首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transverse mixing has been identified as a potentially limiting factor for natural attenuation of plumes originating from continuously emitting sources. Under steady-state flow conditions, dispersion is the only process leading to lateral mixing. This process is very slow and cannot explain the lateral spread of plumes observed in the field. When the flow direction fluctuates with time, transverse dispersion is slightly enhanced, but not very pronounced. Under these flow conditions, however, sorption can contribute to mixing into the mean transverse direction. If the reacting compounds differ in their strength of sorption, chromatographic mixing and separation alternate in time-periodic flows. For instantaneous sorption, the plumes may overlap within a stripe of fixed width. In contrast to sorption in local equilibrium, kinetic sorption contributes to mixing also for compounds with identical sorption strength. I derive an analytical expression for the equivalent transverse dispersion coefficient of a kinetically sorbing compound in a spatially uniform flow field undergoing sinusoidal fluctuations in time. This expression may be used for reactive transport calculations in an equivalent domain with constant flow. The effects are the strongest for compounds with a dimensionless partitioning coefficient of about unity, slow sorption kinetics, and slowly fluctuating velocities. For realistic parameters, kinetic sorption contributes to transverse mixing in the same range as heterogeneity.  相似文献   

2.
Vertical transverse mixing is known to be a controlling factor in natural attenuation of extended biodegradable plumes originating from continuously emitting sources. We perform conservative and reactive tracer tests in a quasi two-dimensional 14 m long sand box in order to quantify vertical mixing in heterogeneous media. The filling mimics natural sediments including a distribution of different hydro-facies, made of different sand mixtures, and micro-structures within the sand lenses. We quantify the concentration distribution of the conservative tracer by the analysis of digital images taken at steady state during the tracer-dye experiment. Heterogeneity causes plume meandering, leading to distorted concentration profiles. Without knowledge about the velocity distribution, it is not possible to determine meaningful vertical dispersion coefficients from the concentration profiles. Using the stream-line pattern resulting from an inverse model of previous experiments in the sand box, we can correct for the plume meandering. The resulting vertical dispersion coefficient is approximately approximately 4 x 10(-)(9) m(2)/s. We observe no distinct increase in the vertical dispersion coefficient with increasing travel distance, indicating that heterogeneity has hardly any impact on vertical transverse mixing. In the reactive tracer test, we continuously inject an alkaline solution over a certain height into the domain that is occupied otherwise by an acidic solution. The outline of the alkaline plume is visualized by adding a pH indicator into both solutions. From the height and length of the reactive plume, we estimate a transverse dispersion coefficient of approximately 3 x 10(-)(9) m(2)/s. Overall, the vertical transverse dispersion coefficients are less than an order of magnitude larger than pore diffusion coefficients and hardly increase due to heterogeneity. Thus, we conclude for the assessment of natural attenuation that reactive plumes might become very large if they are controlled by vertical dispersive mixing.  相似文献   

3.
Correctly classifying "contaminated" areas in soils, based on the threshold for a contaminated site, is important for determining effective clean-up actions. Pollutant mapping by means of kriging is increasingly being used for the delineation of contaminated soils. However, those areas where the kriged pollutant concentrations are close to the threshold have a high possibility for being misclassified. In order to reduce the misclassification due to the over- or under-estimation from kriging, an adaptive sampling using the cumulative distribution function of order statistics (CDFOS) was developed to draw additional samples for delineating contaminated soils, while kriging. A heavy-metal contaminated site in Hsinchu, Taiwan was used to illustrate this approach. The results showed that compared with random sampling, adaptive sampling using CDFOS reduced the kriging estimation errors and misclassification rates, and thus would appear to be a better choice than random sampling, as additional sampling is required for delineating the "contaminated" areas.  相似文献   

