首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A soil arsenic anomaly with concentrations up to 400g As g–1 was discovered near Maggotty, St. Elizabeth, during an islandwide geochemical survey of Jamaica. Detailed sampling and chemical analysis of soil samples confirmed the arsenic levels and led to a better definition of the size of the anomaly. The area exceeding the 95th percentile (>65g As g–1) of the islandwide concentrations has been determined to be at least 10km2. The anomalous values may be the result of an ancient hot spring environment which was responsible for the introduction and deposition of Fe–As–S as pyrite and arsenopyrite in the limestone bedrock, which were subsequently oxidised and weathered to yield the arsenic rich soils. These soils were also enhanced in elements such as Sb, Fe and Co. Despite the high soil arsenic content, the arsenic concentration in the surface water is low and there seems to be no immediate health risk to the residents. The area, however, does present a potential hazard with changing land use.  相似文献   

2.
Total arsenic was determined in crude petroleum and liquid hydrocarbons derived from crude petroleum by extraction with boiling water or boiling aqueous nitric acid (concentration 0.25 to 2.5 M), mineralization of the extracts with concentrated nitric/sulphuric acid, and reduction of the arsenate to arsine in a hydride generator. The arsine was flushed into a helium-DC plasma. The arsenic emission was monitored at 228.8 nm. The total arsenic concentration in 53 crude oil samples ranged from 0.04 to 514 mg L–1 (median 0.84 mg L–1). Arsenic was also determined in several refined liquid hydrocarbons and in a commercially available arsenic standard in an organic matrix (triphenylarsine in xylene). The method was checked with NIST 1634b Trace Elements in Residual Fuel Oil. The arsenic concentration found in this standard agreed with the certified value (0.12±0.2 g g–1) within experimental error. Viscous hydrocarbons such as the fuel oil must be dissolved in xylene for the extraction to be successful. Hydride generation applied to an aqueous not-mineralized extract from an oil containing 1.67 g As mL–1 revealed, that trimethylated arsenic (520 ng mL–1) is the predominant arsenic species among the reducible and detectable arsenic compounds. Monomethylated arsenic (104 ng ml–1), inorganic arsenic (23 ng mL–1), and dimethylated arsenic (low ng mL–1) were also detected. The sum of the concentrations of these arsenic species accounts for only 39% of the total arsenic in the sample.On leave from Department of Chemistry, Indian Institute of Technology, New Delhi, India  相似文献   

3.
Concentrations of dissolved arsenic in ground-water in alluvial basins of Arizona commonly exceed 50 g L–1 and reach values as large as 1,300 g L–1. Arsenic speciation analyses show that arsenic occurs in the fully oxidized state of plus 5 (As+5), most likely in the form of HAsO42, under existing oxidizing and pH conditions. Arsenic in source areas presumably is oxidized to soluble As before transport into the basin or, if after transport, before burial. Probable sources of arsenic are the sulphide and arsenide deposits in the mineralized areas of the mountains surrounding the basins. Arsenic content of alluvial material ranged from 2 to 88 ppm. Occurrence and removal of arsenic in ground-water are related to the pH and the redox condition of the ground-water, the oxidation state of arsenic, and sorption or exchange. Within basins, dissolved arsenic correlates (P<0.01) with dissolved molybdenum, selenium, vanadium, and fluoride and with pH, suggesting sorption of negative ions. The sorption hypothesis is further supported by enrichment of teachable arsenic in the basin-fill sediments by about tenfold relative to the crustal abundance and by as much as a thousandfold relative to concentrations found in ground-water. Silicate hydrolysis reactions, as defined within the alluvial basins, under closed conditions cause increases in pH basinward and would promote desorption. Within the region, large concentrations of arsenic are commonly associated with the central parts of basins whose chemistries evolve under closed conditions. Arsenic does not correlate with dissolved iron (r = 0.09) but may be partly controlled by iron in the solid phase. High solid-phase arsenic contents were found in red clay beds. Large concentrations of arsenic also were found in water associated with red clay beds. Basins that contain the larger concentrations are bounded primarily by basalt and andesite, suggesting that the iron content as well as the arsenic content of the basin fill may play a role in the occurrence of arsenic in ground-water. Under oxidizing conditions in Arizona, arsenic in ground-water appears to be controlled in part by sorption or desorption of HAsO42 on active ferric oxyhydroxide surfaces.  相似文献   

