首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
上海市蔬菜地土壤硝态氮状况研究   总被引:9,自引:2,他引:9  
以上海市郊不同管理方式下菜地表层土壤采样测定土壤硝态氮含量为基础,并以水稻土等土壤作为对照,以期了解上海蔬菜地土壤硝态氮的现状,为菜地的合理施肥提出科学依据。结果表明,由于管理方式不同,土壤的硝态氮的NO3--N质量分数差异明显。大棚蔬菜地土壤中NO3--N明显高于其它其他用地管理方式下的土壤,依次为:w(大棚蔬菜地)>w(露天蔬菜地)>w(传统自留地),而且土壤硝态氮的积累是全剖面性的,而非仅在表层,如在80~100cm土层,大棚土壤硝态氮也为农田的好几倍。而且,大棚蔬菜地土壤盐渍化明显,主要特点之一是硝态氮积累,盐分高的土壤一般硝态氮也高。此外,长期大量的N肥投入引起了土壤酸化。土壤pH与土壤NO3--N质量分数呈线性负相关,经统计检验相关性达极显著水平。  相似文献   

3.
This study was designed to investigate heavy metal (Cu, Zn, Pb, and Cd) contamination levels of soils, vegetables, and rice grown in the vicinity of the Dabaoshan mine, south China. The concentration of Cu, Zn, Pb, and Cd in paddy soil exceeded the maximum allowable concentrations for Chinese agricultural soil. The heavy metal concentrations (mg kg−1, dry weight basis) in vegetables ranged from 5.0 to 14.3 for Cu, 34.7 to 170 for Zn, 0.90 to 2.23 for Pb, and 0.45 to 4.1 for Cd. The concentrations of Pb and Cd in rice grain exceeded the maximum permissible limits in China. Dietary intake of Pb and Cd through the consumption of rice and certain vegetable exceeded the recommended dietary allowance levels. The status of heavy metal concentrations of food crops grown in the vicinity of Dabaoshan mine and their implications for human health should be further investigated.  相似文献   

4.
Decades of intensive industrial and agricultural practices as well as rapid urbanization have left communities like Pueblo, Colorado facing potential health threats from pollution of its soils, air, water and food supply. To address such concerns about environmental contamination, we conducted an urban geochemical study of the city of Pueblo to offer insights into the potential chemical hazards in soil and inform priorities for future health studies and population interventions aimed at reducing exposures to inorganic substances. The current study characterizes the environmental landscape of Pueblo in terms of heavy metals, and relates this to population distributions. Soil was sampled within the city along transects and analyzed for arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). We also profiled Pueblo’s communities in terms of their socioeconomic status and demographics. ArcGIS 9.0 was used to perform exploratory spatial data analysis and generate community profiles and prediction maps. The topsoil in Pueblo contains more As, Cd, Hg and Pb than national soil averages, although average Hg content in Pueblo was within reported baseline ranges. The highest levels of As concentrations ranged between 56.6 and 66.5 ppm. Lead concentrations exceeded 300 ppm in several of Pueblo’s residential communities. Elevated levels of lead are concentrated in low-income Hispanic and African-American communities. Areas of excessively high Cd concentration exist around Pueblo, including low income and minority communities, raising additional health and environmental justice concerns. Although the distribution patterns vary by element and may reflect both industrial and non-industrial sources, the study confirms that there is environmental contamination around Pueblo and underscores the need for a comprehensive public health approach to address environmental threats in urban communities.  相似文献   