4.
An effective streamtube ensemble method is developed to upscale convective-dispersive transport with multicomponent nonlinear reactions in steady nonuniform flow. The transport is cast in terms of a finite ensemble of independent discrete streamtubes that approximate convective transport along macroscopically averaged pathlines and dispersive transport longitudinally as microscopic mixing within streamtubes. The representation of fate and transport via a finite ensemble of effective linear streamtubes, allows the treatment of arbitrarily complex reaction systems involving both homogeneous and heterogeneous reactions, and longitudinal dispersive/diffusive mixing within streamtubes. This allows the use of reactive-transport codes designed to solve such problems in an Eulerian framework, as opposed to reliance on closed-form (convolutional or canonical) expressions for reactive transport in exclusively convective streamtubes. The approach requires both reactive-transport solutions for a representative ensemble of one-dimensional convective-dispersive-reactive streamtubes and the distribution of flux over the streamtube ensemble variants, and it does not allow for lateral mixing between streamtubes. Here, the only ensemble variant is travel time. The discussion details the way that the conventional Eulerian fate and transport model is converted first into an ensemble of transports along three-dimensional streamtubes of unknown geometry, and then to approximate one-dimensional streamtubes that are designed to honor the important global properties of the transport. Conditions under which such an 'equivalent' ensemble of one-dimensional streamtubes are described. The breakthrough curve of a nonreactive tracer in the ensemble is expressed as a combined Volterra-Fredholm integral equation, which serves as the basis for estimation of the distribution of flux over the variant of the ensemble, travel time. Transient convective speed and the effects of errors in flux distributions are described, and the method is applied to a demonstration problem involving nonlinear multicomponent reaction kinetics and strongly nonuniform flow.  相似文献   

5.
Lee ES  Liu G  Schwartz FW  Kim Y  Ibaraki M 《Chemosphere》2008,72(2):165-173
Controlled-release, semi-passive reactive barrier systems have been recently developed as a long-term treatment option for controlling the spread of contaminant plumes in groundwater. This paper describes a new computer code, and applies it to study coupled processes of solute release, reaction, and mass transport in an in situ remediation scheme using the controlled release of potassium permanganate. Confidence with the modeling approach was developed by model verifications and simulating results of a pilot-scale test-cell experiment. Sensitivity analyses indicated the possibilities of treatment inefficiencies due to inability of transverse dispersion to mix the permanganate (MnO(4)(-)) within the zone of reaction, fluctuations in source strength due to variations in flow velocity, and the small length of treatment zone due to strong soil utilization of MnO(4)(-). Although problems associated with the fluctuating source strength and strong soil utilization can be addressed by optimizing the release rate, the inefficiency of transverse dispersion to create mixing could pose a serious limitation. Through a series of model simulations, a system of injection/withdrawal wells in a doublet arrangement was developed to facilitate lateral spreading and mixing of MnO(4)(-). A well-mixed, stable MnO(4)(-) zone with predetermined size (DxL=8m x 2m) and concentration ranges (1.5-20 mg l(-1)) was created by four 1-day injection/withdrawal pumping periods over 24 d. This type of mixing zone may persist for many years with periodic well mixing and replacements of exhausted controlled-release forms. Coupled use of the generalized code with field hydrologic data will help to optimize the design and operation of controlled-release systems in practice.  相似文献   

6.
Small computers can now solve complex transport and diffusion problems. Making such calculations rapidly and on the spot would be very useful for decision makers during emergencies. This paper describes a microcomputer model that can simulate nonsteady state transport and diffusion and calculate mass-consistent flow fields in uneven terrain. Transport and diffusion calculations use a Puff model approach to simulate dispersion from a continuous point source. Three-dimensional wind fields are generated from linear combinations of solutions that are obtained ahead of time on a larger machine. A computer code has been written in BASIC and successfully run on an Apple II personal computer.  相似文献   