4.
Seasonal differences in the dissolved arsenic concentration and speciation in a contaminated urban waterway in northwest England have been determined using a coupled ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS) technique. Waters sampled in the vicinity of an industrial works during relatively dry conditions in April 2000 were found to contain total arsenic concentrations (As) of up to 132 g L–1, more than an order magnitude greater than the 4 g L–1 maximum found in December 2000. The difference in As between the April and December sampling periods is speculated to be largely due to the irregular anthropogenic supply of arsenic to the watercourse. For both sampling periods, the dissolved arsenic was exclusively inorganic in nature and had an As(V)/As ratio of between 0.6 and 0.8. Analysis of samples taken downstream of the industrial site, after the confluence with a relatively As-poor stream, revealed that As(III), As(V) and As concentrations were lower than would be expected from conservative mixing. The As(V)/As ratio was also observed to decrease markedly. The loss of arsenic from solution is thought to be due to adsorption on the iron oxyhydroxide-rich sediment observed to coat the riverbed downstream of the confluence. The reduction in the As(V)/As ratio is believed to be due to the more rapid adsorption of As(V) compared to that of As(III). Deviations from conservative behaviour were more marked during the relatively dry April 2000 sampling period and suggest the increased importance of adsorption processes controlling arsenic availability during this time.  相似文献   

5.
The problems of contamination caused by arsenic (As) and other toxic metals in groundwater, surface water and soils in the Bengal basin of Bangladesh have been studied. Altogether 10 groundwater, seven surface water and 31 soil samples were collected from arsenic-affected areas and analysed chemically. The geologic and anthropogenic sources of As and other toxic metals are discussed in this paper. The chemical results show that the mean As concentrations in groundwater in the Char Ruppur (0.253mg As L–1), Rajarampur (1.955mg As L–1) and Shamta areas (0.996mg As L–1) greatly exceed the WHO recommended value, which is 0.01mg As L–1. The concentrations of As in groundwater are very high compared to those in surface water and in surface soil in the three (As-affected) areas studied. This indicates that the source of As in groundwater could be bedrock. The relatively high concentrations of Cr, Cu, Ni, Pb and Zn in surface water, compared to world typical value, are due to the solubility of metal ions, organometalic complexes, coprecipitation or co-existance with the colloidal clay fraction. In the soil, the elevated concentrations of As, Cr, Cu, Ni, Pb and Zn are due to their strong affinity to organic matter, hydrous oxides of Fe and Mn, and clay minerals.  相似文献   

6.
The arsenic levels of 23 mineral waters on sale to the public in the United Kingdom were measured. The arsenic content of most waters was below 1 g L–1 but the statutory limits of 50 ug L–1 for natural mineral waters and 100 g L–1 for non-alcoholic beverages were exceeded by the French mineral water, Vichy Célestins (220 ug L–1). Regular consumption of mineral water of such elevated concentration could make a significant contribution to the intake of the more toxic inorganic species of arsenic, with possible adverse long-term effects on the health of some individuals. The general need for analytical speciation studies of dietary arsenic is emphasised.  相似文献   

