首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In human dominated landscapes, ecosystems are under increasing pressures caused by urbanization and infrastructure development. In Alpine valleys remnant natural areas are increasingly affected by habitat fragmentation and loss. In these contexts, there is a growing risk of local extinction for wildlife populations; hence assessing the consequences on biodiversity of proposed land use changes is extremely important. The article presents a methodology to assess the impacts of land use changes on target species at a local scale. The approach relies on the application of ecological profiles of target species for habitat potential (HP) assessment, using high resolution GIS-data within a multiple level framework. The HP, in this framework, is based on a species-specific assessment of the suitability of a site, as well of surrounding areas. This assessment is performed through spatial rules, structured as sets of queries on landscape objects. We show that by considering spatial dependencies in habitat assessment it is possible to perform better quantification of impacts of local-level land use changes on habitats.  相似文献   

2.
Habitat suitability maps are commonly created by modeling a species’ environmental niche from occurrences and environmental characteristics. Here, we introduce the hyper-envelope modeling interface (HEMI), providing a new method for creating habitat suitability models using Bezier surfaces to model a species niche in environmental space. HEMI allows modeled surfaces to be visualized and edited in environmental space based on expert knowledge and does not require absence points for model development. The modeled surfaces require relatively few parameters compared to similar modeling approaches and may produce models that better match ecological niche theory. As a case study, we modeled the invasive species tamarisk (Tamarix spp.) in the western USA. We compare results from HEMI with those from existing similar modeling approaches (including BioClim, BioMapper, and Maxent). We used synthetic surfaces to create visualizations of the various models in environmental space and used modified area under the curve (AUC) statistic and akaike information criterion (AIC) as measures of model performance. We show that HEMI produced slightly better AUC values, except for Maxent and better AIC values overall. HEMI created a model with only ten parameters while Maxent produced a model with over 100 and BioClim used only eight. Additionally, HEMI allowed visualization and editing of the model in environmental space to develop alternative potential habitat scenarios. The use of Bezier surfaces can provide simple models that match our expectations of biological niche models and, at least in some cases, out-perform more complex approaches.  相似文献   

3.
We developed a methodology for biodiversity evaluations within the process of Strategic Environmental Assessment and we applied it to the estimation of the effect of two Regional Plans of Development on all bird species inhabiting the Castilla y León region (northwestern Spain). The methodology is based on the evaluation of the effects of main development actions on the habitat requirements of species. From these evaluations, and from data on the current distribution and population size (number of individuals) of each species, we estimated the most likely pattern of distribution and population size after the full implementation of the plans for each species. The impacts of the plans were quantified as the differences between the pre- and postproject patterns after codifying them to compensate for differences in the quality of the information available among species. Overall, we conclude that the proposed methodology fulfills the requirements for its use within the SEA process as it allows for the assessment of cumulative impacts on every species, highlighting the development directions and the habitat types with major impacts, and ascertaining whether impacts affect species with either low or high conservation and/or economic value. Generalization of the proposed methodology to other regions or species will require wildlife-habitat models adequate for SEA analyses, so that we also propose guidelines for the development and validation of these models.  相似文献   

4.
Generalizable methods that identify suitable aquatic habitat across large river basins and regions are needed to inform resource management. Habitat suitability models intersect environmental variables to predict species occurrence, but are often data intensive and thus are typically developed at small spatial scales. This study estimated mean monthly aquatic habitat suitability throughout Utah (USA) for Bonneville Cutthroat Trout (Oncorhynchus clarkii utah) and Bluehead Sucker (Catostomus discobolus) with publicly available, geospatial datasets. We evaluated 15 habitat suitability models using unique combinations of percent of mean annual discharge, velocity, gradient, and stream temperature. Environmental variables were validated with observed conditions and species presence observations to verify habitat suitability estimates. Stream temperature, gradient, and discharge best predicted Bonneville Cutthroat Trout presence, and gradient and discharge best predicted Bluehead Sucker presence. Simple aquatic habitat suitability models outperformed models that used only streamflow to estimate habitat for both species, and are useful for conservation planning and water resources decision-making. This modeling approach could enable resource managers to prioritize stream restoration across vast regions within their management domain, and is potentially compatible with water management modeling to improve ecological objectives in management models.  相似文献   

