首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Matriphagous young of a subsocial spider Amaurobius ferox exhibit collective predation during their post-maternal social period. In this paper, we examine functional mechanisms of collective predation by sibling groups. Predation efficiency increased with increasing number of individuals within each group. Solitary or paired individuals were generally unable to capture a 20 mg cricket. In larger groups, more individuals participated and captured the prey more quickly. Some siblings did not take part in paralyzing prey, but later consumed it. The proportion of these profiteers within a group increased with the group size. Presented with prey of different sizes (1, 5, or 40 mg), siblings were most aggressive towards each other when predating on 5 mg prey. Prey of this size could be captured by a single individual and yet were sufficiently large for more than one individual to eat. Siblings were much less aggressive towards one another during the capture of 40 mg prey, which require the assistance of other individuals to capture. By providing the same mass of prey in different numbers of individuals (a single cricket of 40 or 40 mg of first-instar crickets), we tested the influence of cooperation on the post-maternal social period. We found no difference in the development of young during the social period nor the timing of dispersal and the body mass of dispersing individuals. We conclude that the young of this subsocial animal increased predation efficiency by cooperative hunting after the mother's death.  相似文献   

2.
Laboratory experiments investigated the benefits and costs of aggregation formation in the whirligig beetles, Gyrinus marinus and G. substriatus (Coleoptera: Gyrinidae). Different sized groups of whirligigs were exposed to fish predators, and capture rate per group and per individual were estimated. Attack rate per group increased with group size, suggesting that these aggregations behave as selfish herds. In another series of experiments in which whirligigs were exposed to top- and side-attacking predators, large groups were found to detect predators when they were further away than small groups. Video analysis of these groups showed that beetles tended to increase their swimming speed after exposure to a predator but did not show an increased tendency to circle. In natural aggregations, filmed in the field, swimming speed was found to be related to group size. Body condition of field collected beetles, as estimated from the regression of body mass on body length, was not found to be related to group size, implying that large groups do not suffer reduced condition. Received: 31 January 1997 / Accepted after revision: 24 November 1997  相似文献   

3.
Juvenile oysters (Crassostrea gigas) (produced in November 2009) reared under uniform hatchery conditions for 4 months were selected for extreme growth rate differences by repeatedly taking larger and smaller individuals to achieve weight differences >30× between fast (F) and slow (S) growers. The physiological basis of differential growth was analyzed in experiments in June 2010, where components of energy gain (clearance and ingestion rates and absorption efficiency), energy loss (metabolic rates) and resulting scope for growth (J h?1) were compared for groups of F and S oysters fed three different ration levels (≈0.5, 1.5 and 3.0 mg of total particulate matter L?1). In both F and S oysters, a higher food ration promoted asymptotic increases in energy gain rates through regulatory adjustments to clearance rates, which maintained similar absorption efficiencies across the food concentrations. No significant differences were found between growth groups in mass-specific physiological rates (i.e., per unit of body mass). However, the scaling of these rates to a common size in both groups using allometric coefficients derived for C. gigas revealed higher energy gain rates coupled with lower metabolic costs of growth in fast growers. Thus, appropriate size-standardization is essential in accounting for observed differences in growth rate. Present results are in accordance with previous reports on other bivalve species on the physiological processes underlying endogenous growth differences, suggesting that the same interpretation can be applied to the extremes of these differences.  相似文献   

4.
We propose a Bayesian hierarchical modeling approach for estimating the size of a closed population from data obtained by identifying individuals through photographs of natural markings. We assume that noisy measurements of a set of distinctive features are available for each individual present in a photographic catalogue. To estimate the population size from two catalogues obtained during two different sampling occasions, we embed the standard two-stage $M_t$ capture–recapture model for closed population into a multivariate normal data matching model that identifies the common individuals across the catalogues. In addition to estimating the population size while accounting for the matching process uncertainty, this hierarchical modelling approach allows to identify the common individuals by using the information provided by the capture–recapture model. This way, our model also represents a novel and reliable tool able to reduce the amount of effort researchers have to expend in matching individuals. We illustrate and motivate the proposed approach via a real data set of photo-identification of narwhals. Moreover, we compare our method with a set of possible alternative approaches by using both the empirical data set and a simulation study.  相似文献   

