首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
南宁市清水泉地下河水中多环芳烃分布特征   总被引:1,自引:0,他引:1  
为了确定南宁市清水泉地下河水中多环芳烃的分布特征,2014年12月沿途采集了13个地下河水样品,利用液液萃取和气相色谱-质谱联用仪(GC-MS)测定南宁清水泉地下河水样品的多环芳烃(PAHs)。结果显示,清水泉地下河水中共检出15种单体;地下河水中∑PAHs浓度范围为162.13~224.99 ng/L,平均值为191.71 ng/L,PAHs以2~3环为主,占PAHs总量的49.36%;地下河水中PAHs的含量自上游至下游逐渐增大,是因为污染源不断汇入及地下管道的特殊环境造成的;2~3环PAHs的百分比先升高后减降低,这可能与地下河对4~6环PAHs的吸附作用及沿途排污有关。  相似文献   

2.
采集并分析了位于某工业园区下风向2个村庄周围的土壤、积尘、空气、地下水和地表水样品中16种PAHs的浓度。发现以大气扩散和空气颗粒物沉降方式进入环境的PAHs,在各环境介质中的浓度为:积尘土壤空气地下水和地表水。通过分析样品中多环芳烃的组分发现:不同环境介质中PAHs的组分差异较大,而在两个村相同环境介质中组分较为相似。通过分析树脂吸附、颗粒物截留2种方式所采集的空气样品发现:二、三环多环芳烃主要存在于气相,五环以上的主要存在于颗粒物,四环在两相中同时存在。通过轮廓图法推测:所调查的2个村多环芳烃类污染物的主要来源相同。通过特征成分比值法发现:2个村空气颗粒物中的多环芳烃主要来源于燃煤污染源。  相似文献   

3.
王伟 《环境科学与管理》2013,(1):131-133,156
通过对鞍山市典型区域(6个污染源、4个居住区、一个对照点)大气中总悬浮颗粒物(TSP)的监测,采用GC/MS法分析了总悬浮颗粒物中16种PAHs的含量,探讨了鞍山市总悬浮颗粒物浓度及16种多环芳烃的分布特征及来源。研究结果表明,鞍山市大气中总悬浮颗粒物采暖期普遍比非采暖期高1.1~2.5倍,总悬浮颗粒物中PAHs总量采暖期也远远高于非采暖期;鞍钢6个点位在非采暖期的PAHs总量均远远高于其他五个点位,表明了工业污染导致的环境空气质量下降是不容忽视的。  相似文献   

4.
燃煤污染源多环芳烃的排放规律及其分布特征   总被引:18,自引:0,他引:18       下载免费PDF全文
在对固定污染源烟道气中多环芳烃污染物采样和分析方法进行研究的基础上,对几种不同的燃煤锅炉和炉灶烟道气中的多环芳烃进行了分析测定和评价实验,并探讨了各种锅炉和炉灶多环芳烃的排放规律和分布特征.  相似文献   

5.
烟煤中多环芳烃分布特征的初步研究   总被引:5,自引:0,他引:5  
选取中国各地的7个烟煤煤样经过索氏抽提、浓缩、纯化等步骤,对其中含有的17种多环芳烃进行了GC测定,研究烟煤中多环芳烃的分布特征.分析发现,干燥无灰基碳质量分数在75%~88%之间,多环芳烃总量最大点发生在80%~83%.随煤化程度提高,高环芳烃含量呈增加趋势,且烟煤中碳含量、挥发分含量、氧碳摩尔比、氢碳摩尔比等参数与17种多环芳烃的总量存在一定关系.   相似文献   

6.
2005年7月—2006年3月用GC-MS内标定量法检测了北京市通州区23个采样点河流悬浮物样品中16种优控多环芳烃(PAHs)含量,并探讨了研究区域悬浮物中PAHs的分布特征.结果表明,通州河流悬浮物中w(PAHs)为1 160.60~27 653.72 ng/g,其中12月最高,10月最低;不同河流之间悬浮物中PAHs含量的差异较大,其中北运河通州河段悬浮物PAHs污染源分布较多;悬浮物中16种PAHs以3环PAH为优势组分,3环及3环以下PAH占PAHs的70%左右;采样点PAHs含量与4环PAH含量有显著的正相关关系,回归分析得到相关度很高的一元线性关系式.   相似文献   

7.
黄浦江表层水体中低环多环芳烃的分布特征   总被引:2,自引:2,他引:2  
2005年12月-2006年5月连续监测黄浦江表层水体中低环多环芳烃(LMWPAHs)含量。结果表明,萘、芴、菲和蒽的平均浓度分别为123ng/L,57.8ng/L,58.8ng/L和11.5ng/L。黄浦江表层水体中LMWPAHs的分布主要受人类活动影响,其总浓度沿黄浦江上中下游逐渐升高,在外滩附近,即S6采样点(311°44′6.2″N,1212°92′1.6E″),S7采样点(311°52′8.9″N,213°21′9.7″E)达到峰值。水体中LMWPAHs浓度受季节影响,冬季浓度明显高于春季。其特征化指数表明,黄浦江表层水体中LMWPAHs主要来自化石燃料的不完全燃烧。  相似文献   