7.
In this work an experimental study of mixing of two identical plumes, carried out in a turbulent neutral boundary layer generated in a wind tunnel, is presented. Measurements have been performed with fast flame ionisation detectors (FFIDs) and a two-component Laser-Doppler Anemometer system. Results allow the study of both the average and the fluctuating concentration field, including the turbulent vertical and longitudinal mass fluxes, in single plumes and during the interaction of two identical plumes. This information gives insight into the details of the mixing phase of the two plumes. Results of trajectories and additional rise (due to plume interactions) have been compared with previous measurements carried out in laminar cross-flows, showing similar behaviour. Concentration distributions in plume cross-sections in turbulent cross-flows differ from those measured in laminar cross-flows. Average vertical and longitudinal velocity measurements into the plume core show the strength of the shielding effect of the upwind plume and some details of interaction between the counter-rotating vortex pairs (CVPs). For large values of the alignment angle φ, between the line joining the stacks and the cross-flow, an average negative vertical velocity is measured in the middle of the plume even if its centre of mass is rising. This downward velocity is induced by the slow interaction of the CVPs and generates a vertical stretching of the plume and negative rise enhancement. Vertical turbulent fluxes change sign on the plume centreline and are of opposite sign with respect to the longitudinal turbulent fluxes. Results indicate a good linearity between vertical turbulent fluxes and concentration gradients, with different proportionality for the top and bottom parts of the plume (especially in the near field) indicating that dispersion could be described by a gradient-transfer model.  相似文献   

8.
Numerical experiments and field results on the size of steady state plumes   总被引:1,自引:0,他引:1  
Contaminated groundwater poses a serious risk for drinking water supplies. Under certain conditions, however, groundwater contamination remains restricted to a tolerable extent because of natural attenuation processes. We present an innovative approach to evaluate the size of these so-called steady-state plumes by 2-D and 1-D modelling in homogeneous aquifers. If longitudinal mixing is negligible, scenarios can be modelled in a simplified way using a 1-D domain vertical to the direction of flow. We analysed the sensitivity of the plume length with respect to biodegradation kinetics, flow velocity, transverse vertical dispersivity alphat, the source and aquifer geometry and reaction stoichiometry. Our findings indicate that for many readily biodegradable compounds transverse-dispersive mixing rather than reaction kinetics is the limiting factor for natural attenuation. Therefore, if alphat, aquifer and source geometry and concentrations of electron acceptors and donors are known, the length of the steady state contaminant plume can be predicted. The approach is validated under field conditions for an ammonium plume at a former landfill site in SW Germany.  相似文献   

9.
Macrodispersion coefficients are derived for heterogeneous porous media under ergodic and nonergodic conditions. Influences of the log-conductivity autocovariance function on macrodispersion are investigated through six commonly used isotropic log-conductivity autocorrelation models. They are the exponential, Gaussian, spherical, linear, Whittle and Mizell A-type models. Analytical expressions for ergodic macrodispersion coefficients for each of these models are presented. The results for nonergodic macrodispersion coefficients are calculated numerically. The results show that the various autocovariance functions, which display slight differences in the preasympototic region, have little effect on the ultimate macrodispersion coefficient. The effect of nonergodicity is more significant than the log-conductivity autocovariance function for the aquifers exhibiting unimodal log-conductivity distribution.  相似文献   

10.
Aerobic biodegradation of benzoate by Pseudomonas cepacia sp. in a saturated heterogeneous porous medium was simulated using the stochastic-convective reaction (SCR) approach. A laboratory flow cell was randomly packed with low permeability silt-size inclusions in a high permeability sand matrix. In the SCR upscaling approach, the characteristics of the flow field are determined by the breakthrough of a conservative tracer. Spatial information on the actual location of the heterogeneities is not used. The mass balance equations governing the nonlinear and multicomponent reactive transport are recast in terms of reactive transports in each of a finite number of discrete streamtubes. The streamtube ensemble members represent transport via a steady constant average velocity per streamtube and a conventional Fickian dispersion term, and their contributions to the observed breakthroughs are determined by flux-averaging the streamtube solute concentrations. The resulting simulations were compared to those from a high-resolution deterministic simulation of the reactive transport, and to alternative ensemble representations involving (i) effective Fickian travel time distribution function, (ii) purely convective streamtube transport, and (iii) streamtube ensemble subset simulations. The results of the SCR simulation compare favorably to that of a sophisticated high-resolution deterministic approach.  相似文献   