5.
Natural populations of the cosmopolitan polychaete species, Capitella capitata (Species Type I, Grassle and Grassle 1976) contain males, females and hermaphrodites. Hermaphroditic individuals arise through feminization of males when females are rare. The age-specific survivorships and fecundities of females and hermaphrodites were estimated. There were no significant differences between females and hermaphrodites in survivorship, number of offspring per brood, or percentage of aborted eggs per brood. Net reproductive rates were used to estimate fitness, and the relative fitness of a hermaphrodite as a female ranged from 0.09 to 0.31. The fitness differential was due to the difference in the number of broods that females and hermaphrodites produce. The effects of density, sex ratio, age and body size on the timing of the development of hermaphrodites in groups of siblings were also examined. Hermaphrodites appeared when females were rare or when densities were low. Hermaphrodites never developed in cohorts with larger males unless females were rare. These observations suggest that feminization of males occurs when some males are unable to gain access to females because of mate competition. Feminization does not appear to be correlated with a threshold in body size.  相似文献   

6.
We study optimal carbon capture and storage (CCS) from point sources, taking into account damages incurred from the accumulation of carbon in the atmosphere and exhaustibility of fossil fuel reserves. High carbon concentrations call for full CCS, meaning zero net emissions. We identify conditions under which partial or no CCS is optimal. In the absence of CCS the CO2 stock might be inverted U-shaped. With CCS more complicated behavior may arise. It can be optimal to have full capture initially, yielding a decreasing stock, then partial capture while keeping the CO2 stock constant, and a final phase without capture but with an inverted U-shaped CO2 stock. We also introduce the option of adaptation and provide a unified theory regarding the optimal use of CCS and adaptation.  相似文献   

7.
Competition between males is a key component of the agonistic intrasexual interactions that influence resource acquisition, social system dynamics, and ultimately reproductive success. Sexual selection theory predicts that traits that enhance success in intrasexual competition (particularly male–male competition) should be favored. In vertebrates, this often includes body size and aggression, with larger and/or more aggressive males outcompeting smaller or less aggressive conspecifics. The majority of studies consider aggression as a flexible trait which responds to local social or environmental conditions. However, aggression frequently shows considerable within-individual consistency (i.e., individuals have identifiable aggressive behavioral types). Little is known about how such consistency in aggression may influence competition outcomes. We integrated a detailed field study with a laboratory experiment to examine how a male’s aggressive phenotype and his size influence competitive interactions in Egernia whitii, a social lizard species which exhibits strong competition over resources (limited permanent shelter sites and basking sites). Individual aggression and size did not predict competition outcome in the laboratory nor did they predict home range size, overlap, or reproductive success in the field. However, winners of laboratory trial contests maintained consistent aggressive phenotypes while consistency in aggression was lost in losers. We suggest that aggression may be important in other functional contexts, such as parental care, and that alternative traits, such as fighting experience, may be important in determining competition outcome in this species.  相似文献   

8.
A new conceptual model for the fate of lignin in decomposing plant litter   总被引:3,自引:0,他引:3  
Lignin is a main component of plant litter. Its degradation is thought to be critical for litter decomposition rates and the build-up of soil organic matter. We studied the relationships between lignin degradation and the production of dissolved organic carbon (DOC) and of CO2 during litter decomposition. Needle or leaf litter of five species (Norway spruce, Scots pine, mountain ash, European beech, sycamore maple) and of different decomposition stage (freshly fallen and up to 27 months of field exposure) was incubated in the laboratory for two years. Lignin degradation was followed with the CuO method. Strong lignin degradation occurred during the first 200 incubation days, as revealed by decreasing yields of lignin-derived phenols. Thereafter lignin degradation leveled off. This pattern was similar for fresh and decomposed litter, and it stands in contrast to the common view of limited lignin degradation in fresh litter. Dissolved organic carbon and CO2 also peaked in the first period of the incubation but were not interrelated. In the later phase of incubation, CO2 production was positively correlated with DOC amounts, suggesting that bioavailable, soluble compounds became a limiting factor for CO2 production. Lignin degradation occurred only when CO2 production was high, and not limited by bioavailable carbon. Thus carbon availability was the most important control on lignin degradation. In turn, lignin degradation could not explain differences in DOC and CO2 production over the study period. Our results challenge the traditional view regarding the fate and role of lignin during litter decomposition. Lignin degradation is controlled by the availability of easily decomposable carbon sources. Consequently, it occurs particularly in the initial phase of litter decomposition and is hampered at later stages if easily decomposable resources decline.  相似文献   