8.
卢丽  王喆  裴建国 《环境科学》2015,36(3):862-868
为了确定岩溶地下河系统内不同环境介质中多环芳烃(PAHs)的污染特征及来源,选择典型的清水泉地下河为研究对象,采用2013~2014年同期采集的空气、地下河水、沉积物和土壤样品测试数据,运用16种多环芳烃(PAHs)的成分谱、分布特征和特征比值,结合其物理化学性质进行对比分析.结果表明,空气和地下河水以萘(Nap)、菲(Phe)和荧蒽(Fl A)这3种2~3环PAHs为主,其中空气的2~3环PAHs比例为71.66%,地下河水的2~3环PAHs比例为54.84%,而沉积物和土壤以4~6环PAHs为主,其中沉积物的4~6环PAHs比例为54.26%,土壤的4~6环PAHs比例为65.06%;环境介质中PAHs的浓度变化表明上游小于中游,中游小于下游,这与污染源排放、吸附作用等相关;PAHs来源解析表明,上游乡村地区PAHs来源以草、木、煤燃烧源为主,敢怀村天窗附近显示为石油源,地下河出口处PAHs来源则以石油源和燃烧源的混合源为主.  相似文献   

9.
于2013年对南黄海西部海域25个站位表层沉积物中多环芳烃(PAHs)进行了测定。结果表明,16种美国EPA优先控制PAHs在大部分样品中均有检出,PAHs总量水平为19.8~172μg/kg(干重),平均含量为67.2μg/kg。沉积物中PAHs与TOC、粒度有明显的线性相关关系。与国内外其它海区相比,调查海域PAHs总体处于低污染水平。表层沉积物中PAHs主要来源于木柴、煤炭燃烧,也有部分样品显示石油源。利用沉积物质量基准法(SQGs)评价了调查海域沉积物的生态风险,调查海域沉积物中PAHs处于较低生态风险水平。  相似文献   

10.
首钢焦化厂环境中多环芳烃分布赋存特征研究   总被引:26,自引:1,他引:26  
对首钢焦化厂炼焦过程中生成多环芳烃的分布特征进行了初步研究.焦化厂环境中共检测出40多种多环芳烃,其中属于美国国家环保局(EPA)优先控制污染物9种,且大多具有致癌和致突变性.多环芳烃的稳定碳同位素可以初步确定环境颗粒物中PAHs的来源,以及是否混有未燃烧、燃烧不完全或干馏中间产物的颗粒物.研究表明,煤中多环芳烃通过焦化作业以烟尘、煤粒、焦末以及外排废水形式迁移而污染大气、土壤和水环境.  相似文献   

11.
多环芳烃对环境的污染分析研究   总被引:1,自引:0,他引:1  
针对多环芳烃对环境的污染分析问题,文中首先介绍了多环芳烃,它是人类生活中经常接触到的有机化合物,由于科学的发展,多环芳烃在环境中的量变对人类产生了影响,本文介绍了环境中多环芳烃的污染来源,探讨了多环芳烃对环境的影响,主要探讨了多环芳烃对大气环境的影响、多环芳烃对水环境的影响和多环芳烃对土壤的影响,分析了其对大气环境、水环境以及土壤的影响,并提出了减少多环芳烃的途径和方法。如微生物降解法、吸附法和光解法。  相似文献   

12.
北京地区大气可吸入颗粒物中多环芳烃分布特征   总被引:10,自引:3,他引:10  
采集北京城乡结合区和郊区冬季12个大气可吸入颗粒物不同粒径样品,用色谱-质谱技术分析鉴定了75种多环芳烃化合物,并对各粒径中美国EPA优控的16种多环芳烃做了定量分析,研究其在不同粒径的分布规律。结果表明:城乡结合区大气颗粒物中优控多环芳烃总量明显高于郊区;郊区和城乡结合区大气分别有68%和85%的优控多环芳烃吸附在粒径小于2 0μm颗粒物上;可吸入颗粒物中都相对富集高环数的多环芳烃;2个地区主要污染源可能为化石燃料的燃烧排放,燃煤的影响相对较大。   相似文献   