5.
In the United States, environmental regulatory agencies are required to use “best available” scientific information when making decisions on a variety of issues. However, agencies are often hindered by coarse or incomplete data, particularly as it pertains to threatened and endangered species protection. Stakeholders often agree that more resolute and integrated processes for decision-making are desirable. We demonstrate a process that uses species occurrence data for a federally endangered insect (Karner blue butterfly), a readily available habitat modeling tool, and spatially explicit information about an important Michigan commodity (tart cherries). This case study has characteristics of many protected species regulatory decisions in that species occurrence data were sparse and unequally distributed; regulatory decisions (on pesticide use) were required with potentially significant impacts on a viable agricultural industry; and stakeholder relations were diverse, misinformed, and, in some situations, unjustly contentious. Results from our process include a large-scale, empirically derived habitat suitability map for the focal species and a risk ranking of tart cherry orchards with risk based on the likelihood that pesticide applications will influence the focal protected species. Although the majority (77%) of pesticide-influence zones overlapped Karner blue butterfly habitat, risk scores associated with each orchard were low. Through our process we demonstrated that spatially explicit models can help stakeholders visualize and quantify potential protected species effects. In addition, model outputs can serve to guide field activities (e.g., species surveys and implementation of pesticide buffer zones) that help minimize future effects.  相似文献   

6.
The habitat evaluation procedures (HEP), developed by the US Fish and Wildlife Service, are widely used in the United States to determine the impacts of major construction projects on fish and wildlife habitats. HEP relies heavily on habitat suitability index (HSI) models that use measurements of important habitat characteristics to rate habitat quality for a species on a scale of 0 (unsuitable) to 1.0 (optimal). This report describes a method to simplify existing HSI models to reduce the time and expense involved in sampling habitat variables. Simplified models for three species produced HSI values within 0.2 of those predicted by the original models 90% of the time. Simplified models are particularly useful for rapid habitat inventories and evaluations, wildlife management, and impact assessments in extensive areas or with limited time and personnel.  相似文献   

7.
To achieve a sustainable development, impacts on biodiversity of urbanisation, new infrastructure projects and other land use changes must be considered on landscape and regional scales. This requires that important decisions are made after a systematic evaluation of environmental impacts. Landscape ecology can provide a conceptual framework for the assessment of consequences of long-term development processes like urbanisation on biodiversity components, and for evaluating and visualising the impacts of alternative planning scenarios. The aim of this paper was to develop methods for integrating biodiversity issues in planning and strategic environmental assessment in an urbanising environment, on landscape and regional levels. In order to test developed methods, a case study was conducted in the region of Stockholm, the capital of Sweden, and the study area embraced the city centre, suburbs and peri-urban areas. Focal species were tested as indicators of habitat quality, quantity and connectivity in the landscape. Predictive modelling of habitat distribution in geographic information systems involved the modelling of focal species occurrences based on empirical data, incorporated in a landscape ecological decision support system. When habitat models were retrieved, they were applied on future planning scenarios in order to predict and assess the impacts on focal species. The scenario involving a diffuse exploitation pattern had the greatest negative impacts on the habitat networks of focal species. The scenarios with concentrated exploitation also had negative impacts, although they were possible to mitigate quite easily. The predictions of the impacts on habitats networks of focal species made it possible to quantify, integrate and visualise the effects of urbanisation scenarios on aspects of biodiversity on a landscape level.  相似文献   