9.
This paper examines the spatio-temporal patterns of atmospheric carbon dioxide transport predicted by the Regional Atmospheric Modeling System (RAMS). Forty-eight hour simulations over northern New England incorporating a simple representation of the diurnal summertime surface carbon dioxide forcing arising from biological activity indicate that, in its native formulation, RAMS exhibits a significant degree of mass non-conservation. Domain-wide rates of non-physical mass gain and mass loss are as large as three percent per day which translates into approximately eleven parts per million per day for carbon dioxide — enough to rapidly dilute the signature of carbon dioxide fluxes arising from biological activity. Analysis shows that this is due to the approximation used by RAMS to compute the Exner function. Substitution of the exact, physically complete equation improves mass conservation by two orders of magnitude. In addition to greatly improving mass conservation, use of the complete Exner function equation has a substantial impact on the spatial pattern of carbon dioxide predicted by the model, yielding predictions differing from a conventional RAMS simulation by as much as forty parts per million. Such differences have important implications both for comparisons of modeled atmospheric carbon dioxide concentrations to observations and for carbon dioxide inversion studies, which use estimates of atmospheric transport of carbon dioxide in conjunction with measurements of atmospheric carbon dioxide concentrations to infer the spatio-temporal distribution of surface carbon dioxide fluxes. Furthermore, use of the complete Exner function equation affects the vertical velocity and water mixing ratio fields, causing significant changes in accumulated precipitation over the region.  相似文献   

10.
徐坤  吴旭东  谢应忠  杨菁 《生态环境》2013,(10):1671-1677
采用静态箱-气象色谱法对干旱区不同种植年限苜蓿人工草地土壤系统、土壤-植被系统的CO2排放通量进行了测定,并对土壤 CO2排放通量的主要影响因素,包括土壤碳氮质量分数、土壤温度、气温、土壤水分体积分数、生物量进行了测定分析,从而得到了苜蓿生长季内CO2排放通量规律及影响土壤CO2排放的主要因素。结果表明:观测期内各个年限土壤-植被系统与土壤系统的CO2排放趋势基本一致,总体表现为4a〉5a〉8a〉3a〉1a,表现出“夏季高秋季低”的季节变化规律,具有明显的季节变化动态,各样地CO2通量在7月中旬达到最高排放通量;土壤CO2排放通量与0~20 cm土层内土壤有机碳质量分数、活性有机碳质量分数、土壤C:N及土壤全N质量分数都具有正相关关系,并且都达到了显著水平;土壤CO2排放通量与5 cm土壤温度和大气温度都有正相关关系,并且显著水平很高(P<0.001);土壤CO2排放通量与0~10 cm土壤水分体积分数之间没有显著的相关性(P〉0.05);土壤CO2排放通量与地上部分生物量的大小有直接的正相关关系,并且CO2排放通量与地上生物量具有相同的变化趋势。  相似文献   

11.
《Ecological modelling》2005,188(1):76-92
Mechanistic theories of plant competition developed to explain changes in community structure and dynamics along resource availability gradients have been mostly applied to temperate forests and grasslands where light and nutrients are the two main limiting resources. In contrast, the mechanisms underlying the structure and dynamics of water-limited plant communities have been little explored. Also previous mechanistic models rely either on complex simulators, which are difficult to interpret or on simple conceptual models, which ignore too many critical details. In this study, we develop a model of stand dynamics for light and water-limited forests of intermediate complexity and we provide an analytical framework for its analyses. The model is an individual-based simulator that describes the feedback between transpiration, stomatal function and soil water dynamics with asymmetrical competition for light and water. Trees allocate carbon to three main compartments: shoot, stem and roots. We use the model to explore general patterns that may emerge across levels of biological organization from the leaf to the stand. Model predictions are consistent with a number of features of Mediterranean forests structure and dynamics. At the plant-level the leaf-based tradeoff between carbon gain and water loss expresses as a tradeoff between mortality and growth. This tradeoff explains plant morphological changes in above-ground biomass and root to shoot allocation along a water availability gradient. At the community-level, tradeoffs among carbon acquisition and water loss govern the sign of plant interactions along the gradient. Coexistence among morphological types was not observed for the range of parameters and environmental conditions explored. Overall the model provides an unifying explanation for the observed changes in the sign of plant to plant interactions along environmental gradients as well as a process-based formulation that can be linked to empirical studies.  相似文献   