13.
广州市大气中多环芳烃分布特征、季节变化及其影响因素   总被引:21,自引:16,他引:21  
李军  张干  祁士华 《环境科学》2004,25(3):7-13
对广州市大气中气态和颗粒态多环芳烃(PAHs)进行了连续一年的采样观测.结果表明,气态和颗粒态样品中PAHs的平均浓度值分别为312.9 ng/m3 和 23.7 ng/m3,即多环芳烃主要存在于气相中,占大气总PAHs年平均的92.5%,且在夏季的比重要高于冬季.所检出的的气态多环芳烃以芴、菲、蒽等低环数化合物为主,其中菲占了总含量的60%以上;颗粒态多环芳烃则以高环数的化合物为主,各化合物所占的比重相当,其相对浓度无显著差别.气态多环芳烃在夏季达到高值,冬季降为低值;而颗粒态与其相反,夏季低值,冬季达到高值.在所测定的气象条件中,温度在影响气态多环芳烃浓度变化的因素中占了绝对优势,其次为风速,其它气象因素未观测到有较明显的影响作用;对颗粒态多环芳烃来说,则无绝对的影响因素,温度、风速和湿度同为重要影响因素,但随着分子量的增加,各因素的影响大小顺序略有不同.  相似文献   

14.
大庆市不同环境介质中多环芳烃污染特征对比及来源解析   总被引:1,自引:4,他引:1  
宋宁宁  冯嘉申  于洋  李迎霞 《环境科学》2017,38(12):5272-5281
为研究不同环境介质中多环芳烃(PAHs)污染特征的异同,对大庆市道路灰尘中多环芳烃的污染特征和来源进行研究,在2012年10月采集了大庆市区23个道路灰尘样品和4个土壤样品.使用戴安ASE300快速溶剂萃取仪提取PAHs,净化浓缩后,利用气相色谱/质谱联用仪(GC/MS)测定了美国环保署列为优先控制污染物的16种PAHs及总PAHs(ΣPAHs)的含量.结果表明,道路灰尘中ΣPAHs含量的范围为579.5~4 656.7 ng·g~(-1),平均值为1839.7 ng·g~(-1).大庆市不同功能区道路灰尘中PAHs占ΣPAHs的质量比例呈现大体相似的特征,低环(2~3环)、中环(4环)、高环(5~6环)PAHs所占比例均值分别为37.9%,37.3%和24.8%.与相关研究中大庆水体及湖泊沉积物中PAHs数据进行对比,发现大庆土壤、湖泊沉积物、湖泊和水泡水体中均为低环PAHs占绝对主导优势,其质量分数高达69.3%~99.97%.ΣPAHs含量的分布受功能区的影响并不显著,与样点周围工厂的类型密切相关.特征化合物比值法表明,研究区PAHs主要来自于石油类燃料的泄漏、石油燃料燃烧及煤炭/生物质燃烧的混合源.正定矩阵因子分解法(PMF)结果表明,研究区道路灰尘中PAHs主要来源为煤炭燃烧、石油泄漏源、工业源以及交通源,其贡献率分别为30.1%、26.9%、23.6%和19.3%,与大庆地区其他环境介质中PAHs来源不完全相同.  相似文献   

15.
西安市地表灰尘中多环芳烃分布特征与来源解析   总被引:3,自引:6,他引:3  
王丽  王利军  史兴民  卢新卫 《环境科学》2016,37(4):1279-1286
采集了西安市地表灰尘样品58个,利用GC-FID对其中16种优控多环芳烃(PAHs)进行含量分析,在此基础上研究了其分布特征与环境来源.结果表明,西安市地表灰尘中单体PAH的含量范围为14.69~6 370.48μg·kg~(-1);16种PAHs总量(Σ_(16)PAHs)范围为5 039.67~47 738.50μg·kg~(-1),平均值为13 845.82μg·kg~(-1).与国内外其他城市比较发现,西安市地表灰尘中PAHs的含量相对较高.地表灰尘中PAHs主要由4环以上的高分子量PAHs构成,7种致癌芳烃(Σ_7CPAHs)平均占Σ16PAHs的46.08%.地表灰尘中Σ_(16)PAHs的平均含量在工业区最高,文教区、交通区和商业交通混合区含量次之,住宅区和公园较低.地表灰尘中Σ_(16)PAHs平均含量沿主城区-二环-三环由内向外呈增加趋势.地表灰尘中Σ16PAHs在东郊和西郊工业区、南郊和北二环重交通区相对较高,主城区、北郊和城市东南部较低.比值法、聚类分析和主成分分析结果表明,西安市地表灰尘中PAHs主要来源于化石燃料和煤的燃烧,其中柴油燃烧和汽油燃烧的方差贡献率分别为36.07%和32.31%,煤燃烧方差贡献率为23.40%.  相似文献   

