of forest bird occurrence even after statistically controlling for stand-level variability. However, broad spatial extents explained less variation than local factors. In the GFE, 76% (16/21) of air photo and 81% (17/21) of ground plot models were accurate enough to be of practical utility (AUC > 0.7). When applied to RB, both model types performed effectively for 55% (11/20) of the species examined. We did not detect an overall difference in prediction success between air photo and ground plot models in either study area. We conclude that air photo data are as effective as fine resolution vegetation data for predicting site occupancy for the majority of species in this study. These models will be of use to forest managers who are interested in mapping species distributions under various timber harvest scenarios, and to protected areas planners attempting to optimize reserve function. 相似文献
12.
广东省森林植被碳储量空间分布格局 总被引:4,自引:0,他引:4
基于广东省2007年森林资源清查档案数据,采用材积源生物量法,量化广东省森林植被碳储量,研究广东省森林植被碳储量空间分布格局。结果表明,广东省森林植被碳储量为246.35Tg,碳密度为22.96mg·hm-2。受人为干扰和环境因素的影响,广东省森林植被碳储量在不同经济区和流域空间分布格局严重不均。就不同经济区而言,粤北及周边经济区森林植被碳储量最大,达180.22Tg;珠三角经济区次之,为34.60Tg;接着是粤西沿海经济区,为21.49Tg;粤东沿海经济区最小;仅为10.04Tg。在不同流域方面,森林植被碳储量依次为:北江流域〉东江流域〉西江流域〉韩江流域〉其他流域。广东省乔木林碳储量为202.85Tg,以中幼龄林为主,占77.1%;乔木林龄组结构与碳密度近乎成正比关系,存在较大的相关性。 相似文献
13.
Z. WangR.F. Grant M.A. ArainB.N. Chen N. CoopsR. Hember W.A. KurzD.T. Price G. StinsonJ.A. Trofymow J. Yeluripati Z. Chen 《Ecological modelling》2011,222(17):3236-3249
Forest productivity is strongly affected by seasonal weather patterns and by natural or anthropogenic disturbances. However weather effects on forest productivity are not currently represented in inventory-based models such as CBM-CFS3 used in national forest C accounting programs. To evaluate different approaches to modelling these effects, a model intercomparison was conducted among CBM-CFS3 and four process models (ecosys, CN-CLASS, Can-IBIS and 3PG) over a 2500 ha landscape in the Oyster River (OR) area of British Columbia, Canada. The process models used local weather data to simulate net primary productivity (NPP), net ecosystem productivity (NEP) and net biome productivity (NBP) from 1920 to 2005. Other inputs used by the process and inventory models were generated from soil, land cover and disturbance records. During a period of intense disturbance from 1928 to 1943, simulated NBP diverged considerably among the models. This divergence was attributed to differences among models in the sizes of detrital and humus C stocks in different soil layers to which a uniform set of soil C transformation coefficients was applied during disturbances. After the disturbance period, divergence in modelled NBP among models was much smaller, and attributed mainly to differences in simulated NPP caused by different approaches to modelling weather effects on productivity. In spite of these differences, age-detrended variation in annual NPP and NEP of closed canopy forest stands was negatively correlated with mean daily maximum air temperature during July-September (Tamax) in all process models (R2 = 0.4-0.6), indicating that these correlations were robust. The negative correlation between Tamax and NEP was attributed to different processes in different models, which were tested by comparing CO2 fluxes from these models with those measured by eddy covariance (EC) under contrasting air temperatures (Ta). The general agreement in sensitivity of annual NPP to Tamax among the process models led to the development of a generalized algorithm for weather effects on NPP of coastal temperate coniferous forests for use in inventory-based models such as CBM-CFS3: NPP′ = NPP − 57.1 (Tamax − 18.6), where NPP and NPP′ are the current and temperature-adjusted annual NPP estimates from the inventory-based model, 18.6 is the long-term mean daily maximum air temperature during July-September, and Tamax is the mean value for the current year. Our analysis indicated that the sensitivity of NPP to Tamax was nonlinear, so that this algorithm should not be extrapolated beyond the conditions of this study. However the process-based methodology to estimate weather effects on NPP and NEP developed in this study is widely applicable to other forest types and may be adopted for other inventory based forest carbon cycle models. 相似文献
14.