5.
广州城郊菜地土壤磷素特征及流失风险分析   总被引:5,自引:1,他引:5  
通过化学分析和土壤淋洗试验对广州城郊菜地土壤磷素特征和流失风险进行了研究和分析。结果表明.广州城郊菜地土壤全磷含量极高;与自然土壤相比较,菜园土壤无机磷比例增大、有机磷比例降低;无机磷中的AI-P、Fe-P比例增加.O-P比例降低,Ca-P比例基本一致;土壤Olsen P、Bray-1 P、Mehlich-1 P、0.01mol/L CaCl_2和H_2O提取的磷含量相当高;土壤淋洗液中溶解态磷和总磷持续保持很高的浓度,土壤磷供应强度大。菜园土壤中磷进入水体引起水体磷浓度增加,导致水体富营养化风险大;土壤磷的测定值可作为土壤磷流失风险和对水环境影响程度的评估依据。菜地应作为农业非点源磷污染的优先控制区、应通过严格控制磷肥的投入和合理施肥等控制磷的流失。  相似文献   

6.
广州市菜园土主要蔬菜重金属背景含量的研究   总被引:21,自引:2,他引:21  
研究了广州市几个主要的蔬菜生产基地种植的白菜、芥蓝、芥菜、菜薹、萝卜、大白菜、豆瓣菜、结球甘蓝、芹菜、菜豆、豌豆、结球莴苣、尖叶莴苣、菠菜、番茄等15种蔬菜中Pb、Hg、Cd、Cr和As等5种重金属的背景质量分数。其背景质量分数为:Pb 0.002~0.148mg/kg;Hg ND-0.006mg/kg;Cd 0.001~0.034mg/kg;Cr 0.002~0.150mg/kg;As 0.001~0.070mg/kg。由于不同种类蔬菜的吸收特性和遗传特性有所不同,其重金属背景质量分数也有很大差异。蔬菜中元素水平还与土壤条件等因素有关。  相似文献   

7.
8.
Heavy metals in soils and crops in Southeast Asia   总被引:1,自引:0,他引:1  
In a reconnaisance soil geochemical and plant survey undertaken to study the heavy metal uptake by major food crops in Malaysia, 241 soils were analysed for cation exchange capacity (CEC), organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) using appropriate procedures. These soils were also analysed for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) using aqua regia digestion, together with 180 plant samples using nitric acid digestion. Regression analysis between the edible plant part and aqua regia soluble soil As, Cd, Cr, Cu, Hg, Ni, Pb and Zn concentrations sampled throughout Peninsular Malaysia, indicated a positive relationship for Pb in all the plants sampled in the survey (R2 = 0.195, p < 0.001), for Ni in corn (R2 = 0.649, p < 0.005), for Cu in chili (R2 = 0.344, p < 0.010) and for Zn in chili (R2 = 0.501, p < 0.001). Principal component analysis of the soil data suggested that concentrations of Co, Ni, Pb and Zn were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. Chromium was correlated with soil pH and EC, Na, S, and Ca while Hg was not correlated with any of these components, suggesting diffuse pollution by aerial deposition. However As, Cd, Cu were strongly associated with organic matter and available and aqua regia soluble soil P, which we attribute to inputs in agricultural fertilisers and soil organic amendments (e.g. manures, composts).  相似文献   

9.
This study assessed metals in irrigation water, soil and potato crops impacted by mining discharges, as well as potential human health risk in the high desert near the historic mining center of Potosí, Bolivia. Metal concentrations were compared with international concentration limit guidelines. In addition, an ingested average daily dose and minimum risk level were used to determine the hazard quotient from potato consumption for adults and children. Irrigation water maximum concentrations of Cd, Pb and Zn in mining-impacted sites were elevated 20- to 1100-fold above international concentration limit guidelines. Agricultural soils contained total metal concentrations of As, Cd, Pb and Zn that exceeded concentration limits in agricultural soil guidelines by 22-, 9-, 3- and 12-fold, respectively. Potato tubers in mining-impacted sites had maximum concentrations of As, Cd, Pb and Zn that exceeded concentration limits in commercially sold vegetables by 9-, 10-, 16- and fourfold, respectively. Using conservative assumptions, hazard quotients (HQ) for potatoes alone were elevated for As, Cd and Pb among children (range 1.1–71.8), in nearly all of the mining-impacted areas; and for As and Cd among adults (range 1.2–34.2) in nearly all of the mining-impacted areas. Only one mining-impacted area had a Pb adult HQ for potatoes above 1 for adults. Toxic trace elements in a major regional dietary staple may be a greater concern than previously appreciated. Considering the multitude of other metal exposure routes in this region, it is likely that total HQ values for these metals may be substantially higher than our estimates.  相似文献   

