首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gut contents of dominant deep-sea benthic boundary layer zooplankton (primarily copepods and mysids) and the vacuole contents of phaeodarians collected and preserved in situ at four depths (from 724 to 3112 m) on an eastern tropical Pacific seamount (Volcano 7; 13°23N, 102°27W) between 23 November and 4 December 1988 were analyzed using transmission electron microscopy (TEM). Suspended, and sinking plus resuspended particles, were quantitatively sampled to characterize potential food sources. The broad oxygen minimum characteristic of this region intersects the summit of the seamount and affects the feeding ecology of these organisms. Several copepods and mysids and an amphipod contained guts packed with what appeared to be gram-positive bacteria, an unusual finding. We hypothesize that the source of these bacteria-like bodies was a mat or aggregate that originated in the oxygen minimum or at its upper or lower interface. The presence of the bacteria-like bodies in 43 to 100% of the particlefeeding zooplankton that were sectioned and that had gut contents, suggests that the bacteria-like bodies are an important food source. The diverse gut and vacuole contents of other detritivores were similar among depths. Particles and microorganisms from the depths were also similar. This finding can be explained by the rapid sinking of particles and aggregates from surface waters and their relatively intact transit through the broad oxygen minimum with its reduced populations of zooplankton. The presence of algal cells in guts and vacuoles of benthic boundary-layer zooplankton suggests that these zooplankton select particles of recent surface origin for consumption. The presence of the guts filled with bacteria-like bodies shows that some deep-sea copepods and mysids that are normally generalist feeders can specialize opportunistically. The similarity of gut contents of crustaceans and vacuole contents of phaeodarians suggests that these two very different groups of particle feeders utilize similar food sources in the deep sea.  相似文献   

2.
Calanus pacificus (Copepoda: Calanoida) females were collected off the California (USA) coast from November 1984–April 1985. A video system was used to observe and record the behavior of restrained individual females presented with a variety of dinoflagellate prey. Two species, Gonyaulax grindleyi and Ptychodiscus brevis, elicited acute physiological reactions. In 40% of the trials (n=10), copepods fed G. grindleyi regurgitated after 45 to 120 min and, in nearly all cases, did not maintain full guts. Copepods in the presence of P. brevis exhibited rapid heart rate and loss of motor control. Scrippsiella trochoidea elicited an intermediate response by C. pacificus. The copepods occasionally displayed mouthpart twitching or failure to maintain gut fullness. Olisthodiscus luteus elicited no unusual behavior in an intermediate temporal range (sec-hours), although the mouthpart movements appeared different than in copepods fed Gyrodinium resplendens (used as control). Placing the copepods in G. resplendens suspension restored normal feeding behavior in all cases.  相似文献   

3.
Investigations of factors affecting feeding success in fish larvae require knowledge of the scales of variability of the feeding process itself and the indices used to assess this variability. In this study, we measured short-term (diel) variability in feeding rates of wild haddock (Melanogrammus aeglifinus) larvae four times per day during a 10-d cruise in the northern North Sea. Feeding activity was evaluated using indices of gut fullness, prey digestive state and biochemical measurements (tryptic enzyme activity). The gut fullness and the enzyme activity indices indicated moderate to high rates of food consumption throughout the cruise. Time series analysis of the three indices showed significant diel variability in all indices and enabled identification of significant lags between food uptake and peak digestive enzyme activity. The typical pattern of food consumption and digestion was characterized by maximal ingestion of prey early in the evening (19:00 hrs) and peak digestive enzyme activity at 01:00  hrs. The time scale over which enzyme activities reacted to prey ingestion was ca. 6 h, and is consistent with expectations from controlled laboratory experiments with other larval fish species. Significant diel variability in tryptic enzyme activity suggests that attempts to relate this measure of feeding success to other variables (e.g. food concentrations) should take care to accommodate natural cycles in feeding activity before making statistical comparisons. Received: 29 October 1998 / Accepted: 18 June 1999  相似文献   

