首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive ringing data from a coastal site (Falsterbo Bird Observatory) in southwesternmost Sweden were used to investigate the occurrence of reverse autumn migration among 20 passerine bird species of widely different migration categories. The data demonstrate that reverse migration is a widespread and regular phenomenon among nocturnal as well as diurnal migrants and among irruptive migrants, temperate zone migrants, and long-distance migrants destined for tropical winter quarters. The reoriented movements were directed approximately opposite to the normal migration direction, i.e. between NNW and ENE from the coast and towards inland. Median distances of reverse movements varied between 9 and 65 km. Some individuals of irruptive and partial migrants settled to winter in the reverse direction. Bird species with relatively small fat reserves at capture were more likely to perform reverse migratory movements than species with larger fat deposits. In two species birds performing forward migration were significantly heavier within 10 days after capture than individuals performing reverse movements. The reoriented movements probably are of adaptive significance for birds confronted with the sea and pre-disposed to refuelling during migration. A bimodal orientation mechanism will bring the birds from an area with high competition for food and high predation risk to more suitable resting and feeding grounds before resuming migration in the forward direction and crossing the barrier. Received: 11 July 1995/Accepted after revision: 19 November 1995  相似文献   

2.
Whether or not a migratory songbird embarks on a long-distance flight across an ecological barrier is likely a response to a number of endogenous and exogenous factors. During autumn 2008 and 2009, we used automated radio tracking to investigate how energetic condition, age, and weather influenced the departure timing and direction of Swainson’s thrushes (Catharus ustulatus) during migratory stopover along the northern coast of the Gulf of Mexico. Most birds left within 1 h after sunset on the evening following capture. Those birds that departed later on the first night or remained longer than 1 day were lean. Birds that carried fat loads sufficient to cross the Gulf of Mexico generally departed in a seasonally appropriate southerly direction, whereas lean birds nearly always flew inland in a northerly direction. We did not detect an effect of age or weather on departures. The decision by lean birds to reorient movement inland may reflect the suitability of the coastal stopover site for deposition of fuel stores and the motivation to seek food among more extensive forested habitat away from the barrier.  相似文献   

3.
How and when migrants integrate directional information from different sources may depend not only on the bird’s internal state, including fat stores, but also on the ecological context during passage. We designed experiments to (1) examine the influence of stored fat on the decision to migrate and on the choice of migratory direction and (2) investigate how the integration of orientation cue information is tied to energetic status in relation to migration across an ecological barrier. Migratory orientation of red-eyed vireos (Vireo olivaceus) at twilight was recorded using two different techniques, orientation cage experiments and free-flight release tests, during both fall and spring migration. During fall migration, the amount of stored fat proved decisive for directional selections of the vireos. Fat birds chose directions in accordance with migration across the Gulf of Mexico. Lean birds oriented either parallel to the coast line (cage tests) or moved inland (free-flight releases). Whereas only fat birds showed significant responses to experimental deflections of the geomagnetic field, lean birds displayed a tendency to shift their activity in the expected direction, making it difficult to evaluate the prediction that use of the magnetic compass is context dependent. Fat loads also had a significant effect on the decision to migrate, i.e., fat individuals were more likely to embark on migration than were lean birds (true for both cage and release experiments). During spring migration, a majority of experimental subjects were classified as lean, following their arrival after crossing the Gulf of Mexico, and oriented in seasonally appropriate directions. The vireos also showed significant responses to experimental deflections of the geomagnetic field regardless of their energetic status. Free-flight release experiments during spring migration revealed a significant difference in mean directions between clear sky and overcast tests. The difference may indicate a compensatory response to wind drift or possibly a need for celestial cues to calibrate the magnetic compass. Finally, this is the first demonstration of magnetic compass orientation in a North American vireo. Received: 15 December 1995/Accepted after revision: 24 March 1996  相似文献   