8.
ABSTRACT: We review published analyses of the effects of climate change on goods and services provided by freshwater ecosystems in the United States. Climate-induced changes must be assessed in the context of massive anthropogenic changes in water quantity and quality resulting from altered patterns of land use, water withdrawal, and species invasions; these may dwarf or exacerbate climate-induced changes. Water to meet instream needs is competing with other uses of water, and that competition is likely to be increased by climate change. We review recent predictions of the impacts of climate change on aquatic ecosystems in eight regions of North America. Impacts include warmer temperatures that alter lake mixing regimes and availability of fish habitat; changed magnitude and seasonality of runoff regimes that alter nutrient loading and limit habitat availability at low flow; and loss of prairie pothole wetlands that reduces waterfowl populations. Many of the predicted changes in aquatic ecosystems are a consequence of climatic effects on terrestrial ecosystems; shifts in riparian vegetation and hydrology are particularly critical. We review models that could be used to explore potential effects of climate change on freshwater ecosystems; these include models of instream flow, bioenergetics models, nutrient spiraling models, and models relating riverine food webs to hydrologic regime. We discuss potential ecological risks, benefits, and costs of climate change and identify information needs and model improvements that are required to improve our ability to predict and identify climate change impacts and to evaluate management options.  相似文献   

9.
A field investigation conducted on Boulder Creek in Boulder, Colorado evaluated impacts of flood control maintenance activities on flood conveyance, water quality, and fish habitat. Thirty-nine transects were monitored at one control site and two maintenance sites over a period of eight months. Each site was visited on more than 50 occasions in order to characterize pre- and post-maintenance conditions, and to monitor maintenance activities. Measurements along the transects included substrate composition, flow depth, velocity, and elevation. Reach-average values were assigned to variables such as in-stream vegetation, streambank stability, and woody vegetation before and after maintenance. Water temperature, dissolved oxygen, pH, specific conductance, and turbidity were sampled, and habitat suitability indices were developed pre- and post-maintenance for seven indicator fish species. Water quality impacts during maintenance consisted of high turbidity levels (> 400 NTU), which returned to background levels (0.1–15 NTU) overnight, as well as changes in mean temperature and pH. Alteration of physical channel characteristics as a result of maintenance had limited effects on habitat quality for four of seven fish species, but caused improvements in habitat quality for three fish species. The main implications of this study for floodplain management are that: (1) Flood control maintenance practices can be in direct conflict with water quality and fish habitat objectives, and should be carefully designed and implemented by an interdisciplinary team. (2) Physical habitat for some fish species can be improved as well as reduced by maintenance activities. Habitat suitability curves may be useful tools for evaluating limiting factors of the habitat and for identifying opportunities for habitat improvements as part of maintenance.  相似文献   

10.
Under the Canadian Species at Risk Act (SARA), Garry oak (Quercus garryana) ecosystems are listed as “at-risk” and act as an umbrella for over one hundred species that are endangered to some degree. Understanding Garry oak responses to future climate scenarios at scales relevant to protected area managers is essential to effectively manage existing protected area networks and to guide the selection of temporally connected migration corridors, additional protected areas, and to maintain Garry oak populations over the next century. We present Garry oak distribution scenarios using two random forest models calibrated with down-scaled bioclimatic data for British Columbia, Washington, and Oregon based on 1961–1990 climate normals. The suitability models are calibrated using either both precipitation and temperature variables or using only temperature variables. We compare suitability predictions from four General Circulation Models (GCMs) and present CGCM2 model results under two emissions scenarios. For each GCM and emissions scenario we apply the two Garry oak suitability models and use the suitability models to determine the extent and temporal connectivity of climatically suitable Garry oak habitat within protected areas from 2010 to 2099. The suitability models indicate that while 164 km2 of the total protected area network in the region (47,990 km2) contains recorded Garry oak presence, 1635 and 1680 km2 of climatically suitable Garry oak habitat is currently under some form of protection. Of this suitable protected area, only between 6.6 and 7.3% will be “temporally connected” between 2010 and 2099 based on the CGCM2 model. These results highlight the need for public and private protected area organizations to work cooperatively in the development of corridors to maintain temporal connectivity in climatically suitable areas for the future of Garry oak ecosystems.  相似文献   