4.
Quantification of feeding rates and selectivity of zooplankton is vital for understanding the mechanisms structuring marine ecosystems. However, methodological limitations have made many of these studies difficult. Recently, molecular based methods have demonstrated that DNA from prey species can be used to identify zooplankton gut contents, and further, quantitative gut content estimates by quantitative PCR (qPCR) assays targeted to the 18S rRNA gene have been used to estimate feeding rates in appendicularians and copepods. However, while standard single primer based qPCR assays were quantitative for the filter feeding appendicularian Oikopleura dioica, feeding rates were consistently underestimated in the copepod Calanus finmarchicus. In this study, we test the hypothesis that prey DNA is rapidly digested after ingestion by copepods and describe a qPCR-based assay, differential length amplification qPCR (dla-qPCR), to account for DNA digestion. The assay utilizes multiple primer sets that amplify different sized fragments of the prey 18S rRNA gene and, based on the differential amplification of these fragments, the degree of digestion is estimated and corrected for. Application of this approach to C. finmarchicus fed Rhodomonas marina significantly improved quantitative feeding estimates compared to standard qPCR. The development of dla-qPCR represents a significant advancement towards a quantitative method for assessing in situ copepod feeding rates without involving cultivation-based manipulation.  相似文献   

5.
Natural diets of vertically migrating zooplankton in the Sargasso Sea   总被引:1,自引:0,他引:1  
The feeding preferences of three common diel vertically migrating zooplankton were investigated from December 1999 to October 2000 at the U.S. JGOFS Bermuda Atlantic Time-Series Study (BATS) station in the Sargasso Sea. Gut content analysis of the copepods Pleuromamma xiphias (Giesbrecht) and Euchirella messinensis (Claus) and of the euphausiid Thysanopoda aequalis (Hansen) indicated that all three species fed on a wide variety of phytoplankton, zooplankton, and detrital material. Diet changes generally reflected seasonal trends in phytoplankton community structure. However, species-specific feeding preferences and differences in feeding selectivity among the three species were evident, and in general agreement with feeding habits predicted from the analysis of mouthpart morphology. The euphausiid T. aequalis fed equally on more different food types compared to both copepod species. The copepod P. xiphias consumed a diverse assemblage of phytoplankton from late winter through the summer (78-93% of gut items, by number, were phytoplankton) and based its diet more strongly on carnivorous feeding in autumn and early winter (31% and 61% of gut items were phytoplankton, respectively). E. messinensis showed the greatest feeding specialization, with a strong preference for pennate diatoms in winter and spring and for coccolithophorids during late summer and fall (constituting 67-93% of gut items by number). All three species consumed diatoms more than other phytoplankton taxa, even though diatoms form only a small fraction of the phytoplankton biomass in the Sargasso Sea. Although the majority of gut items identified were phytoplankton cells, the relative biomass contribution of these small cells may be lower than that of zooplankton and detritus. Zooplankton on which the three species primarily preyed were protozoans and crustaceans, but also included other metazoans such as chaetognaths and cnidarians. Marine snow was also an important component of the diet in all three species, with typically >50% and rarely <20% of the gut content being olive-green debris. Marine snow from larvacean houses was found in the guts of all three species, while E. messinenis appeared to selectively consume marine snow aggregates enriched with bicapitate Nitzschia spp. Large cyanobacteria (>4 µm in diameter) found in guts were also likely consumed with marine snow. The species-specific differences in the diets of these three migrating species suggest that an individual species approach is important in determining how feeding habits affect the structure of pelagic food webs and carbon cycling in the sea. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00227-002-0815-8.  相似文献   

6.
In-situ feeding habits of the copepods Temora turbinata and T. stylifera were investigated by scanning electron microscope examination of fecal pellets, the contents of which reflected copepod gut contents upon capture. Pellet contents were compared with assemblages of available phytoplankton in the water column at the times of zooplankton sampling. Samples were collected in continental shelf and slope waters of the Gulf of Mexico near the mouth of the Mississippi River. Both species ingested a wide size range and taxonomic array of phytoplankters, and to a lesser extent, other crustaceans. Fecal pellets contained primarily the remains of the phytoplankters that were most abundant in the water at times of collection. There was considerable overlap in the food items ingested by adult females of both copepod species, or two stages of T. turbinata copepodites. Thus, T. turbinata and T. stylifera are omnivores, but primarily opportunistic herbivores.  相似文献   