7.
The sporophore of the fungusAmanita muscaria L. contains greatiy elevated levels of cadmium (29.9 g g–1 dwt) and vanadium (344.9 g g–1 dwt) in comparison with the soil in a birch woodland (total (HNO3-extractabie Cd 0.4 g g–1 dwt, V 11.7 g g–1 dwt). The significance of this remarkable concentration of normally rare and dispersed elements in terms of their circulation in the woodland has been investigated. Both elements are released from sporophore tissue in a form which can be taken up by a test plant (lettuce), cultivated in the woodland soil amended with different quantities of sporophore tissue, Cadmium levels in all plant tissues were elevated in comparison to the non-amended controls; only root vanadium levels responded to the amendment of the soil. The results are discussed in terms of their significance for the natural cycling of both elements. It is calculated that an abundant population of sporophores could circulate 1.4% of the total cadmium and 0.65% of the total vanadium pool found in the litter layer and 0–5 cm soil horizon in the sampled woodland over a period of 14 days (mean life span of a sporophore).  相似文献   

8.
Inorganic arsenic and its methylated metabolites were determined in urine from adults and children in Cornwall and from corresponding control groups in Glasgow. In the mineralised south-west of England, where it has been suggested that the highly enriched soil arsenic concentrations may at least be a cofactor in the increased incidence of skin cancer, urinary arsenic levels were, in general, only slightly elevated. The potential for increased intake of inorganic arsenic in Cornwall was, however, reflected in the more frequent occurrence of trivalent inorganic arsenic and monomethylarsonic acid in urine and, of especial significance, in two comparatively highly elevated sum of arsenic species concentrations of 48.7 and 20.8 g g–1 creatinine recorded for two pre-school children. These findings are discussed with reference to recommended limits and pathways of exposure to inorganic arsenic.  相似文献   

9.
In order to assess the intake of lead and cadmium by consumers of home grown vegetables in urban areas, replicated experimental plots of uniform size, comprising summer and winter crops, were established in 94 gardens and allotments in nine towns and cities in England.The geometric mean lead and cadmium concentrations for the soils (n = 94) were 217 g g–1 (ranging from 27 to 1,676 g g–1) and 0.53 g g–1 (<0.2–5.9 g g–1), respectively. Compared with agricultural soils, the garden and allotment soils contained elevated levels of lead but not cadmium.Lead concentrations in the vegetables ranged from <0.25 g g–1 to 16.7 g g–1 dry weight and cadmium concentrations ranged from <0.025 g g–1 to 10.4 g g–1 dry weight. Lead concentrations were higher than reported background levels, although <1% exceeded the statutory limit for saleable food in the UK (1 g g–1 fresh weight). Cadmium concentrations were generally similar to background levels.  相似文献   

10.
Pilot study of sources of lead exposure in Moscow,Russia   总被引:11,自引:0,他引:11  
This preliminary investigation of sources of lead exposure in Moscow, Russia, by Russian and US collaborators measured lead in paint, interior dust, and drinking water in seven day-care centres, and in petrol, soil and canned food. Some paint samples exceeded US regulatory standards for lead in paint on surfaces (0.5%). Dust lead loadings were < 1.7 g cm–2 and below the guidance levels of the US EPA. Drinking water lead concentrations were at or below the US drinking water standard of 15 g L–1. Lead concentrations in petrol from Moscow vehicles and petrol stations were consistent with a regulation banning the sale of leaded petrol within the Moscow City limits. Except for baby food, lead levels were higher in the Russian canned foods (range 6 to 1240 g kg–1, dry weight) compared to corresponding US canned foods, with ratios of Russian to US levels of up to 120:1 for evaporated milk. Lead concentrations in soil generally ranged from 500 to 2000 g g–1, levels that would trigger hazard reduction measures according to US EPA guidance. These findings, together with the use of lead in petrol outside Moscow, indicate multiple sources of lead exposure in Russia. Priorities for future research are discussed including the establishment of interlaboratory quality control programmes.  相似文献   