4.
A multi-scale examination of stopover habitat use by birds   总被引:1,自引:0,他引:1  
Buler JJ  Moore FR  Woltmann S 《Ecology》2007,88(7):1789-1802
Most of our understanding of habitat use by migrating land birds comes from studies conducted at single, small spatial scales, which may overemphasize the importance of intrinsic habitat factors, such as food availability, in shaping migrant distributions. We believe that a multi-scale approach is essential to assess the influence of factors that control en route habitat use. We determined the relative importance of eight variables, each operating at a habitat-patch, landscape, or regional spatial scale, in explaining the differential use of hardwood forests by Nearctic-Neotropical land birds during migration. We estimated bird densities through transect surveys at sites near the Mississippi coast during spring and autumn migration within landscapes with variable amounts of hardwood forest cover. At a regional scale, migrant density increased with proximity to the coast, which was of moderate importance in explaining bird densities, probably due to constraints imposed on migrants when negotiating the Gulf of Mexico. The amount of hardwood forest cover at a landscape scale was positively correlated with arthropod abundance and had the greatest importance in explaining densities of all migrants, as a group, during spring, and of insectivorous migrants during autumn. Among landscape scales ranging from 500 m to 10 km radius, the densities of migrants were, on average, most strongly and positively related to the amount of hardwood forest cover within a 5 km radius. We suggest that hardwood forest cover at this scale may be an indicator of habitat quality that migrants use as a cue when landing at the end of a migratory flight. At the patch scale, direct measures of arthropod abundance and plant community composition were also important in explaining migrant densities, whereas habitat structure was of little importance. The relative amount of fleshy-fruited trees was positively related and was the most important variable explaining frugivorous migrant density during autumn. Although constraints extrinsic to habitat had a moderate role in explaining migrant distributions, our results are consistent with the view that food availability is the ultimate factor shaping the distributions of birds during stopover.  相似文献   

5.
Using tracking radars, we investigated the variability of flight directions of long-distance nocturnal passerine migrants across seasons (spring versus autumn migration) and sites at the southern (56° N) and northern (68° N) ends of the Scandinavian Peninsula (Lund versus Abisko). Whilst most migrants at Lund are on passage to and from breeding sites in Fennoscandia, the majority of the migrants at Abisko are close to their breeding sites, and migration at Abisko thus to a large degree reflects initial departure from breeding sites (autumn) or final approach to breeding destinations (spring). The radar data were used to test predictions about differences in orientation and wind drift effects between adult and juvenile birds (a large proportion of autumn migrants consists of juvenile birds on their first journey), between situations far away from or near the goals and between different phases of migration (initial departure, en route passage, final approach to goal). The concentrations (both total and within-night concentrations) of flight directions differed significantly between seasons as well as sites, with the highest concentration at Lund in spring (mean vector length of track directions, r = 0.79) and lowest at Abisko during spring (r = 0.35). Partial wind drift and partial compensation were recorded at Lund, with a similar effect size in spring and autumn, whilst possible wind drift effects at Abisko were obscured by the large directional scatter at this site. The results from Lund support the prediction that the high proportion of juveniles in autumn contributes to increase the directional scatter during this season, whilst there was no support for predictions of differential wind drift effects between seasons and situations with different goal distances. The most striking and surprising result was the exceedingly large scatter of flight directions at Abisko, particularly in spring. We suggest that such an exaggerated scatter may be associated with final approach orientation, where migrants reach their specific goals from all various directions by final navigation within a more wide-ranging goal region. The larger scatter of autumn flight directions at Abisko compared to Lund may be due to exploratory flights in variable directions being more common at initial departure from breeding sites than later during migratory passage. These surprising results highlight the importance of studying and analysing orientation during final approach to (and initial departure from) migratory goals for understanding the orientation systems of migratory birds.  相似文献   

6.
Migrating birds are expected to fly at higher airspeeds when minimizing time rather than energy costs of their migratory journeys. Spring migration has often been suggested to be more time selected than autumn migration, because of the advantage of early arrival at breeding sites. We have earlier demonstrated that nocturnal passerine migrants fly at higher airspeeds during spring compared to autumn, supporting time-selected spring migration. In this study, we test the hypothesis that seasonal airspeeds are modulated differently between short- and long-distance migrants, because of a stronger element of time selection for autumn migration over long distances. In support of this hypothesis, we demonstrate that the seasonal difference in airspeed is significantly larger (spring airspeed exceeding autumn airspeed by a factor of 1.16 after correcting for the influence of altitude, wind and climb/descent on airspeed) among short-distance compared to long-distance (factor 1.12) migrants. This result is based on a large sample of tracking radar data from 3 years at Falsterbo, South Sweden. Short-distance migrants also tend to fly with more favourable winds during autumn, indicating relaxed time constraints (being able to afford to wait for favourable winds) compared to long-distance migrants. These results indicate surprisingly fine-tuned seasonal modulation of airspeed and responses to wind, associated with behavioural strategies adapted to different levels of time selection pressures during spring and autumn migration.  相似文献   