10.
Heavy metals in soils and crops in Southeast Asia   总被引:3,自引:0,他引:3  
In a reconnaissance soil geochemical and plant survey undertaken to study the heavy metal uptake by major food crops in Malaysia, 241 soils were analysed for cation exchange capacity (CEC), organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) using appropriate procedures. These soils were also analysed for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) using aqua regia digestion, together with 180 plant samples using nitric acid digestion. Regression analysis between the edible plant part and aqua regia soluble soil As, Cd, Cr, Cu, Hg, Ni, Pb and Zn concentrations sampled throughout Peninsular Malaysia, indicated a positive relationship for Pb in all the plants sampled in the survey (R 2 = 0.195, p < 0.001), for Ni in corn (R 2 = 0.649, p < 0.005), for Cu in chilli (R 2 = 0.344, p < 0.010) and for Zn in chilli (R 2 = 0.501, p < 0.001). Principal component analysis of the soil data suggested that concentrations of Co, Ni, Pb and Zn were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. Chromium was correlated with soil pH and EC, Na, S, and Ca while Hg was not correlated with any of these components, suggesting diffuse pollution by aerial deposition. However As, Cd, Cu were strongly associated with organic matter and available and aqua regia soluble soil P, which we attribute to inputs in agricultural fertilisers and soil organic amendments (e.g. manures, composts).  相似文献   

11.
南京城郊零散菜地土壤与蔬菜重金属含量及健康风险分析   总被引:40,自引:3,他引:40  
丁爱芳  潘根兴 《生态环境》2003,12(4):409-411
采集南京城郊零散菜地土壤和青菜配对样品各18个,用原子吸收光谱仪测定了铜、锌、铅、镉的质量分数。结果表明,南京城郊零散菜地土壤中Cu、Zn、Pb、Cd质量分数的变化范围分别为39.38±9.85、254.79±132.77、67.77±57.52、1.03±1.28 mg/kg;重金属质量分数在土样之间存在较大的变异性,反映了人为活动已对南京城郊土壤重金属污染产生了明显的影响。在城郊零散菜地土壤上种植的青菜,其叶中Cu、Zn、Pb、Cd质量分数的变化范围分别为5.00±1.57、62.21±16.05、5.90±3.09、0.73±0.39 mg/kg,其中Pb、Cd质量分数全都超过国家食品卫生标准。依据USEPA推荐的RfD值和我国居民平均食物消费结构进行计算,结果表明这些零散菜地的蔬菜重金属污染可能给食用者带来健康风险;食用其中一些污染严重的蔬菜而摄入Pb、Cd引起的健康风险分别高达90.66%和42.17%。  相似文献   

12.
菜园土壤的理化性质和微生物生态特征与种植年限的关系   总被引:9,自引:2,他引:9  
为了研究菜园土壤生态系统的演化,在广州白云区采集共计64个不同种植年限的菜园土壤样本。对土壤丰要物理化学性质和土壤微生物生态特征进行分析,结果表明:土壤粘粒和微网粒含量、土壤全磷、全钾的含量随菜园土的种植年限而增加;呼吸商则随年限升高,土壤细菌/真菌、放线菌/真菌亦有升高的趋势,而微生物碳氮比、土壤微生物商、微生物氮/全氮随年限降低;种植10a左右菜园土壤的Shannon多样性指数和AWCD值最低,40a土壤最高,80a以上土壤的微生物多样性指标有所降低,表明种植80a后的老菜园土壤微生物生态系统有退化的迹象。  相似文献   