Long-term CO2 enrichment of a forest ecosystem: implications for forest regeneration and succession. 总被引:1,自引:0,他引:1
Jacqueline E Mohan James S Clark William H Schlesinger 《Ecological applications》2007,17(4):1198-1212
The composition and successional status of a forest affect carbon storage and net ecosystem productivity, yet it remains unclear whether elevated atmospheric carbon dioxide (CO2) will impact rates and trajectories of forest succession. We examined how CO2 enrichment (+200 microL CO2/L air differential) affects forest succession through growth and survivorship of tree seedlings, as part of the Duke Forest free-air CO2 enrichment (FACE) experiment in North Carolina, USA. We planted 2352 seedlings of 14 species in the low light forest understory and determined effects of elevated CO2 on individual plant growth, survival, and total sample biomass accumulation, an integrator of plant growth and survivorship over time, for six years. We used a hierarchical Bayes framework to accommodate the uncertainty associated with the availability of light and the variability in growth among individual plants. We found that most species did not exhibit strong responses to CO2. Ulmus alata (+21%), Quercus alba (+9.5%), and nitrogen-fixing Robinia pseudoacacia (+230%) exhibited greater mean annual relative growth rates under elevated CO2 than under ambient conditions. The effects of CO2 were small relative to variability within populations; however, some species grew better under low light conditions when exposed to elevated CO2 than they did under ambient conditions. These species include shade-intolerant Liriodendron tulipifera and Liquidambar styraciflua, intermediate-tolerant Quercus velutina, and shade-tolerant Acer barbatum, A. rubrum, Prunus serotina, Ulmus alata, and Cercis canadensis. Contrary to our expectation, shade-intolerant trees did not survive better with CO2 enrichment, and population-scale responses to CO2 were influenced by survival probabilities in low light. CO2 enrichment did not increase rates of sample biomass accumulation for most species, but it did stimulate biomass growth of shade-tolerant taxa, particularly Acer barbatum and Ulmus alata. Our data suggest a small CO2 fertilization effect on tree productivity, and the possibility of reduced carbon accumulation rates relative to today's forests due to changes in species composition. 相似文献
15.
Habitat fragmentation lowers survival of a tropical forest bird. 总被引:1,自引:0,他引:1
Population ecology research has long been focused on linking environmental features with the viability of populations. The majority of this work has largely been carried out in temperate systems and, until recently, has examined the effects of habitat fragmentation on survival. In contrast, we looked at the effect of forest fragmentation on apparent survival of individuals of the White-ruffed Manakin (Corapipo altera) in southern Costa Rica. Survival and recapture rates were estimated using mark-recapture analyses, based on capture histories from 1993 to 2006. We sampled four forest patches ranging in size from 0.9 to 25 ha, and four sites in the larger 227-ha Las Cruces Biological Station Forest Reserve (LCBSFR). We found a significant difference in annual adult apparent survival rates for individuals marked and recaptured in forest fragments vs. individuals marked and recaptured in the larger LCBSFR. Contrary to our expectation, survival and recapture probabilities did not differ between male and female manakins. Also, there was no support for the existence of annual variation in survival within each study site. Our results suggest that forest fragmentation is likely having an effect on population dynamics for the White-ruffed Manakin in this landscape. Therefore, populations that appear to be persisting in fragmented landscapes might still be at risk of local extinction, and conservation action for tropical birds should be aimed at identifying and reducing sources of adult mortality. Future studies in fragmentation effects on reproductive success and survival, across broad geographical scales, will be needed before it is possible to achieve a clear understanding of the effects of habitat fragmentation on populations for both tropical and temperate regions. 相似文献
16.