7.
Recent experiments exposing migratory birds to altered magnetic fields simulating geographical displacements have shown that the geomagnetic field acts as an external cue affecting migratory fuelling behaviour. This is the first study investigating fuel deposition in relation to geomagnetic cues in long-distance migrants using the western passage of the Mediterranean region. Juvenile wheatears (Oenanthe oenanthe) were exposed to a magnetically simulated autumn migration from southern Sweden to West Africa. Birds displaced parallel to the west of their natural migration route, simulating an unnatural flight over the Atlantic Ocean, increased their fuel deposition compared to birds experiencing a simulated migration along the natural route. These birds, on the other hand, showed relatively low fuel loads in agreement with earlier data on wheatears trapped during stopover. The experimental displacement to the west, corresponding to novel sites in the Atlantic Ocean, led to a simulated longer distance to the wintering area, probably explaining the observed larger fuel loads. Our data verify previous results suggesting that migratory birds use geomagnetic cues for fuelling decisions and, for the first time, show that birds, on their first migration, can use geomagnetic cues to compensate for a displacement outside their normal migratory route, by adjusting fuel deposition.  相似文献   

8.
A total of 22 magellanic penguins (Spheniscus magellanicus) from Isla Martillo in the Beagle Channel, Argentina, were successfully satellite tracked in 2004 (n = 7), 2005 (n = 7) and 2006 (n = 8) to monitor their winter migration after moult. Only one magellanic penguin migrated northwards into the Pacific Ocean, whereas all others remained in the Atlantic Ocean. In general, these birds left the island in an easterly direction, rounded Cabo San Diego, the southeasterly tip of South America, and continued northwards occupying inshore waters mostly less than 50 km from the coast, only occasionally venturing further offshore. By the end of the transmission period, birds were still travelling northwards and the most northerly positions were obtained from birds located in the area of Peninsula Valdés, Argentina, at a latitude of around 42°S, some 1,500 km from their breeding site on Isla Martillo. The mean maximum distance to the breeding site was, however, only 624 ± 460 km. The mean minimum distance covered during the study period was 1,440 ± 685 km, which corresponded to a mean distance of 23.2 ± 6.6 km covered per day. The northbound migration of the penguins could be separated into periods of rapid movement, interspersed with periods during which the birds remained for some time in particular coastal regions. Areas with a high density of daily penguin positions were observed in three distinct areas: at the northeastern coast of Tierra del Fuego, at the southern entrance of Golfo San Jorge and to the northeast of the Peninsula Valdez. The observed migration pattern is presumably driven by the formation and subsequent dispersal of areas of enhanced productivity as the season progressed. Our findings also suggest that magellanic penguins are increasingly threatened by human activities in coastal areas as penguins migrate northwards.  相似文献   

9.
The orientation of two closely related subspecies of Australian silvereye Zosterops lateralis was studied in captivity over 14 months. Migratory silvereyes Z. lateralis lateralis showed significant directional preferences during the spring and autumn migration periods and also displayed orientated behaviour during the breeding period. In contrast, the non-migratory subspecies Z. lateralis familiaris did not display any significant directional preferences at any time. This is the first time that the orientation behaviour of a migratory and non-migratory subspecies has been compared over the duration of an annual cycle, both during and outside the migratory periods. The results suggest that migratory silvereyes possess an endogenous program determining the timing and direction of autumn and spring migration and that this program is unique to the migratory subspecies. This is also the first comparison of this nature on southern hemisphere birds and demonstrates that the migratory behaviour of southern hemisphere migrants may be more similar to that of northern hemisphere migrants than previously thought.Submitted to Behavioral Ecology and Sociobiology: 23 Jan 2006.  相似文献   

10.
Evidence of food-based competition among passerine migrants during stopover   总被引:8,自引:0,他引:8  
Summary Local concentrations of migrating, fat-depleted birds with similar diets can lead to increased competition for food at a time when energy demand is high. Results of a predator-exclosure experiment indicate that intercontinental passerine migrants depress food abundance during stopover following migration across the Gulf of Mexico. Moreover, migrants that stop when a high number of potential competitors are present replenish energy reserves more slowly than migrants that stop under low density conditions. Competition increase the rate of food depletion and may decrease the probability that a migrant will meet its energetic requirements and complete a successful migration.  相似文献   