11.
Beryllium and aluminium contents in uncontaminated soils from six countries are reported. The means and ranges of beryllium in the surface soils were as follows: 1.43(0.20–5.50)g g–1 in Thailand (n=28), 0.7 (0.31–1.03) g g–1 in Indonesia (n=12), 0.99(0.82–1.32) g g–1 in New Zealand (n=3), 0.58(0.08-1.68)g g–1 in Brazil (n=16), 3.52(2.49–4.97)g g–1 in the former Yugoslavia (n=10), and 1.56(1.01–2.73) g g–1 in the former USSR (n=8). The mean and range of beryllium contents of the surface soils in Japan (1.17(0.27–1.95)g g–1 n=27) are situated within the values of the soils from these countries except for the Yugoslav soils derived from limestones. The mean of the mean beryllium contents of the surface soils in all these countries is 1.42 g g–1 which will be used as a tentative average content of beryllium in uncontaminated surface soils, except for the soils derived from parent materials high in beryllium content. The beryllium contents of the subsoils were higher than those of the surface soils in New Zealand and Yugoslavia as is the case with Japan. The correlation coefficient between the contents of beryllium and aluminium in all the soil samples (n=113) including surface soils and subsoils was 0.505 (p < 0.001).  相似文献   

12.
The purpose of this study was to assess the oral bioavailability of lead in soil collected from a former smelter site in Sandy, Utah, USA. Sprague-Dawley rats (approximately 4 weeks of age, 5 of each sex in group) were given either soil lead or lead acetate mixed in a purified diet (AIN-93G ) at four different concentrations for 31 consecutive days. Food consumption measurements were used to compute mean daily lead exposures for the soil lead and lead acetate groups. The lead acetate treatment yielded higher concentrations of lead in the blood and bone than the soil lead treatment. Mean blood lead values ranged from below the detection limit (3 g dL–1) to 27.25 g lead dL–1 for the lead acetate groups at dose levels of 0.10–2.91 mg lead kg body weight–1 and from below the detection limit to 8.8 g lead dL–1 for the soil lead groups at doses of 0.11–3.43 mg lead kg body weight–1. At these same doses, mean bone values ranged from 0.52 to 26.92 g lead g–1 for the lead acetate groups and from 0.64 to 13.1 g lead g–1 for the soil lead groups. Relative per cent bioavailability was estimated by modelling the dose-blood concentration curves for the lead acetate treatment and the dosed soil lead treatment, and then comparing doses that produce an equivalent blood lead concentration. The ratio of the doses of lead acetate and soil lead that produced the same tissue response (i.e., concentration) provided an index of relative bioavailability. For lead, the bioavailability of soil lead relative to lead acetate was 41% at a blood concentration of 6 g lead dL–1.  相似文献   

13.
Although numerous studies with rats, hamsters, minipigs, goats and chicks have indicated that arsenic is an essential nutrient, the physiological role of arsenic is open to conjecture. Recent studies have suggested that arsenic has a physiological role that affects the formation of various metabolites of methionine metabolism including taurine and the polyamines. The concentration of plasma taurine is decreased in arsenic-deprived rats and hamsters. The hepatic concentration of polyamines and the specific activity of an enzyme necessary for the synthesis of spermidine and spermine, S-adenosylmethionine decarboxylase, are also decreased in arsenic-deprived rats. Thus, evidence has been obtained which indicates that arsenic is of physiological importance, especially when methionine metabolism is stressed (e.g. pregnancy, lactation, methionine deficiency, vitamin B6 deprivation). Any possible nutritional requirement by humans can be estimated only by using data from animal studies. The arsenic requirement for growing chicks and rats has been suggested to be near 25 ng g–1 diet. Thus, a possible human requirement is 12 g day–1. The reported arsenic content of diets from various parts of the world indicates that the average intake of arsenic is in the range of 12–40 g. Fish, grain and cereal products contribute most arsenic to the diet.  相似文献   