11.
Linking GIS-based models to value ecosystem services in an Alpine region   总被引:12,自引:1,他引:11  
Planning frequently fails to include the valuation of public goods and services. This can have long-term negative economic consequences for a region. This is especially the case in mountainous regions such as the Alps, which depend on tourism and where land-use changes can negatively impact key ecosystem services and hence the economy. In this study, we develop a semi-automatic procedure to value ecosystem goods and services. Several existing process-based models linked to economic valuation methods are integrated into a geographic information system (GIS) platform. The model requires the input of a digital elevation model, a land-cover map, and a spatially explicit temperature dataset. These datasets are available for most regions in Europe. We illustrate the approach by valuing four ecosystem services: avalanche protection, timber production, scenic beauty, and habitat, which are supplied by the “Landschaft Davos”, an administrative district in the Swiss Alps. We compare the impacts of a human development scenario and a climate scenario on the value of these ecosystem services. Urban expansion and tourist infrastructure developments have a negative impact on scenic beauty and habitats. These impacts outweigh the benefits of the developments in the long-term. Forest expansion, predictable under a climate change scenario, favours natural avalanche protection and habitats. In general, such non-marketed benefits provided by the case-study region more than compensate for the costs of forest maintenance. Finally, we discuss the advantages and disadvantages of the approach. Despite its limitations, we show how this approach could well help decision-makers balance the impacts of different planning options on the economic accounting of a region, and guide them in selecting sustainable and economically feasible development strategies.  相似文献   

12.
The combined influence on the environment of all projects occurring in a single area is evaluated through cumulative impact assessments (CIA), which consider the consequences of multiple projects, each insignificant on its own, yet important when evaluated collectively. Traditionally, future human activities are included in CIA using an analytical platform, commonly based on complex models that supply precise predictions but with reduced accuracy. To compensate for the lack of accuracy in current CIA approaches, we propose a shift in the paradigm governing CIA. The paradigm shift involves a change in the focus of CIA investigations from the detailed analysis of one unlikely future to the identification of the patterns describing multiple potential future changes in the environment. To illustrate the approach, a set of 144 possible and equally likely futures were developed that aimed to identify the potential impacts of forest harvesting and petroleum drilling on the habitat suitability of moose and marten in northeast British Columbia, Canada. The evolution of two measures of habitat suitability (average habitat suitability index and surface of the stands with habitat suitability index >0.5) revealed that the human activities could induce cycles in the habitat dynamics of moose and marten. The planning period of 100 years was separated into three distinct periods following a sinusoidal pattern (i.e., increase - constant - decrease in the habitat suitability measures). The attributes that could induce significant changes in the assessment of environment are the choice of harvesting age and species.  相似文献   

13.
Power line rights-of-way provide a major portion of the shrub habitat in New York. Since this habitat type is on the decline, many of the birds dependent on shrub habitat are also declining. The methods used to control right-of-way vegetation could therefore have serious impacts on several birds of conservation concern. Since New York is increasingly using selective herbicide treatments in vegetation management, we sought to investigate the potential impacts of these treatments on nesting birds. The study looked at plots in two adjacent rights-of-way before and after a selective herbicide treatment in one of the rights-of-way. We investigated three bird species: alder flycatcher (Empidonax alnorum), chestnut-sided warbler (Dendroica pensylvanica), and gray catbird (Dumetella carolinensis). All three species exhibited a preference for shrub vegetation around nest sites. The selective herbicide treatment did not significantly decrease that shrub vegetation, and neither the density nor the nesting success of the three species declined following the treatment. We conclude that selective herbicide vegetation management encourages the development of shrub habitat without negatively impacting the birds nesting in the habitat.  相似文献   

14.
Multiple-species reserves aim at supporting viable populations of selected species. Population viability analysis (PVA) is a group of methods for predicting such measures as extinction risk based on species-specific data. These methods include models that simulate the dynamics of a population or a metapopulation. A PVA model for the California gnatcatcher in Orange County was developed with landscape (GIS) data on the habitat characteristics and requirements and demographic data on population dynamics of the species. The potential applications of this model include sensitivity analysis that provides guidance for planning fieldwork, designing reserves, evaluating management options, and assessing human impact. The method can be extended to multiple species by combining habitat suitability maps for selected species with weights based on the threat faced by each species, and the contribution of habitat patches to the persistence of each species. These applications and extensions, together with the ability of the model to combine habitat and demographic data, make PVA a powerful tool for the design, conservation, and management of multiple species reserves.  相似文献   