11.
This paper explores the feasibility of (1) using kriging to predict the monthly mean of daily 7-h mean (0900-1559) O3 concentrations, (2) using kriging to estimate the per cent of hourly mean O3 concentrations equal to or greater than 0.07 ppm (137 microg m(-3)) for a specific month, and (3) developing a quantitative relationship between the monthly mean of the daily 7-h (0900-1559) average O3 concentration and the monthly number of hourly concentrations > or = 0.08p ppm (157 microg m(-3)). We found that kriging can be used to estimate the (1) monthly mean of daily 7-h mean O3 concentrations and (2) the percentage of hourly concentrations for a given month > or = 0.07 ppm when sufficient spatial coverage was available. However, the per cent > or = 0.07 ppm parameter exhibited much greater relative variability than the monthly 7-h exposure index. A strong statistical association was found between the monthly number of occurrences > or = 0.08 ppm and monthly 7-h mean concentrations above 0.05 ppm (98 microg m(-3)). Because of the variability that cumulative indices, such as the monthly percentage of hourly concentrations > or = 0.07 ppm , exhibit from site to site, it appears that whether kriging techniques or mathematical regressions are used to estimate the number of elevated O3 hourly concentrations above selected thresholds, large uncertainties associated with the predicted values will exist. These large uncertainties will make it difficult to accurately estimate vegetation effects caused by ambient levels of O3. However, if a generalized quantitative relationship between repeated occurrences of hourly mean concentrations > or = 0.07 ppm or > or = 0.08 and vegetation effects can be developed, it may be possible, using kriged monthly values accompanied with confidence intervals, to identify those areas where vegetation may be at risk. However, before it will be possible to implement such an approach, researchers will have to better quantify the relationship between realistic O3 exposures and vegetation effects.  相似文献   

12.
The objective of the following research is to theoretically quantify the enhancement of interphase mass transfer of dissolved non-aqueous phase liquid (NAPL) compounds from the non-aqueous phase to the aqueous phase and the enhancement of dispersive mass transport from a NAPL zone due to destruction of dissolved NAPL compounds. For relatively slow reaction rates, such as for permanganate and perchloroethene (PCE), local-scale mass transfer enhancement is expected to be small. Dispersive mass transport with reaction from a horizontal NAPL zone can be quantified using equations derived for a mathematically equivalent falling film reactor system. In contrast to local-scale interphase mass transfer, dispersive mass transport from NAPL zones may be significantly increased by reaction. Enhancement factors due to destruction of the NAPL compound(s) are mainly dependent on NAPL solubility and oxidant concentration and to a lesser extent on reaction rate, stoichiometry, and transverse dispersion coefficients. Higher NAPL solubility and/or lower oxidant concentration reduces the maximum expected enhancement factor. Reaction enhancement factors for mass transport from NAPL zones are expected to be in the range of 5-50 for permanganate and chlorinated solvents. Theoretical results suggest that assuming instantaneous reaction rates may be appropriate for dispersive mass transport from NAPL zones.  相似文献   

13.
Data analysis and modeling were performed to characterize the spatial and temporal variability of wintertime transport and dispersion processes and the impact of these processes on particulate matter (PM) concentrations in the California San Joaquin Valley (SJV). Radar wind profiler (RWP) and radio acoustic sounding system (RASS) data collected from 18 sites throughout Central California were used to estimate hourly mixing heights for a 3-month period and to create case studies of high-resolution diagnostic wind fields, which were used for trajectory and dispersion analyses. Data analyses show that PM episodes were characterized by an upper-level ridge of high pressure that generally produced light winds through the entire depth of the atmospheric boundary layer and low mixing heights compared with nonepisode days. Peak daytime mixing heights during episodes were -400 m above ground level (agl) compared with -800 m agl during nonepisodes. These episode/nonepisode differences were observed throughout the SJV. Dispersion modeling indicates that the range of influence of primary PM emitted in major population centers within the SJV ranged from -15 to 50 km. Trajectory analyses revealed that little intrabasin pollutant transport occurred among major population centers in the SJV; however, interbasin transport from the northern SJV and Sacramento regions into the San Francisco Bay Area (SFBA) was often observed. In addition, this analysis demonstrates the usefulness of integrating RWP/RASS measurements into data analyses and modeling to improve the understanding of meteorological processes that impact pollution, such as aloft transport and boundary layer evolution.  相似文献   