12.
Vile D  Shipley B  Garnier E 《Ecology》2006,87(2):504-517
From a functional perspective, changes in abundance, and ultimately species replacement, during succession are a consequence of integrated suites of traits conferring different relative ecological advantages as the environment changes over time. Here we use structural equations to model the interspecific relationships between these integrated functional traits using 34 herbaceous species from a Mediterranean old-field succession and thus quantify the notion of a plant strategy. We measured plant traits related to plant vegetative and reproductive size, leaf functioning, reproductive phenology, seed mass, and production on 15 individuals per species monitored during one growing season. The resulting structural equation model successfully accounts for the pattern of trait covariation during the first 45 years post-abandonment using just two forcing variables: time since site abandonment and seed mass; no association between time since field abandonment and seed mass was observed over these herbaceous stages of secondary succession. All other predicted traits values are determined by these two variables and the cause-effect linkage between them. Adding pre-reproductive vegetative mass as a third forcing variable noticeably increased the predictive power of the model. Increasing the time after abandonment favors species with increasing life span and pre-reproductive biomass and decreasing specific leaf area. Allometric coefficients relating vegetative and reproductive components of plant size were in accordance with allometry theory. The model confirmed the trade-off between seed mass and seed number. Maximum plant height and seed mass were major determinants of reproductive phenology. Our results show that beyond verbal conceptualization, plant ecological strategies can be quantified and modeled.  相似文献   

13.
Summary Relationships between spacing behavior and growth rates were investigated in a field experiment with juvenile lizards, Anolis aeneus. The behavioral variable most closely related to juvenile growth was distance moved per unit time. This variable had a curvilinear relationship with growth, such that juveniles moving approximately 400 cm/h grew more rapidly than those traveling either larger or shorter distances per unit time. Daily fluctuations in arthropod abundance were also related to growth rates, with restricted growth during periods of low food availability. Temporal fluctuations in prey and distance traveled per unit time had independent effects on growth; together these two variables accounted for 43% of the variance in growth rate for the juveniles in this study.Territory size, overlap and social status appeared to affect growth indirectly, by influencing distance traveled per unit time. Optimal travel distances of around 400 cm/h were most likely when a juvenile had a relatively exclusive territory of about 0.5 m2. High ranking juveniles were more apt to achieve this spacing pattern than were low ranking juveniles, but some high ranking juveniles had very large territories, extensive overlap with subordinates, supraoptimal travel distances and relatively low growth rates. Low ranking juveniles tended to fall into two groups: subordinates, with a small home range overlapping that of a more dominant individual and low travel distances, and floaters, with a large home range overlapping several more dominant individuals and high travel distances. Although a few low ranking juveniles achieved travel distances permitting high growth rates, most had either supra or suboptimal travel distances and relatively low growth rates.  相似文献   

14.
Summary I studied the foraging behaviour of adults in three different-sized groups of yellow baboons (Papio cynocephalus) at Amboseli National Park in Kenya to assess the relationship between group size and foraging efficiency in this species. Study groups ranged in size from 8 to 44 members; within each group, I collected feeding data for the dominant adult male, the highest ranking pregnant female, and the highest ranking female with a young infant. There were no significant differences between groups during the study in either the mean estimated energy value of the food ingested per day for each individual (385±27 kJ kg-1 day-1) or in the estimated energy expended to obtain that food (114±3 kJ kg-1 day-1). Mean foraging efficiency ratios, which reflect net energy gain per unit of foraging time, also did not vary as a function of the size of the group in which the baboons were living. There was substantial variation between days in the efficiency ratios of all animals; this was the result of large differences in energy intake rather than in the energy expended during foraging itself. The members of the smallest group spent on the average only one-half as much time feeding each day as did individuals in the two larger groups. However, they obtained almost as much energy while foraging, primarily because their rate of food intake while actually eating tended to be higher than the rate in the other groups. The baboons in the small group were observed closer to trees that they could climb to escape ground predators, and they also were more likely to sit in locations elevated above the ground while resting. Such differences would be expected if the members of the small group were less able to detect approaching predators than individuals that lived in the larger groups. The results of this study suggest that predator detection or avoidance, rather than increased foraging efficiency, may be the primary benefit of living in larger groups in this population.  相似文献   