16.
昆明松华坝水库沉积物中PAHs垂直分布特征及其来源   总被引:1,自引:0,他引:1       下载免费PDF全文
为揭示昆明松华坝水库人类活动对PAHs(多环芳烃)的影响程度及其污染历史,研究了松华坝水库2根沉积柱(包括集水区人口较密集的1号柱和以山地为主的2号柱)中16种PAHs的垂直分布特征及其来源.结果表明:1号、2号柱中∑16PAHs(16种PAHs总量)分布范围分别为155.9~471.3和100.7~316.3 ng/g,但1号柱污染程度高于2号柱,可能与其集水区较高的人为排放有关.1号柱中∑16PAHs整体随采样深度的下降而降低,2号柱则随采样深度的下降而增长;这2根柱子PAHs的组成相似,沉积物中PAHs均以2环的Nap(萘)和3环的Phe(菲)为主(二者占比高于50%),高致癌性的4~6环PAHs也有较大占比.分子比值法和正定矩阵因子分解法结果显示,1号柱中PAHs主要来源顺序为生物质燃烧源(38.8%)>石油源(34.7%)>煤炭燃烧源(13.4%)>石化燃料燃烧源(13.1%),2号柱主要来源为石油源(44.4%)>生物质燃烧源(26.2%)>煤炭燃烧源(15.3%)>石化燃料燃烧源(14.1%),反映了集水区人类活动方式与强度对沉积物中PAHs的控制作用.   相似文献   

17.
本研究对太原市采暖期PM2.5中多环芳烃(PAHs)的污染水平、组成特征、健康风险以及来源进行了分析。结果表明,太原市采暖期PM2.5的日均浓度水平为70.7~274.2μg/m3,90%的样品超过了我国《环境空气质量标准》(GB 3095-2012)中PM2.5的二级标准限值(75μg/m3)。PM2.5中16种PAHs的浓度水平为282.7~1 398.6ng/m3,平均值为915.7ng/m3。荧蒽(Fla)是浓度最高的单体,占PAHs总浓度的20.4%,其次是芘(Pry)和菲(Phe),分别占14.5%和13.2%。不同环数的PAHs质量浓度为4环5~6环2~3环。以苯并(a)芘(Bap)为参照对象的昼夜毒性当量浓度Bapeq分别为75.5和100.0ng/m3,高于我国和WHO对Bap的规定值(分别为2.5和1ng/m3),对人体健康存在潜在危害。根据PAHs环数分布及特征比值法判断PAHs的主要来源是煤燃烧,同时也存在一定的生物质燃烧和少部分石油燃烧。  相似文献   

18.
南京和宜兴市土壤中多环芳烃(PAHs)的纵向分布   总被引:3,自引:1,他引:3  
采集了江苏省南京和宜兴市的土壤剖面样品,用高效液相色谱分析了16种PAHs在土壤样品中的含量,研究了PAHs在土壤剖面中的纵向分布特征和影响因素。结果表明,在采样点土壤0~10cm的表土中16种PAHs总量最高,为280.8~717.1μg/kg,随着土壤剖面的加深PAHs总量减少,在70~80cm土层中为8.7~97.5μg/kg。不同PAHs组分在土壤中分布的特点不同,低环的PAHs(≤3环)含量在0~80cm土层中都有分布且随土壤深度加深而减少,而高环的PAHs(≥4环)主要分布在0~30cm土层中,30cm以下土层中含量较少甚至检测不到。相关分析表明,在每个土壤剖面中PAHs总量与其土壤有机碳含量显著相关,PAHs在农田土壤剖面中的纵向分布与土壤有机碳含量、PAHs的理化性质有很大的关系。  相似文献   

19.
2002-10~2005-11采集珠江三角洲典型区域(东莞市、惠州市、中山市、珠海市和佛山市顺德区)的农业土壤表层样品260个,运用气相色谱-质谱方法对美国EPA优控的16种多环芳烃(PAHs)进行分析测定.结果显示,研究区农业土壤中16种PAHs含量范围在3.3~4 079.0 ng·g-1,平均含量244.2 ng·g-1,以3环和4环的PAHs为主;中心城区土壤中PAHs含量高于远郊区,菜地>水稻田>香蕉地>旱坡地果园地>甘蔗地.依据荧蒽/芘及2+3环与4环以上PAHs化合物分布特点,表明该区域农业土壤中PAHs主要来源于化石燃料的不完全燃烧.通过与国内外土壤中PAHs含量的对比,研究区的农业土壤受到一定程度的PAHs污染,含量处于中等水平.  相似文献   

20.
南京大气中多环芳烃的相分布   总被引:3,自引:0,他引:3  
采用玻璃纤维滤膜(GF)和聚氨基甲酸乙酯泡膜(PUF)同时采集南京大气中颗粒态和气态上的多环芳烃(PAHs),用气质联用仪分析了16种优先控制的PAHs,研究了PAHs在南京大气中的相分布,研究结果表明,颗粒态和气态样品中16种PAHs的平均浓度值分别为20.49ng/m3和182.45ng/m3,2~3环的PAHs主要分布在气态中,而>4环的PAHs主要分布在颗粒态中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号