7.
S. Uye 《Marine Biology》1986,92(1):35-43
Although planktonic copepods are major suspension feeders in the sea, the impact of their grazing pressure upon red-tide flagellates has not been fully investigated. In the present study, the grazing of adult females of several copepod species is examined using three food types: viz. natural suspended particles, natural suspended particles mixed with cultured Chattonella antiqua, and cultured C. antiqua. The functional response on C. antiqua was investigated for five species of copepods (Acartia erythraea, Calanus sinicus, Centropages yamadai, Paracalanus parvus and Pseudodiaptomus marinus). Ingestion rates increased linearly with increasing cell concentrations until a maximum level was reached, beyond which the rates were constant. This cell concentration was higher for larger copepods. The weight-specific maximum ingestion rates were higher in the small species. In general, copepods tended to feed selectively on larger particles when feeding on natural particles. This tendency was strongest in a simulated red-tide environment. Thus, it can be surmised that copepods may selectively graze on C. antiqua during the outbreak of a red tide. Grazing pressure by the natural copepod community in Harima Nada, the Inland Sea of Japan, was calculated by integration of the laboratory determined feeding rates and field measurements of zooplankton biomass. The daily removal rate was 3.4 to 30.8% (mean: 12.3%) of C. antiqua biomass at 20 cells ml-1 and decreased to 0.6–4.3% (mean: 1.8%) at 500 cells ml-1. Therefore, the grazing pressure by the copepod community is important at the initial stage of the red tide.  相似文献   

8.
Food web of an Antarctic midwater ecosystem   总被引:12,自引:0,他引:12  
The diets of 93 species of plankton and micronekton taken in the upper 1000 m of Croker Passage (Gerlache Strait) in the austral fall, 1983, were examined and the principal features of the food web were characterized. Most species were small particle feeders, with phytoplankton and debris (of phytoplankton and krill) being the principal diet components. Krill remains were found in the guts of the majority of species examined, with the krill playing a greater role in the form of molts and debris than as living prey. Carcinores fed mostly on copepods, coelenterates and salps. Some of the larger species fed on live krill. No-hierarchical cluster analysis of diet information supported the concept of resource partitioning and determined the arrangement of the species into 21 feeding groups. Cluster analysis groupings tended to be along genetic lines with closely related and morphologically similar species having similar diets. These analyses were based on collections made in the austral fall (March–April, 1983) when phytoplankton standing crop was low, most zooplankton species had descended into the mesopelagic zone, and some of the more abundant species, such as Calanoides acutus, had ceased feeding. Because the trophodynamics of Antarctic ecosystems is strongly pulse-induced, it is essential to examine the food web at different periods in the seasonal cycle.  相似文献   

9.
The pelagic amphipods Themisto abyssorum and Themisto libellula represent important links between the herbivore zooplankton community and higher trophic levels of the Arctic marine food webs. Large double structured eyes of both of these hyperiid species are assumed to be used for visual prey detection. However, no information is available on the feeding strategies of these visually searching predators for the period of the polar night, a time of year with no or very low levels of daylight. Here, we report on the stomach and gut content of both Themisto species collected during a January expedition around Svalbard (78° to 81°N). Results indicate that T. abyssorum and T. libellula feed actively during the Arctic winter. The major food source of both amphipods consisted of calanoid copepods, most frequently Calanus finmarchicus.  相似文献   