15.
张羽  王英滨 《环境化学》2012,31(1):50-56
采用膨润土为载体,KHCO3为前驱物通过喷雾-干燥法制成固体碳酸钾吸收剂,制成的固体吸收剂粒径大小为0.5—2.0 mm,密度为1.73 g.mL-1.通过K2CO3负载量、吸收温度、吸收时间、床层纵横比等因素考察固体吸收剂对CO2气体的吸收效率及循环反应特性.分析碳酸钾吸收剂对CO2的吸收机理,并与以碳酸氢钠为前驱物制备的吸收剂进行对比,比较两种吸收剂对CO2吸收效果的差异性.通过XRD测试吸收剂吸收反应前后组成的变化,BET多点法测试吸收剂比表面积,扫描电镜观察吸收剂表面形态特征.结果表明,碳酸钾吸收剂和碳酸钠吸收剂对CO2气体均具有较高的吸收量,相比而言碳酸钾吸收剂的碳酸化反应速率较快,而且经过多次循环反应后吸收效果未发生衰减,在60℃—80℃范围内,碳酸钾吸收剂对CO2的吸收能力最佳.  相似文献   

16.
The CO2 concentration in Earth's atmosphere may double during this century. Plant responses to such an increase depend strongly on their nitrogen status, but the reasons have been uncertain. Here, we assessed shoot nitrate assimilation into amino acids via the shift in shoot CO2 and O2 fluxes when plants received nitrate instead of ammonium as a nitrogen source (deltaAQ). Shoot nitrate assimilation became negligible with increasing CO2 in a taxonomically diverse group of eight C3 plant species, was relatively insensitive to CO2 in three C4 species, and showed an intermediate sensitivity in two C3-C4 intermediate species. We then examined the influence of CO2 level and ammonium vs. nitrate nutrition on growth, assessed in terms of changes in fresh mass, of several C3 species and a Crassulacean acid metabolism (CAM) species. Elevated CO2 (720 micromol CO2/mol of all gases present) stimulated growth or had no effect in the five C3 species tested when they received ammonium as a nitrogen source but inhibited growth or had no effect if they received nitrate. Under nitrate, two C3 species grew faster at sub-ambient (approximately 310 micromol/mol) than elevated CO2. A CAM species grew faster at ambient than elevated or sub-ambient CO2 under either ammonium or nitrate nutrition. This study establishes that CO2 enrichment inhibits shoot nitrate assimilation in a wide variety of C3 plants and that this phenomenon can have a profound effect on their growth. This indicates that shoot nitrate assimilation provides an important contribution to the nitrate assimilation of an entire C3 plant. Thus, rising CO2 and its effects on shoot nitrate assimilation may influence the distribution of C3 plant species.  相似文献   

17.
Although most insects are vulnerable to predation by a variety of predators, including birds, there are few direct observational studies in the wild of avian predation on adult butterflies. We examined the predatory behavior of smooth-billed anis (Crotophaga ani) on butterflies, and the spacing behavior of the butterflies which were concentrated on a mineral-rich beach on the Cristalino River, in Mato Grosso, Brazil. We studied eight of the most regularly occurring butterfly species which came each morning to engage in "puddling." Most species of butterfly were closely associated with conspecifics, although nearest-neighbor distance varied among species. The pierids - "yellows" (Aphrissa statira, Phoebis trite), "oranges" (Phoebis argante), and sometimes "whites" (Daptoneura leucadia) - formed very dense groups (or clusters) of up to 1,000 individuals occasionally joined by a few kite swallowtails (Eurytides spp.). Most other butterfly species formed small groups (e.g., daggerwings, Marpesia spp.) or were dispersed individually and non-clumped over the beach (e.g., dingy purplewing, Eunica monima). Anis foraged using two strategies: rapid frontal attack on dense groups of butterflies (yellows, oranges, whites), and a stealthy approach to solitary butterflies (mainly purplewings) or those in small groups. For yellows, the most common butterfly caught by anis, the capture rate reached over 6 per 15 min per ani, and about 8% of those captured managed to escape. Capture rates were much lower for the other species. Time of day, age of the ani (adult or young-of-the-year), and total number of each butterfly species present accounted for variation in the number of each species captured by anis. The number of butterflies captured per 15 min increased as the number of butterflies present increased, but reached a threshold beyond which the capture rate did not increase. The capture rate per individual butterfly (individual risk) decreased with group size up to a group of 40 individuals and remained low with further increases. Thus a butterfly in a group of 100 was no less likely to be eaten than one in a group of 40. For individual ani forays into dense groups of pierids, an individual ani was unable to catch more than 16, regardless of group size. These data confirm the dilution effect of group size for butterflies; each individual yellow or orange was less at risk from ani predation when in a group.  相似文献   