14.
A unique field experiment has been undertaken at the CFB Borden research site to investigate the development of dissolved chlorinated solvent plumes from a residual dense non-aqueous phase liquid (DNAPL) source. The "emplaced-source" tracer test methodology involved a controlled emplacement of a block-shaped source of sand containing chlorinated solvents below the water table. The gradual dissolution of this residual DNAPL solvent source under natural aquifer conditions caused dissolved solvent plumes of trichloromethane (TCM), trichloroethene (TCE) and perchloroethene (PCE) to continuously develop down gradient. Source dissolution and 3-D plume development were successfully monitored via 173 multilevel samplers over a 475-day tracer test period prior to site remediation research being initiated. Detailed groundwater level and hydraulic conductivity data were collected. Development of plumes with concentrations spanning 1-700,000 micrograms/1 is described and key processes controlling their migration identified. Plumes were observed to be narrow due to the weakness of transverse dispersion processes and long due to advection and significant longitudinal dispersion, very limited sorptive retardation and negligible, if any, attenuation due to biodegradation or abiotic reaction. TCM was shown to be essentially conservative, TCE very nearly conservative and PCE, consistent with its greater hydrophobicity, more retarded yet having a greater mobility than observed in previous Borden field tests. The absence of biodegradation was ascribed to the prevailing aerobic conditions and lack of any additional biodegradable carbon substrates. The transient groundwater flow regime caused significant transverse lateral plume movement, plume asymmetry and was likely responsible for most of the, albeit limited, transverse horizontal plume spreading. In agreement with the widespread incidence of extensive TCE and PCE plumes throughout the industrialized world, the experiment indicates such solvent plumes are likely to be highly mobile and persistent, at least in aquifers that are aerobic and have low sorption potential (low foc content).  相似文献   

15.
Assessing the potential of natural attenuation in groundwater relies on the ability to predict and quantify the processes that occur in contaminant plumes. Transverse dispersion is a significant mass transfer mechanism for mixing of electron acceptors and donors and thus may control the lengths of steady state plumes. Laboratory experiments were carried out using a 2-dimensional acrylic glass tank filled with glass beads, quartz sand and field site material as porous media. Flow velocities and grain sizes were varied in order to cover a large range of Peclet numbers including typical field scenarios. The laboratory study was extended by a comprehensive literature search to compare the new results with earlier work. As a result we propose a new empirical relationship for prediction of transverse dispersion coefficients (Dt) which is based on the Peclet number (Pe). This new relationship indicates a nonlinear dependency on the flow velocity (nu a) and grain size (d), namely a relative decrease of the dispersion coefficient with increasing flow velocity in relatively fast flowing water: Dt/Daq=Dp/Daq+0.28(Pe)0.72 (with Pe=nu a d/Daq; Daq and Dp denote the aqueous and pore diffusion coefficients, resp.).  相似文献   

16.
Bacterial transport through cores of intact, glacial-outwash aquifer sediment was investigated with the overall goal of better understanding bacterial transport and developing a predictive capability based on the sediment characteristics. Variability was great among the cores. Normalized maximum bacterial-effluent concentrations ranged from 5.4x10(-7) to 0.36 and effluent recovery ranged from 2.9x10(-4) to 59%. Bacterial breakthrough was generally rapid with a sharp peak occurring nearly twice as early as the bromide peak. Bacterial breakthrough exhibited a long tail of relatively constant concentration averaging three orders of magnitude less than the peak concentration for up to 32 pore volumes. The tails were consistent with non-equilibrium detachment, corroborated by the results of flow interruption experiments. Bacterial breakthrough was accurately simulated with a transport model incorporating advection, dispersion and first-order non-equilibrium attachment/detachment. Relationships among bacterial transport and sediment characteristics were explored with multiple regression analyses. These analyses indicated that for these cores and experimental conditions, easily-measurable sediment characteristics--median grain size, degree of sorting, organic-matter content and hydraulic conductivity--accounted for 66%, 61% and 89% of the core-to-core variability in the bacterial effective porosity, dispersivity and attachment-rate coefficient, respectively. In addition, the bacterial effective porosity, median grain size and organic-matter content accounted for 76% of the inter-core variability in the detachment-rate coefficient. The resulting regression equations allow prediction of bacterial transport based on sediment characteristics and are a possible alternative to using colloid-filtration theory. Colloid-filtration theory, used without the benefit of running bacterial transport experiments, did not as accurately replicate the observed variability in the attachment-rate coefficient.  相似文献   