15.
Forest management often has cumulative, long-lasting effects on wildlife habitat suitability and the effects may be impractical to evaluate using landscape-scale field experiments. To understand such effects, we linked a spatially explicit landscape disturbance and succession model (LANDIS) with habitat suitability index (HSI) models to assess the effects of management alternatives on habitat suitability in a forested landscape of northeastern China. LANDIS was applied to simulate future forest landscape changes under four management alternatives (no cutting, clearcutting, selective cutting I and II) over a 200-year horizon. The simulation outputs were linked with HSI models for three wildlife species, the red squirrel (Sciurus vulgaris), the red deer (Cervus elaphus) and the hazel grouse (Bonasa bonasia). These species are chosen because they represent numerous species that have distinct habitat requirements in our study area. We assessed their habitat suitability based on the mean HSI values, which is a measure of the average habitat quality. Our simulation results showed that no one management scenario was the best for all species and various forest management scenarios would lead to conflicting wildlife habitat outcomes. How to choose a scenario is dependent on the trade-off of economical, ecological and social goals. Our modeling effort could provide decision makers with relative comparisons among management scenarios from the perspective of biodiversity conservation. The general simulation results were expected based on our knowledge of forest management and habitat relationships of the species, which confirmed that the coupled modeling approach correctly simulated the assumed relationships between the wildlife, forest composition, age structure, and spatial configuration of habitat. However, several emergent results revealed the unexpected outcomes that a management scenario may lead to.  相似文献   

16.
Assessing Land-Use Impacts on Natural Resources   总被引:3,自引:1,他引:2  
/ Much information is available on changes that occur in natural resources from both spatially-explicit data on environmental conditions and models of the interactions of these conditions and resources with human activities. The strategy for assessing land-use impacts on natural resources developed in this paper provides a framework for using relevant data and models to address questions of how management practices can promote both use and protection of resources. This assessment strategy integrates spatially explicit environmental data using geographic information systems (GIS) with computer models that simulate changes in land cover in response to land-use impacts. The computer models also simulate susceptibility of species to changes in habitat suitability and landscape patterns. The approach is applied to management of limestone barrens on the Oak Ridge Reservation in East Tennessee. Potential limestone barrens habitats are identified by overlaying appropriate soils, geology, slope, and land-use/land-cover conditions. Their validity is tested against known sites containing rare species that occur in these habitats. The location of habitats at risk in the aftermath of human activities is determined by using an available area model that identifies the size and proximity of sites that particular types of species can no longer use as habitat. The resulting risk map can be used in land management planning. The approach uses readily available in situ and remotely sensed data and is applicable to a wide range of locations and land-use scenarios. This approach can be refined based on needs identified by land managers and on the sensitivity of the results to the resolution of available resource information.KEY WORDS: Land management; Assessment; Habitat characterization; Limestone barrens; Ecological modeling; Geographic information systems  相似文献   

17.
Habitat fragmentation due to human activities is one of the most important causes of biodiversity loss. In Mediterranean areas the species have co-evolved with traditional farming, which has recently been replaced for more severe and aggressive practices. We use a methodological approach that enables the evaluation of the impact that agriculture and land use changes have for the conservation of sensitive species. As model species, we selected Linaria nigricans, a critically endangered plant from arid and semiarid ecosystems in south-eastern Spain. A chronosequence of the evolution of the suitable habitat for the species over more than 50 years has been reconstructed and several geometrical fragmentation indices have been calculated. A new index called fragmentation cadence (FC) is proposed to quantify the historical evolution of habitat fragmentation regardless of the habitat size. The application of this index has provided objective forecasting of the changes of each remnant population of L. nigricans. The results indicate that greenhouses and construction activities (mainly for tourist purposes) exert a strong impact on the populations of this endangered species. The habitat depletion showed peaks that constitute the destruction of 85% of the initial area in only 20 years for some populations of L. nigricans. According to the forecast established by the model, a rapid extinction could take place and some populations may disappear as early as the year 2030. Fragmentation-cadence analysis can help identify population units of primary concern for its conservation, by means of the adoption of improved management and regulatory measures.  相似文献   