14.
A potentially high bioavailability of arsenic in gold mine tailings from a site in northern California has been suggested by solubility studies. To help address this issue, an in vivo dosing study was conducted using 12dayold Swiss Webster mouse pups (n=8/group). A sample of sizefractionated mine tailings from the site (<20m particle size, 691g g–1 arsenic) was prepared as an aqueous suspension and administered by gavage in a volume that provided 4mg As/kg body weight. The control group received the same volume of a commercial soil (1g g–1 As) of similar particle size (<60m). No mortality or toxic signs were noted in either group. Tissue samples were collected 1h after gavage, freezedried, microwavedigested and analysed for arsenic by ICP/MS (detection limit 2ng As g–1 dry weight). Arsenic concentrations (ng As g–1 dry weight) in tissues from the pups who received mine tailings were significantly higher than in control tissues. The mean elevation in arsenic concentration was highest in the liver (3364% of control, p<0.0001), followed by blood (818 of control, p<0.0001), skin (207% of control, p=0.07), and brain (143% of control, p<0.0001). The carcass arsenic concentration (excluding the GI tract, liver, brain and skin) was 138 of control (p=0.02). The data indicate uptake of arsenic from weathered mine tailings by the immature mouse pups after oral exposure.  相似文献   

15.
Three study areas of Kwanak campus (Seoul National University), Boeun (Choongbuk) and Gapyung (Kyonggi) were selected and classified according to their bedrock types in order to investigate soil–gas radon concentrations. The mean values of radon concentrations decreased in the order of Gapyung (40BqL–1) > Kwanak campus (30BqL–1) > Boeun (22BqL–1), and decreased in the order of granite gneiss > banded gneiss > granite > black slate–shale > mica schist > shale–limestone > phyllite schist according to bed rock types. Variation in radon emanation with water content in soils and with soil grain size was assessed by the modified Morse (1976) 3min method. Soil–gas radon concentrations increased with increasing water content in the range of less than about 6–16wt.%, but decreased above 6–16wt.%. Radon concentrations also increased with decreasing soil grain size. Radioactivity analysis of radionuclides of 238U series in some soil samples indicated their possible radioactive disequilibrium between 226Ra and 238U due to the differing geochemical behaviour of intermediate radionuclides. Thus, a radioactive isotope geochemical approach should be necessary for soil–gas radon study.  相似文献   

16.
Lead in New Orleans soils: New images of an urban environment   总被引:7,自引:0,他引:7  
This paper describes a survey of lead in soil and computer generated maps that have been derived for New Orleans, Louisiana. The soil survey included streetside, houseside and open space samples. Because the survey covered every census tract in the metropolitan area it was possible to construct a computer-generated map of the distribution of lead dust in the soils of the urban environment. The data base consists of coordinates, site characteristics and lead analytical results of 3,704 soil samples. The resulting graphics show peaks of lead ranging from 600–1,200 g per g in the streetside soil of the inner-city and a steeply declining slope to the suburban areas of the city where the lead content of streetside soils is less than 75 g/g. In the inner-city, the amount of lead in soils found near building foundations is 10 to 20 times higher than the soils adjacent to streets where the median lead content of soils is over 300 g g–1. In areas surrounding the city core (mid-city), the amount of lead next to the foundation and adjacent to the street are equivalent with medians of 110 g g–1. In suburban locations, the median lead content of soil along streetsides is 86 g g–1. Soils adjacent to surburban foundations has a median Pb content of 50 g g–1. The lowest median lead content in soil is found in open spaces, ranging from 212 to 40 to 28 g g–1, respectively, for the inner-city, mid-city, and suburbs. These observations are consistent with the production and consumer use of lead-based paint and leaded-fuels within the modern city.  相似文献   