10.
Feeding of fish depends on a spatial and temporal match with prey, and since larval and juvenile feeding can be highly selective, their preferences for given prey sizes and taxa should be considered when quantifying the actual availability of potential prey. We investigated the diet and prey preferences of the early-life stages of Atlantic cod (Gadus morhua) to quantify the availability of prey during a spring-summer season in a West Greenlandic fjord. We hypothesized that abundances of larval and juvenile cod at size were synchronized to optimal availability of preferred prey in space and time. The present analysis is based on nine cruises each covering 5 stations visited between 24 May and 5 August 2010 comparing zooplankton abundance, cod gut content and distribution patterns. Cod 4–25 mm in length preferred prey of about 5 % of their own length. During ontogeny, their preferences changed from calanoid nauplii towards Pseudocalanus spp. and Calanus spp. copepodites. The larvae/juvenile had an exceptionally high dietary contribution from cladocerans, which were highly preferred by cod larger than 9 mm, while the abundant Metridia longa and the non-calanoid copepods contributed less. These findings stress the importance of focusing on abundance of preferred prey when assessing the actual prey availability to young fish. We found a spatio-temporal overlap between cod and their preferred prey, and observations suggest that advection of both zooplankton and cod contributed to this overlap. Hence, the larval feeding opportunities might be sensitive to climate-related changes affecting the circulation patterns in this fjord.  相似文献   

11.
H. Ishii 《Marine Biology》1990,105(1):91-98
In situ diel variations in gut pigment contents of neritic (Acartia omorii andPseudocalanus minutus) and oceanic copepods (Calanus plumchrus andC. cristatus) were analyzed.A. omorii andP. minutus were sampled in Onagawa Bay on the east coast of Japan in May and August 1987, andC. plumchrus andC. cristatus were sampled in the Bering Sea in June 1986. Gut pigments were generally high at night, and bimodal feeding rhythms were observed in all species. The first peak of gut pigments occurred between sunset and midnight and was followed by a midnight decrease in gut pigment levels, resulting in eventual evacuation of the gut. The second peak was observed a few hours after sunrise. Incubation experiments indicated that ingestion rates of starved copepods were higher than those of acclimated copepods. This phenomenon was most notable at high food concentrations. Gut pigments of starved copepods rapidly increased after exposure to high concentrations of culturedThalassiosira decipiens. These findings suggest that in situ feeding behavior of herbivorous copepods includes periods of cessation or reduction in feeding during the night, and consequently, feeding activity is periodically enhanced with starvation. Starvation enhanced feeding behavior is most obvious in the large oceanic species,C. plumchrus andC. cristatus and is not distinct in small coastal species such asA. omorii.  相似文献   

12.
Spatial and temporal variability in zooplankton was studied at eight stations located in the Lesina Lagoon (South Adriatic Sea) Salinity, temperature, dissolved oxygen and chlorophyll a (in the lagoon) at these stations were also assessed. The zooplankton community was characterised by clear seasonal oscillations and mostly represented by copepods and their larvae. The dominant copepod species were Calanipeda aquaedulcis and Acartia tonsa, which exhibited spatial–temporal segregation in the lagoon. C. aquaedulcis copepodites seemed to be better adapted to oligotrophic and oligohaline conditions compared with the A. tonsa population. The invasive species A. tonsa has completely replaced the formerly abundant Acartia margalefi. A positive correlation was found between abundances, total species numbers and trophic state. An increasing abundance trend was shown from the lagoon towards the sea. The highest diversity indices were recorded at the two channel inlets, during high tide due to the absence of a clear dominance of one or more coastal species and the co-occurrence of species of lagoon and marine origin.  相似文献   

13.
以宁波市北仑区梅山水道形成的人工泻湖为研究对象,在不同季节进行水质及浮游生物调查,分析其浮游生物时空分布特征与水质的关系。4个采样点共检出浮游植物66种,以硅藻为绝对优势种,检出浮游动物25种,主要为桡足类、少量轮虫及网纹虫;拦坝后水道内浮游生物密度有了数量级增长,各项生物评价指数降低,但各采样点仍处于中污染水平。监测理化参数表明,研究水域在拦坝后盐度下降、悬浮物浓度下降,氮磷含量无明显变化;水域大部分点位处于中度富营养化水平。结合浮游生物分布与理化参数进行分析,发现堤坝合龙后,水道内侧海水淡化、悬浮物含量下降,导致浮游生物密度上升、生物多样性下降、出现淡水优势种群;营养盐含量不是浮游生物生长的限制因子,对浮游生物分布无显著影响。  相似文献   