11.
The amphipod Gammarus zaddachi (Sexton) conducts extensive migrations along estuaries from near the limit of tidal influence in winter to more downstream reaches (where reproduction occurs) in spring. A return migration then takes place, primarily by juveniles, until the seaward areas are depopulated in winter. The present study was conducted between 1988 and 1990 in the Conwy Estuary, North Wales. This represents the first investigation on this species in a strongly tidal estuary, where the amphipods appear to migrate vertically into the water column on flood or ebb tides to control horizontal transport and to maintain preferred distributions. The timing of vertical migration seems to be largely controlled by an endogenous circatidal swimming rhythm. Phasing of peak activity relative to the time of expected high tide varies with season; upstream migrants in the autumn showed peak activity at the time of expected high tide, while in the spring at the time of downstream migration the rhythm was phase-delayed, with peak activity during the expected ebb tide. Together with the season, position along the estuary also affected the timing of peak endogenous activity; downstream migrants, originally active on the ebb tide and experimentally displaced seawards, showed a phase-advance of the rhythm relative to the time of high tide. Salinity-preference behaviour also varied between different developmental stages, with ovigerous females (downstream migrants) showing no preference between fresh and saline water, and juveniles (upstream migrants) showing a significant preference for freshwater. The interactions of endogenous rhythmicity and salinity-preference behaviour are discussed as controlling factors of migration in this species.  相似文献   

12.
Movement ecology studies have highlighted the importance of individual-based research. As tracking devices have not been applicable for identifying year-around movements of small birds until recently, migration routes of such species relied on visual observations and ring recoveries. Within the Palaearctic–African migration system, loop migration seems to be the overall migration pattern. The interindividual variations within species-specific migration routes are, however, unknown. Here, we track the individual migration routes and annual cycles of male Northern Wheatears Oenanthe oenanthe, a trans-Sahara songbird migrant from a German breeding population with light-level geolocators. Two migrated most likely via Spain towards western Africa but returned via Corsica/Sardinia, while two others seemed to migrate via Sardinia and Corsica in autumn and via Spain and France in spring (loop migration). The fifth took presumably the same route via France and the Balearics in both seasons. All birds wintered in the Sahel zone of western Africa. Overall migration distances for autumn and spring were similar (about 4,100?km), whereas the overall migratory speed was generally higher in spring (126?km?day?1) than in autumn (88?km?day?1). Birds spent about 130?days at the breeding area and 147?days at the wintering grounds.  相似文献   

13.
Birds migrating along coastlines may be at increased risk if displacement occurs toward open-ocean. Eastern North America experiences prevailing northwesterly winds during autumn, which could compel some migrants to drift eastward. Therefore, migrants at stop-over sites along this route may be a mixture of on- and off-course individuals. We assessed whether orientation behavior of juvenile yellow-rumped warblers (Dendroica coronata) captured at a stop-over site in southern Nova Scotia was related to where they originated from (i.e., likely on/off-course). We hypothesized three scenarios after displacement: 1) continued orientation in the migratory direction selected before displacement, 2) orientation from the new location toward the previous destination, or 3) correction to regain the original pathway. Using stable isotopes, we determined that stop-over migrants originated from nearby areas (and assumed on-course) and as far away as western Hudson Bay, over 1,600 km northwest (and assumed off-course) of the site. We used video-based orientation registration cages to determine an individuals’ migratory orientation. Because numerous factors influence migratory orientation (e.g., fuel reserves, celestial cues), we simultaneously assessed the influence of body condition and cloud cover, in addition to geographic origin, on orientation behavior. Individuals that originated closer to the site tended to orient more southwesterly. Orientation directions became increasingly more west-northwesterly the further away an individual originated from the site (i.e., the more likely it was to have been displaced). The result is most consistent with scenario three: individuals from northwest origins likely respond to easterly displacement by orienting westerly to reestablish their previous migratory route.  相似文献   

14.
We examined the relationship between plasma levels of corticosterone and the migratory activity and directional preference of red-eyed vireos during fall migration at the northern coast of the Gulf of Mexico. Corticosterone is thought to play a role in physiological and behavioural processes before, during, and after long-distance migratory flights. An increase in corticosterone at the onset of migratory flights can be expected in birds that are energetically prepared to migrate in a seasonally appropriate southerly direction. Red-eyed vireos ( Vireo olivaceus) were tested in orientation cages under clear twilight skies. Just prior to the orientation experiments, blood was sampled to assay baseline corticosterone levels. Average corticosterone level for all birds was 22.8 ng/ml. Red-eyed vireos with higher than average baseline levels of corticosterone were significantly more active in orientation cages compared to birds with lower levels of corticosterone. Moreover, birds with higher than average levels oriented in a southwesterly direction, which is consistent with a trans-Gulf flight, whereas individuals with levels below average showed a NNW mean direction. Although there was no significant difference in baseline levels of corticosterone between fat and lean birds, individual mass loss between capture and test was negatively correlated with corticosterone levels. Results from this study clearly demonstrate that corticosterone influences departure decisions and the choice of direction during migration.  相似文献   