17.
The objective was to derive predictive equations for acetic acid-extractable cobalt (A-ECo) in soils so that extensive national databases for total (T) Co in soils and stream sediments could be converted to plant available concentrations for the purpose of predicting risk of Co deficiency in grazing livestock. Data on the chemical and physical properties of 103 soils from 15 different parent materials and 54 soil series in England and Wales were used. Ranges for the mean values for parent materials were: TCo, 5.0–20.4 and A-ECo, 0.20–1.30 mg kg–1; percentage (P) A-ECo, 3.4–13.5; soil manganese (Mn) 268–1174 mg kgDM–1; pH, 3.7–8.0. There were significant effects of parent material on all parameters with Chalks, Old and New Red Sandstones particularly low in A-ECo. Multiple linear regression yielded the following equation for predicting A-ECo, which accounted for 56% of the variance with 12 outliers, including the lowest pH values, omitted:A-ECo(mg kg-1) = 1.4 - 0.0619TCo (mg kg-1) - 0.432TMn(g kg-1) - 0.171pHPrediction of PA-ECo was less precise:PA-ECo(%) = 21.1 - 4.5TMn(g kg-1) - 1.77pH(r 2 = 44.8%; 88 d.f.REML was used on the complete, unbalanced, log-transformed data set to fit a Generalised Mixed Model with parent material as random effect and soil Mn and pH as fixed effects; the effect of parent material was no longer significant. It was concluded that A-ECo can be satisfactorily predicted for most soils in England and Wales from TCo, TMn and soil pH.  相似文献   

18.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

19.
Soil, water and vegetation samples were collected from the Triada area of Central Euboea and analysed for heavy metals in order to evaluate their environmental impact. The geology of the area studied includes ultrabasic rocks that are overlaid by Upper Cretaceous limestones whereas Fe–Ni mineralisation is intercalated between either the ultrabasic parent rocks or the karstified Jurassic/Triassic carbonates and the transgessive Upper Cretaceous limestones. All the samples were analysed for heavy metals by using atomic absorption spectroscopy. The heavy metal ranges (in g g–1) for soils samples are: Ni 480–4000, Cr 240–2720, Co 40–208, Fe 24,000–380,000, Mn 46–1680, Pb 16–56, Zn 40–144, Cu 2–82. The values of soil samples of the Triada area are much higher than the values found for Ni, Cr, Co and Fe, in normal soils of the world. The heavy metal ranges (in g L–1) for water samples are: Ni 19–24, Cr 19–476, Co <5, Fe <100, Mn <100, Mg 5.7–220.5, As 30–69, Cd <2, Pd <10, Zn 5–11, Cu 2–7. The water samples of the Triada area have Cr and Mg concentrations higher than the permittable values. The heavy metal ranges (in g g–1) for vegetation samples are: Ni 1–135, Cr 0–24, Co 1–21.5, Fe 20–680, Mn 10–206, Cd 0–10, Pb 0–14, Zn 14–70, Cu 0–10.5. The vegetation samples of the Triada area have so high values of Ni, Cr and Co that are considered toxic. The intercorrelated elements Fe, Ni, Cr, Co of the Triada soils, waters and vegetation reflect their association with the ultrabasic rocks and with the Fe–Ni mineralisation.  相似文献   

20.
The effect is studied of different inorganic phosphorus concentrations on changes in growth rates of 7 diatom species isolated from the plankton of the Black Sea. All species examined increase their cell-division rate with increasing phosphorus concentration in the medium. The phosphorus concentrations have been determined above which division rate is not limited by phosphorus content in the medium. The non-limiting concentration amounts to V/V m =0.9. In the species studied, non-limiting concentrations ranged from 1 to 30 g P/1. The highest values were obtained for relatively large-sized species. The ratio of cell surface to volume tended to be inversely related to the growth-rate-limiting concentration. Minimal values of phosphorus content in cells have been calculated to range from 0.6 to 4.0·10–17 g.at–P/–3. Based on a comparison of phosphate levels in the Black Sea with experimentally-derived rate-limiting concentrations, it is concluded that phosphorus does not limit the reproduction rate of phytoplankton in the more productive regions of the Black Sea or in the lower strata of the euphotic zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号