14.
E. J. H. Head 《Marine Biology》1992,112(4):583-592
The results presented here were obtained at six locations during three cruises in 1985 (off the coast of Labrador), 1986 (at the eastern end of Viscount Melbourne Sound) and 1988 (off the coast of Labrador). In situ chlorophyll maximum concentrations were >7 gl-1 at depths of between 0 and 30 m in all sampling areas. In feeding experiments copepods attained higher gut pigment concentrations the longer they had been previously starved and higher concentrations when fed in the dark than when fed in the light. Community ingestion rates calculated from changes in particulate chlorophyll were higher than estimates derived from gut pigment data except when copepods had been starved for 24 h. Differences between estimates by the two methods suggested pigment destruction. In feeding experiments pigment: biogenic silica ratios in food and faecal pellets suggested that the length of starvation period affected the degree of pigment destruction differently at different stations and that feeding in the light greatly increased pigment destruction. A comparison of pigment: silica ratios in the water column, and in faecal pellets collected from copepods which had fed there, suggested that pigment destruction may occur in situ sometimes and that the degree to which it occurs may be affected by feeding history, light, diel feeding behaviour and species composition.  相似文献   

15.
Diet and respiration of the small planktonic marine copepod Oithona nana   总被引:5,自引:0,他引:5  
The functional responses of Oithona nana (Giesbr.) to various phytoplankton and zooplankton food species are described. The food species were divided into three size categories, the seasonal abundances of which were measured in Loch Turnaig, a Scottish sea loch in 1977. The seasonal variations in feeding rates in the sea for each size class were derived. The seasonal variation in respiration rate of O. nana was measured, and metabolic requirements were claculated as between 6 and 40% of the food material estimated as being eaten. O. nana differs from other common copepods in having a wide food-particle size spectrum and a low metabolic rate. It is suggested that these adaptations constitute the strategy whereby O. nana maintains its population levels throughout the year.  相似文献   

16.
We studied the winter dietary characteristics of two sympatric mysid species, Mysis mixta and M. relicta, which exploit both benthic and pelagic habitats during diel vertical migrations. Samples collected before and after the ice-covered period in the northern Baltic Sea were investigated using both stomach content analyses and stable isotope analyses of carbon and nitrogen. Both of the mysid species were omnivorous during winter and utilised both benthic and pelagic food sources. The main food source before the ice period was calanoid copepods (40 and 36% for M. mixta and M. relicta, respectively), and after ice-out calanoid copepods (23%) and zooplankton resting eggs (23%) for M. mixta and diatoms (44%) and calanoids (25%) for M. relicta. Their patterns of food utilisation broadly followed seasonal fluctuations in the abundance of the main prey groups. Although pelagic food availability is low in winter both mysid species utilised pelagic prey widely. We also show that when combining these different diet analysis methods it is important to take into account the time lag in isotopic signatures, otherwise the obtained results do not correspond but instead show the feeding history at different times.  相似文献   

17.
Feeding in relation to temporal changes in the depth distribution of predator and prey is described for 9 species of mesopelagic decapods from an examination of 268 foreguts. Intensive nighttime feeding appears to be the rule in all species. The smaller decapods Sergestes (Sergestes) atlanticus, Sergestes (Sergestes) sargassi and Sergestes (Sergestes) pectinatus exploit the smaller prey, principally copepods and to a lesser extent ostracods. Larger decapod species Sergestes (Sergestes) henseni, Sergestes (Sergestes) curvatus, Sergestes (Sergia) grandis, Systellaspis debilis, and Acanthephyra purpurea mainly prey on macrozooplankton and micronekton, i.e., chaetognaths, euphausiids, decapods and fish, but copepods also occur in the foreguts. Gennadas valens is exceptional for the high incidence of foraminiferal remains, and a predator-prey relationship seems probable. All 9 decapod species have mixed diets, and pronounced feeding preferences are not evident. However, a high incidence of “secondary” feeding or “dietary contamination” has been deduced from the frequent occurrence of remains of the copepods Pleuromamma spp. and Oncaea spp. in the foreguts of the larger decapod species. Direct feeding cannot have occurred, since the depth distributions of these copepods and decapods are disjunct by day and night. It is concluded that the remains of Pleuromamma probably represent the food of the larger prey such as chaetognaths etc. which are eaten by the decapods. The presence of Oncaea is speculatively attributed to a possible ectoparasitic relationship with the larger prey items, but confirmatory evidence is required. These anomalies suggest that caution must be exercised in deducing predator-prey relationships simply from gut contents without consideration of distributional factors.  相似文献   