18.
The ecological-constraints model proposes that increased group size increases within-group feeding competition, necessitating increased travel and, consequently, constraining group size. Previous studies have supported the model for frugivores, but its applicability to folivores remains untested. This study evaluated the generality of the model by re-examining the relationship between day range and group size for a folivorous species for which published accounts have not found a relationship between these factors. This study differs from earlier studies by accounting for variation in food availability, which may drive changes in day range. We quantified the relationships among food availability, day range, and group size for two red colobus groups at Kibale National Park, Uganda. Mean day range and home range were significantly greater for the group of 48 individuals compared to the group of 24 individuals. The large group traveled more and rested less than the small group. The large group also traveled more rapidly than the small group. Food availability significantly predicted mean day range for the large group, but not for the small group. Analyses of covariance demonstrated that the large and small group responded differently to changes in food availability. These observations suggest that the large red colobus group experiences greater levels of within-group feeding competition than the small group. This study provides added support for the generality of the ecological-constraints model and contributes toward an understanding of the mechanisms controlling feeding competition and social organization in primates.  相似文献   

19.
Luo Y  Hui D  Zhang D 《Ecology》2006,87(1):53-63
The capability of terrestrial ecosystems to sequester carbon (C) plays a critical role in regulating future climatic change yet depends on nitrogen (N) availability. To predict long-term ecosystem C storage, it is essential to examine whether soil N becomes progressively limiting as C and N are sequestered in long-lived plant biomass and soil organic matter. A critical parameter to indicate the long-term progressive N limitation (PNL) is net change in ecosystem N content in association with C accumulation in plant and soil pools under elevated CO2. We compiled data from 104 published papers that study C and N dynamics at ambient and elevated CO2. The compiled database contains C contents, N contents, and C:N ratio in various plant and soil pools, and root:shoot ratio. Averaged C and N pool sizes in plant and soil all significantly increase at elevated CO2 in comparison to those at ambient CO2, ranging from a 5% increase in shoot N content to a 32% increase in root C content. The C and N contents in litter pools are consistently higher in elevated than ambient CO2 among all the surveyed studies whereas C and N contents in the other pools increase in some studies and decrease in other studies. The high variability in CO2-induced changes in C and N pool sizes results from diverse responses of various C and N processes to elevated CO2. Averaged C:N ratios are higher by 3% in litter and soil pools and 11% in root and shoot pools at elevated relative to ambient CO2. Elevated CO2 slightly increases root:shoot ratio. The net N accumulation in plant and soil pools at least helps prevent complete down-regulation of, and likely supports, long-term CO2 stimulation of C sequestration. The concomitant C and N accumulations in response to rising atmospheric CO2 may reflect intrinsic nature of ecosystem development as revealed before by studies of succession over hundreds to millions of years.  相似文献   

20.
As predicted by life history theory, once recruited into the breeding population and with increasing age, long-lived animals should be able to manage more efficiently the conflict between self-maintenance and reproduction. Consequently, breeding performances should improve with age before stabilizing at a certain level. Using temperature–depth recorders and isotopic analysis, we tested how age affects the foraging behaviour of king penguin Aptenodytes patagonicus during one trip in the chick-rearing phase. Depending on sex and age, king penguins expressed two different foraging strategies. Older birds gained more daily mass per unit body mass than younger ones. Older females conducted shorter trips, dived deeper and performed more prey pursuits. They also had higher blood levels of δ15N than younger individuals and males indicating sex- and age-specific dietary regimes. However, we found no differences in carbon isotopic signature, suggesting that individuals exploited the same foraging areas independently of sex and age. Our results suggest that king penguins are able to increase the quantity of energy extracted with increasing age and that such a strategy is sex-related. Our study is the first to reveal of an interaction between age and sex in determining foraging efficiency in king penguins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号