18.
Testing a GIS Model of Habitat Suitability for a Declining Grassland Bird   总被引:6,自引:1,他引:5  
Demand for information that can be used to manage loggerhead shrikes has recently increased because of concern over declining populations and loss of open, non-forested habitat. A previously-developed habitat model was modified to predict shrike habitat quality on Fort Riley Military Reservation (FRMR) in Kansas. Shrike habitat suitability indices were calculated based on the amount of potential and usable foraging habitat, and the number of potential nesting sites within a specified area. Interpretation of high quality digital photographs was used to delineate land cover classes, hedgerows and tree counts. These data were entered into a geographic information system (GIS) as individual data sets. The shrike habitat model was then employed to produce a GIS database predicting low, moderate, and high quality shrike habitat throughout the Reservation. Model results indicated that 67% of the Reservation was suitable habitat for loggerhead shrikes. Although over 80% of FRMR was mapped as grassland, the presence of few to several isolated trees or hedgerows was identified as a key factor in modeling habitat suitability. The accuracy of the GIS model was 82% in predicting suitable (moderate and high quality) loggerhead shrike habitat using an independent set of 66 recent shrike observations. The number of potential nesting sites and percent cover of usable foraging habitat were significantly related to habitat suitability of the sites occupied by shrikes.  相似文献   

19.
ABSTRACT: Watershed and aquatic ecosystem management requires methods to predict and understand thermal impacts on stream habitat from urbanization. This study evaluates thermal effects of projected urbanization using a modeling framework and considers the biological implications to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with the Hydrologic Simulation Program Fortran (HSPF) to assess changes in stream thermal habitat under altered stream‐ flow, shade, and channel width associated with low, medium, and high density urban developments in the Back Creek watershed (Roanoke County, Virginia). Flow alteration by the high density development scenario alone caused minimal heating of mean daily summer base flow (mean +0.1°C). However, when flow changes were modeled concurrently with reduced shade and increased channel width, mean daily temperature increased 1°C. Maximum daily temperatures exceeding the state standard (31°C) increased from 1.1 to 7.6 percent of the time using summer 2000 climatic conditions. Model results suggest that additional urban development will alter stream temperature, potentially limiting thermal habitat and shifting the fish community structure from intolerant to tolerant fish species in Back Creek. More research is needed on the sub‐lethal or chronic effects of increased stream temperature regimes on fish, particularly for those species already living in habitats near their upper limits.  相似文献   

20.
Global climate change, along with continued habitat loss and fragmentation, is now recognized as being a major threat to future biodiversity. There is a very real threat to species, arising from the need to shift their ranges in the future to track regions of suitable climate. The Important Bird Area (IBA) network is a series of sites designed to conserve avian diversity in the face of current threats from factors such as habitat loss and fragmentation. However, in common with other networks, the IBA network is based on the assumption that the climate will remain unchanged in the future. In this article, we provide a method to simulate the occurrence of species of conservation concern in protected areas, which could be used as a first-step approach to assess the potential impacts of climate change upon such species in protected areas. We use species-climate response surface models to relate the occurrence of 12 biome-restricted African species to climate data at a coarse (quarter degree-degree latitude-longitude) resolution and then intersect the grid model output with IBA outlines to simulate the occurrence of the species in South African IBAs. Our results demonstrate that this relatively simple technique provides good simulations of current species' occurrence in protected areas. We then use basic habitat data for IBAs along with habitat preference data for the species to reduce over-prediction and further improve predictive ability. This approach can be used with future climate change scenarios to highlight vulnerable species in IBAs in the future and allow practical recommendations to be made to enhance the IBA network and minimize the predicted impacts of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号