15.
Wind selectivity of migratory flight departures in birds   总被引:5,自引:0,他引:5  
Optimal migration theory predicts that birds minimizing the overall time of migration should adjust stopover duration with respect to the rate of fuel accumulation. Recent theoretical developments also take into account the wind situation and predict that there is a time window (a set of days) during which birds should depart when assisted by winds but will not do so if there are head winds. There is also a final day when birds will depart irrespective of wind conditions. Hence, the wind model of optimal migration theory predicts that birds should be sensitive to winds and that there should be a correlation between departures and winds blowing towards the intended migration direction. We tested this assumption by tracking the departures of radio-tagged passerines during autumn migration in southern Sweden. Our birds were moderately to very fat when released and therefore energetically ready for departure. There was a significant correlation between direction of departure and wind direction. We also found that during days when birds departed there was a significantly larger tail wind component than during days when birds were present but did not depart. Our results show that passerines do take the current wind situation into account when departing on migratory flights. We also briefly discuss possible clues that birds use when estimating wind direction and strength. The inclusion of wind is an important amendment to optimal migration theory of birds and should be explored further. Received: 1 March 1999 / Received in revised form: 4 October 1999 / Accepted: 16 October 1999  相似文献   

16.
In order to forage and to provision offspring effectively, seabirds negotiate a complex of behavioural, energetic, environmental and social constraints. In first tests of GPS loggers with seabirds in North America, we investigated the foraging tactics of free-ranging northern gannets (Sula bassana) at a large and a medium-sized colony that differed in oceanography, coastal position and prey fields. Gannets at Low Arctic colony (Funk Island) 50 km off the northeast coast of Newfoundland, Canada provisioned chicks almost entirely with small forage fish (capelin Mallotus villosus, 89%), while at boreal colony (Bonaventure Island) 3 km from shore in the Gulf of St. Lawrence, Quebec, Canada, large pelagic fish dominated parental prey loads (Atlantic mackerel Scomber scombrus 50%, Atlantic herring Clupea harengus 33%). Mean foraging range and the total distance travelled per foraging trip were significantly greater at the larger inshore colony (Bonaventure) than at the smaller offshore colony (Funk Island; 138 and 452 km vs. 64 and 196 km, respectively). Gannets from Funk Island consistently travelled inshore to forage on reproductive capelin shoals near the coast, whereas foraging flights of birds from Bonaventure were much more variable in direction and destination. Birds from the Low Arctic colony foraged in colder sea surface water than did birds from the boreal colony, and dive characteristics differed between colonies, which is concordent with the difference in prey base. Differences between the colonies reflect oceanographic and colony-size influences on prey fields that shape individual foraging tactics and in turn generate higher level colony-specific foraging “strategies”.  相似文献   

17.
On the small North Sea island Helgoland (54°11' N, 07°55' E) we studied the stopover ecology of two subspecies of northern wheatear, Oenanthe oenanthe, during spring migration. Birds heading for Scandinavia (O. o. oenanthe) face only short flights across an ecological barrier (50-500 km) whereas those originating from Greenland and Iceland (O. o. leucorhoa) have to cover between 1,000 and 2,500 km in the impending flight. Colour-ringed individuals showed that 90% of Scandinavian birds left on the day of ringing while 40% (males) and 30% (females) of Greenland/Icelandic birds stayed at least 1 night. The birds who remained were thus mostly O. o. leucorhoa. They often established desirable feeding territories on the beach and had a high rate of body mass increase (1.7 g/day). However, subspecies did not differ in habitat choice and in foraging effort, but O. o. leucorhoa had a higher success rate in pecking. Departure decisions were analysed by comparing (a) conditions on the day of ringing between departing and staying birds and (b) for birds staying between the day of departure and the preceding day. The factors that were probably important in the decision to depart differed between subspecies. In O. o. leucorhoa, few birds departed with bad or deteriorating weather conditions (tailwind component, cloud cover), whereas departures of O. o. oenanthe seemed to be little affected by those factors. A few O. o. oenanthe stayed early in the spring migration season and/or had low fat reserves. Interference during foraging seemed to play a role because both subspecies tended to leave when the densities of northern wheatears were high. Other factors related to refuelling conditions (food supply, foraging effort, predation risk) failed to show differences between staying and departing individuals. In summary, almost all Scandinavian birds departed quickly and irrespective of refuelling and weather conditions, whereas many (but not all) Greenland/Icelandic birds seemed to prepare for a long-distance flight and carefully adjusted departure to weather conditions. The observed differences in stopover behaviour and departure decisions in the two subspecies of northern wheatear indicate that the distance to the next stopover site or to the goal area has to be considered when applying optimal migration models.  相似文献   