13.
A reconnaissance soil geochemical and concomitant plant survey based on 318 soil (0-15 cm) and 122 plant samples was used for the assessment of heavy metal pollution of agricultural soils and crops of Thailand. Arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) were determined in soils using aqua regia digestion, and in plants using nitric acid digestion. Organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) were determined on the soil samples using appropriate procedures. Results indicated that concentrations of heavy metals varied widely among the different regions of Thailand. Regression analysis between the concentrations of metals in soil (aqua regia extractable) and edible plant parts indicated a small but positive relationship for Cd in all the plants sampled in the survey (R2 = 0.081, p < 0.001). There was also a positive relationship between soil and plant Cd concentrations in rice (R2 = 0.242, p < 0.010), and negative relationships for Zn in rice (R2 = 0.385, p < 0.001), and Cu (R2 = 0.355, p < 0.001) and Zn (R2 = 0.122, p < 0.026) in glutinous rice. Principal component analysis of the soil data suggested that concentrations of As, Co, Cr, Cu, Hg, Ni and Pb were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus, the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. On the other hand, Cd and Zn were strongly correlated with organic matter and concentrations of available and aqua regia extractable P. This is attributed to input of contaminants in agricultural fertilisers and soil amendments (e.g. manures, composts).  相似文献   

14.
15.
Incidental soil ingestion is a common contaminant exposure pathway for humans, notably children. It is widely accepted that the inclusion of total soil metal concentrations greatly overestimates the risk through soil ingestion for people due to contaminant bioavailability constraints. The assumption also assumes that the contaminant distribution and the bioaccessible fraction is consistent across all particle sizes. In this study, we investigated the distribution of arsenic across five particle size fractions as well as arsenic bioaccessibility in the <250-, <100-, <10- and 2.5-μm soil particle fractions in 50 contaminated soils. The distribution of arsenic was generally uniform across the larger particle size fractions but increased markedly in the <2.5-μm soil particle fraction. The marked increase in arsenic concentration in the <2.5-μm fraction was associated with a marked increase in the iron content. Arsenic bioaccessibility, in contrast, increased with decreasing particle size. The mean arsenic bioaccessibility increased from 25 ± 16% in the <250-μm soil particle fraction to 42 ± 23% in the <10-μm soil particle fraction. These results indicate that the assumption of static arsenic bioaccessibility values across particle size fractions should be reconsidered if the ingested material is enriched with small particle fractions such as those found in household dust.  相似文献   

16.
Soil and pasture herbage samples from some historical metalliferous mining and smelting areas in England were analysed for As, Sb and Bi by ICP-AES using a hydride generation method after ashing with Mg(NO3)2. The results showed that As, Sb and Bi concentrations in soils were elevated because of their associations with the Pb-Zn mineralisation in Derbyshire and Somerset, and Sn-Cu mineralisation in Cornwall. The distribution of As, Sb and Bi in soils reflected the chemical nature of different mine waste materials, and on a regional basis clearly reflected the geochemistry of the three mineral provinces. Historical smelting and calcination have caused intensive contamination in soils in the immediate vicinity of these activities. Antimony was highly elevated in soils at an old Pb smelter site in Derbyshire. Although the concentrations of As, Sb and Bi were generally low in the pasture herbage samples examined, the concentrations of As and Sb in herbage often reflected those of the corresponding soils. Soil pH had a large effect on the plant uptake of Bi from soils. The pasture herbage contaminated by soil can be an important exposure pathway of these elements to livestock grazing on contaminated land.  相似文献   

17.
Study on the occurrence, sources and potential human health risk of polycyclic aromatic hydrocarbons in farmland soils around reservoirs is of great significance for the people drinking water security. In the present study, representative farmland soil samples around main reservoirs of Jilin Province, China, were investigated for 16 PAHs. The total concentrations of 16 priority PAHs in 32 farmland soil samples ranged from 602.12 to 1271.87 ng/g, with an arithmetic average of 877.23 ng/g, and the sum of seven carcinogenic PAH concentrations ranged from 30.07 to 710.02 ng/g, with a mean value of 229.04 ng/g. The 3-ring and 4-ring PAHs were major exist and account for 45.78 and 32.03%, respectively. Non-cancer and cancer risk of pollutants were calculated, and the results indicate that the complex PAHs in farmland soils were not considered to pose significant health effects. The isomer ratios Fla/(Fla + Pyr) and BaA/(BaA + Chr) show that the PAHs in soils were generally derived from biomass and coal combustion.  相似文献   