The ongoing scientific controversy over a putative "global pollination crisis" underscores the lack of understanding of the response of bees (the most important taxon of pollinators) to ongoing global land-use changes. We studied the effects of distance to forest, tree management, and floral resources on bee communities in pastures (the dominant land-use type) in southern Costa Rica. Over two years, we sampled bees and floral resources in 21 pastures at three distance classes from a large (approximately 230-ha) forest patch and of three common types: open pasture; pasture with remnant trees; and pasture with live fences. We found no consistent differences in bee diversity or abundance with respect to pasture management or floral resources. Bee community composition, however, was strikingly different at forest edges as compared to deforested countryside only a few hundred meters from forest. At forest edges, native social stingless bees (Apidae: Meliponini) comprised approximately 50% of the individuals sampled, while the alien honeybee Apis mellifera made up only approximately 5%. Away from forests, meliponines dropped to approximately 20% of sampled bees, whereas Apis increased to approximately 45%. Meliponine bees were also more speciose at forest edge sites than at a distance from forest, their abundance decreased with continuous distance to the nearest forest patch, and their species richness was correlated with the proportion of forest cover surrounding sample sites at scales from 200 to 1200 m. Meliponines and Apis together comprise the eusocial bee fauna of the study area and are unique in quickly recruiting foragers to high-quality resources. The diverse assemblage of native meliponine bees covers a wide range of body sizes and flower foraging behavior not found in Apis, and populations of many bee species (including Apis), are known to fluctuate considerably from year to year. Thus, the forest-related changes in eusocial bee communities we found may have important implications for: (1) sustaining a diverse bee fauna in tropical countryside; (2) ensuring the effective pollination of a diverse native plant community; and (3) the efficiency and stability of agricultural pollination, particularly for short-time-scale, mass-flowering crops such as coffee. 相似文献
17.
An ecophysiological study of some meiofauna species inhabiting a sandy beach at Bermuda 总被引:2,自引:0,他引:2
The dominant nematode and harpacticoid species inhabiting a sheltered beach at Bermuda were characterized by their vertical distribution in the sediment, by their tolerance of high temperature under oxic and anoxic conditions, and by their tolerance of extreme pH-values. In 4 species of nematodes the respiratory rate proved to be inversely proportional to the depth at which the species occurs, and directly proportional to the size of the buccal cavity. One species, the nematode Paramonhystera n.sp., is more temperature resistant at zero or near zero pO2 than at atmospheric oxygen pressure; it is the first marine metazoan in which it can be shown that a specific biological process is favourably affected by anoxic conditions if compared with the situation at normal pO2.Contribution No. 593, the Bermuda Biological Station 相似文献
18.
B. Witherington 《Marine Biology》2002,140(4):843-853
Neonate sea turtles disperse from nesting beaches into the open ocean and develop during a multi-year growth period at sea, but data that characterize their behavior, feeding, and habitat during this developmental period have been few. Limited information has suggested that neonate sea turtles associate with lines of floating debris and biota at areas of surface downwelling. Data from the present study come from measurements of habitat, turtle behavior, and apparent foraging preferences in areas where neonate (post-hatchling) loggerhead turtles (Caretta caretta) were observed and captured. Turtles were observed (n=293) and captured (n=241 of the 293 observed) in downwelling lines that had formed in the slope water near the Gulf Stream front off east-central Florida, USA. Catch-per-unit-effort averaged 12.4 turtles/h from a vessel moving at 2.5 knots. Turtles were largely inactive and were closely associated with floating material, especially pelagic species of Sargassum. Turtles captured along with samples of floating material and given a gastric-esophageal lavage showed a preference for animal material (35.5% of volume in habitat, 70.9% in lavage) over plant material (60.3% of volume in habitat, 22.5% in lavage). Ingested anthropogenic debris included tar (20% of turtles) and plastics (15% of turtles). Ingested animals were principally small (most <1 mm) and were typically slow-moving or non-motile species or stages. Ingested plants were most commonly Sargassum fragments or seagrasses that bore epiphytic animals. Preferred or commonly ingested animals were hydroids, copepods, and pleuston such as Janthina, Creseis, Porpita, and Halobates. Data support a hypothesis describing post-hatchling loggerheads as facultatively active but principally low-energy float-and-wait foragers both within and outside of downwelling lines. Pelagic dispersal of turtles may be best predicted by a "smart" drifter analogy wherein turtle buoyancy, surface advection, and minimal oriented movement determine their distribution at sea. Conservation implications of plastic and tar ingestion are discussed. 相似文献
19.