18.
Summary During 4 seasons of study, small numbers of birds flew overland to the NNE-E, counter to the main SW migration, intermittently throughout the autumn (31 July – 16 November). Radars also detected overwater reverse migration (RM) from New England to Nova Scotia and from Nova Scotia toward Newfoundland. RM occurred at all hours of the day and night, especially when few birds were migrating SW. Most but not all cases of RM occurred with following SW winds. RM was more common with cloud and/or poor visibility than in fair weather, but was not restricted to cloudy occasions. Mean tracks were correlated with wind direction, but were not consistently downwind. Tracks tended to be closer to downwind in early than in late autumn, and on clear than on overcast nights. Dispersion in tracks was not discernibly related to weather variables, time of day or night, or magnetic disturbance. Eleven hypotheses concerning the reasons for reverse migration in autumn are evaluated; cases of RM recorded in this study are attributable to at least three of these hypotheses (late summer dispersal, hurricanes, dawn reorientation toward coast) and possibly to several others.  相似文献   

19.
Meteorological conditions influence strongly the energy and water budget of birds. By adjusting their flights spatially and temporally with respect to these conditions, birds can reduce their energy expenditure and water loss considerably. By radar, we quantified songbird migration across the western Sahara in spring and autumn. There autumn migrants face the trade-off between (a) favorable winds combined with hot and dry air at low altitudes and (b) unfavorable winds combined with humid and cold air higher up. Thus, it can be tested whether birds may chose altitudes to minimize water loss instead of energy expenditure. We predicted optimal flight altitudes with respect to water loss and energy expenditure based on a physiological flight model when crossing the western Sahara and compared these model predictions spatially and temporally with measured songbird densities. The model aiming for minimal water consumption predicted a mean flight altitude of 3,400 m under autumn conditions. However, 64% of the nocturnal songbird migration flew at altitudes below 1,000 m above ground level profiting from tailwind. This preference for tailwind in autumn, despite the hot and dry air, emphasizes the importance of energy savings and diminishes the significance of possible water stress for the selection of flight altitude. Nevertheless, during daytime, high energy expenditure due to air turbulences and water loss due to warmer air and direct solar radiation prevent songbirds from prolonging their nocturnal flights regularly into the day. Birds crossing the Sahara save water by nocturnal flights and diurnal rests.  相似文献   

20.
Migrating birds often alternate between flight steps, when distance is covered and energy consumed, and stopover periods, when energy reserves are restored. An alternative strategy is fly-and-forage migration, useful mainly for birds that hunt or locate their prey in flight, and thus, enables birds to combine foraging with covering migration distance. The favourability of this strategy in comparison with the traditional stopover strategy depends on costs of reduced effective travel speed and benefits of offsetting energy consumption during migration flights. Evaluating these cost-benefit effects, we predict that fly-and-forage migration is favourable under many conditions (increasing total migration speed), both as a pure strategy and in combination with stopover behaviour. We used the osprey (Pandion haliaetus) as test case for investigating the importance of this strategy during spring and autumn migration at a lake in southern Sweden. The majority, 78%, of passing ospreys behaved according to the fly-and-forage migration strategy by deviating from their migratory track to visit or forage at the lake, while 12% migrated past the lake without response, and 10% made stopovers at the lake. Foraging success of passing ospreys was almost as good as for birds on stopover. Timing of foraging demonstrated that the birds adopted a genuine fly-and-forage strategy rather than intensified foraging before and after the daily travelling period. We predict that fly-and-forage migration is widely used and important among many species besides the osprey, and the exploration of its occurrence and consequences will be a challenging task in the field of optimal migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号