18.
This study presents distribution of organochlorines (OCs) including HCH, DDT and PCBs in urban soils, and their environmental and human health risk. Forty-eight soil samples were extracted using ultrasonication, cleaned with modified silica gel chromatography and analyzed by GC-ECD. The observed concentrations of ∑HCH, ∑DDT and ∑PCBs in soils ranged between?<?0.01–2.54, 1.30–27.41 and?<?0.01–62.8 µg kg?1, respectively, which were lower than the recommended soil quality guidelines. Human health risk was estimated following recommended guidelines. Lifetime average daily dose (LADD), non-cancer risk or hazard quotient (HQ) and incremental lifetime cancer risk (ILCR) for humans due to individual and total OCs were estimated and presented. Estimated LADD were lower than acceptable daily intake and reference dose. Human health risk estimates were lower than safe limit of non-cancer risk (HQ?<?1.0) and the acceptable distribution range of ILCR (10?6–10?4). Therefore, this study concluded that present levels of OCs (HCH, DDT and PCBs) in studied soils were low, and subsequently posed low health risk to human population in the study area.  相似文献   

19.
In order to assess the intake of lead and cadmium by consumers of home grown vegetables in urban areas, replicated experimental plots of uniform size, comprising summer and winter crops, were established in 94 gardens and allotments in nine towns and cities in England.The geometric mean lead and cadmium concentrations for the soils (n = 94) were 217 g g–1 (ranging from 27 to 1,676 g g–1) and 0.53 g g–1 (<0.2–5.9 g g–1), respectively. Compared with agricultural soils, the garden and allotment soils contained elevated levels of lead but not cadmium.Lead concentrations in the vegetables ranged from <0.25 g g–1 to 16.7 g g–1 dry weight and cadmium concentrations ranged from <0.025 g g–1 to 10.4 g g–1 dry weight. Lead concentrations were higher than reported background levels, although <1% exceeded the statutory limit for saleable food in the UK (1 g g–1 fresh weight). Cadmium concentrations were generally similar to background levels.  相似文献   

20.
Environmental exposure to arsenic (As) in terms of public health is receiving increasing attention worldwide following cases of mass contamination in different parts of the world. However, there is a scarcity of data available on As geochemistry in Brazilian territory, despite the known occurrence of As in some of the more severely polluted areas of Brazil. The purpose of this paper is to discuss existing data on As distribution in Brazil based on recent investigations in three contaminated areas as well as results from the literature. To date, integrated studies on environmental and anthropogenic sources of As contamination have been carried out only in three areas in Brazil: (1) the Southeastern region, known as the Iron Quadrangle, where As was released into the drainage systems, soils and atmosphere as a result of gold mining; (2) the Ribeira Valley, where As occurs in Pb-Zn mine wastes and naturally in As-rich rocks and soils; (3) the Amazon region, including the Santana area, where As is associated with manganese ores mined over the last 50 years. Toxicological studies revealed that the populations were not exposed to elevated levels of As, with the As concentrations in surface water in these areas rarely exceeding 10 microg/L. Deep weathering of bedrocks along with formation of Fe/Al-enriched soils and sediments function as a chemical barrier that prevents the release of As into the water. In addition, the tropical climate results in high rates of precipitation in the northern and southeastern regions and, hence, the As contents of drinking water is diluted. Severe cases of human As exposure related to non-point pollution sources have not been reported in Brazil. However, increasing awareness of the adverse health effects of As will eventually lead to a more complete picture of the distribution of As in Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号