18.
Faecal pellet formation within the gut of Stage V and adult females of the copepod Calanus helgolandicus Claus involves (1) cyclical processes of digestion and (2) the contribution of parts of the gut epithelium to the pellets. During an experimental regime in which dim lighting was restricted to day-time and feeding to night-time (17.00 to 09.00 hrs), the copepods responded with cyclical changes in both the quantity of pellets they produced and the fine structure of the contents. During the feeding period, the contents showed changes in the relative amounts of materials originating from disintegrated cells of the digestive epithelium and those derived directly from the ingested food. The vacuolar B-cells of the gut contribute to the content of the pellets and the distal, necrotic N-cells appear to be involved in forming the peritrophic membrane which encloses each pellet. Cells of the gut epithelium which are broken down during feeding are all replaced during the non-feeding period. Other individuals were taken directly from the sea and in these, also, the cells of the gut broke down during feeding and contributed to the faecal pellets. The supply of epithelial cells may limit the duration of the feeding period.  相似文献   

19.
The common myctophids Stenobrachius leucopsarus, Diaphus theta and Tarletonbeania crenularis were found to feed primarily on the euphausiid Euphausia pacifica, the copepods Metridia lucens and Calanus spp., and the amphipod Parathemisto pacifica. The diets of these species of fishes were diverse and overlapped broadly, suggesting that they are feeding generalists. Most stomachs contained either all copepods or all euphausiids. Euphausiids were the most important prey on the basis of biomass. They comprised over one-half the weight of the stomach contents in over 40% of individuals of each of the three fishes. Stomach fullness and state of digestion of stomach contents differed over the diel period, but not enough to indicate feeding only during the nighttime. Average stomach fullness was greatest during the morning and night and well-digested material, which predominated in most stomachs, was most prevalent in the morning and afternoon. Either some feeding occurs throughout the day or digestion rates are slow.  相似文献   

20.
Two oceanographic cruises were carried out in the northern Adriatic Sea, from June, 1996 to February, 1997. Samples were collected using a BIONESS electronic multinet (204 samples on 54 stations) along inshore-offshore sections. Zooplankton abundance and biomass were estimated in relation to the variability of temperature, salinity and fluorescence. Spatial and vertical distribution patterns of the most important zooplankton groups were studied. During June, in the northern area, abundance and biomass of 2787 - 1735 r ind m and 29.3 - 26.7 r mg r m, respectively, were reported. The zooplankton community was constituted essentially by copepods and cladocerans. In the southern area, instead, an abundance of 4698 - 5978 r ind r m and a dry weight of 25.4 - 15.3 r mg r m were observed, with a reverse dominance ratio between these groups. In February, in the northern area the zooplankton community (1380 - 595 r ind r m and 19.6 - 9.9 r mg r m) was mainly constituted by copepods, larvae of invertebrates, appendicularians and cladocerans; in the southern area zooplankton average abundance was 969 - 493 r ind r m and 9.9 - 3.2 r mg r m being copepods, cladocerans, appendicularians and larvae of invertebrates. The zooplankton spatial distribution, in this period, did not show the classic inshore-offshore gradient. Spatial distribution and biomass values of zooplankton, in the northern Adriatic Sea, were strongly influenced by hydrological characteristics, allowed up to formulate a preliminary model about distribution, along the water column, of the different associations of species assemblages with regard to different water masses in the neritic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号