W Matthew Vander Haegen 《Ecological applications》2007,17(3):934-947
Shrubsteppe communities are among the most imperiled ecosystems in North America as a result of conversion to agriculture and other anthropogenic changes. In the Intermountain West of the United States, these communities support a unique avifauna, including several species that are declining and numerous others that are of conservation concern. Extensive research in the eastern and central United States and in Scandinavia suggests that fragmentation of formerly continuous forests and grasslands adversely affects reproductive success of birds, yet little is known of the potential effects on avian communities in Western shrublands. I used multi-model inference to evaluate the potential effects of local and landscape variables on nest predation and brood parasitism, and behavioral observations of color-banded birds to evaluate the potential effects of habitat fragmentation on seasonal reproductive success of passerines in the shrubsteppe of eastern Washington State, USA. Reproductive success of shrubsteppe-obligate passerines was lower in landscapes fragmented by agriculture than in continuous shrubsteppe landscapes. Daily survival rates for nests of Brewer's Sparrows (Spizella breweri; n=496) and Sage Thrashers (Oreoscoptes montanus; n=128) were lower in fragmented landscapes, and seasonal reproductive success (percentage of pairs fledging young) of Sage Sparrows (Amphispiza belli; n=146) and Brewer's Sparrows (n=59) was lower in fragmented landscapes. Rates of parasitism by Brown-headed Cowbirds (Molothrus ater) overall were low (4%) but were significantly greater in fragmented landscapes for Brewer's Sparrows, and parasitism resulted in fewer young fledged from successful nests. Simple models of population growth using landscape-specific fecundity and estimates of adult survival derived from return rates of banded male Sage Sparrows and Brewer's Sparrows suggest that fragmented shrubsteppe in Washington may be acting as a population sink for some species. Immediate conservation needs include halting further fragmentation of shrubsteppe, restoring low-productivity agricultural lands and annual grasslands to shrubsteppe where possible, and convincing the public of the intrinsic value of these imperiled ecosystems. 相似文献
20.
Denitrification and the nitrogen budget of a reservoir in an agricultural landscape. 总被引:5,自引:0,他引:5
Mark B David Lareina G Wall Todd V Royer Jennifer L Tank 《Ecological applications》2006,16(6):2177-2190
Denitrification is an important process in aquatic sediments, but its role has not been assessed in the N mass balance of upper-Midwestern (USA) reservoirs that receive large agricultural riverine N inputs. We used a 4400-ha reservoir to determine the role of denitrification in the N mass balance and effectiveness in reducing downstream transport of NO(3-)N. Sediment denitrification was (1) measured monthly (March 2002-March 2003) at eight sites in the Lake Shelbyville reservoir in central Illinois using the acetylene inhibition, chloramphenicol technique, (2) scaled to the overall reservoir and compared to N not accounted for in a mass balance, and (3) estimated indirectly using long-term (1981-2003) mass balances of N in the reservoir. Denitrification rates in the reservoir were high during spring and early summer of 2002, when maximum NO(3-)N concentrations were measured (10-14 mg NO(3-)N/L). We estimated that denitrification for the year was between 2580 and 5150 Mg N. Missing N from the mass balance was 3004 Mg N, suggesting that sediment denitrification was the sink. Areal rates of sediment denitrification in the reservoir ranged from 62 to 225 g N x m(-2) x yr(-1), with rates a function of both denitrification intensity (microg N x g dry mass x h(-1)) and the overall mass of sediment present. From 1981 to 2003 the average NO(3-)N inlet flux was 8900 Mg N/yr. About 58% of the total NO(3-)N input was removed, and annual NO(3-)N removed as a percentage of inputs was significantly related to reservoir retention time (average = 0.36 yr for the 23 years, range = 0.21-0.84 yr). By scaling denitrification in Lake Shelbyville to other reservoirs in Illinois, we estimated a sink of 48900 Mg N/yr. When combined with estimated in-stream denitrification, 60900 Mg N/yr was estimated to be removed by sediment denitrification. This reduces riverine export from Illinois to the Gulf of Mexico, where the flux during the 1990s was about 244000 Mg N/yr, and illustrates the importance of reservoir denitrification as an N sink in Midwestern agricultural landscapes. 相似文献