17.
This study aimed to analyze the contamination potential associated with the reactive transport of nitrate-N and ammonium-N in the Choushui River alluvial fan, Taiwan and to evaluate a risk region in developing a groundwater protection policy in 2021. In this area, an aquifer redox sequence provided a good understanding of the spatial distributions of nitrate-N and ammonium-N and of aerobic and anaerobic environments. Equiprobable hydraulic conductivity (K) fields reproduced by geostatistical methods characterized the spatial uncertainty of contaminant transport in the heterogeneous aquifer. Nitrogen contamination potential fronts for high and low threshold concentrations based on a 95% risk probability were used to assess different levels of risk. The simulated result reveals that the spatial uncertainty of highly heterogeneous K fields governs the contamination potential assessment of the nitrogen compounds along the regional flow directions. The contamination potential of nitrate-N is more uncertain than that for ammonium-N. The high nitrate-N concentrations (> or =3 mg/L) are prevalent in the aerobic environment. The low concentration nitrate-N plumes (0.5-3 mg/L) gradually migrate to the mid-fan area and to a maximum distance of 15 km from the aerobic region. The nitrate-N plumes pose a potential human health risk in the aerobic and anaerobic environments. The ammonium-N plumes remain stably confined to the distal-fan and partial mid-fan areas.  相似文献   

18.
A Lagrangian stochastic model (MicroSpray), able to simulate the airborne dispersion in complex terrain and in presence of obstacles, was modified to simulate the dispersion of dense gas clouds. This is accomplished by taking into account the following processes: negative buoyancy, gravity spreading and the particle's reflection at the bottom computational boundary. Elevated and ground level sources, continuous and instantaneous emissions, time varying sources, plumes with initial momentum (horizontal, vertical or oblique in any direction), plumes without initial momentum are considered. MicroSpray is part of the model system MSS, which also includes the diagnostic MicroSwift model for the reconstruction of the 3-D wind field in presence of obstacles and orography. To evaluate the MSS ability to simulate the dispersion of heavy gases, its simulation performances are compared in detail to two field experiments (Thorney Island and Kit Fox) and to a chlorine railway accident (Macdona). Then, a comprehensive analysis considering several experiments of the Modelers Data Archive is presented. The statistical analysis on the overall available data reveals that the performance of the new MicroSpray version for dense gas releases is generally reliable. For instance, the agreement between concentration predictions and observations is within a factor of two in the 72% up to 99% of the occurrences for the case studies considered. The values of other performance measures, such as correlation coefficient, geometric mean bias and geometric variance, mostly set in the ranges indicated as good-model performances in the specialized literature.  相似文献   

19.
A quantitative methodology is described for the field-scale performance assessment of natural attenuation using plume-scale electron and carbon balances. This provides a practical framework for the calculation of global mass balances for contaminant plumes, using mass inputs from the plume source, background groundwater and plume residuals in a simplified box model. Biodegradation processes and reactions included in the analysis are identified from electron acceptors, electron donors and degradation products present in these inputs. Parameter values used in the model are obtained from data acquired during typical site investigation and groundwater monitoring studies for natural attenuation schemes. The approach is evaluated for a UK Permo-Triassic Sandstone aquifer contaminated with a plume of phenolic compounds. Uncertainty in the model predictions and sensitivity to parameter values was assessed by probabilistic modelling using Monte Carlo methods. Sensitivity analyses were compared for different input parameter probability distributions and a base case using fixed parameter values, using an identical conceptual model and data set. Results show that consumption of oxidants by biodegradation is approximately balanced by the production of CH4 and total dissolved inorganic carbon (TDIC) which is conserved in the plume. Under this condition, either the plume electron or carbon balance can be used to determine contaminant mass loss, which is equivalent to only 4% of the estimated source term. This corresponds to a first order, plume-averaged, half-life of > 800 years. The electron balance is particularly sensitive to uncertainty in the source term and dispersive inputs. Reliable historical information on contaminant spillages and detailed site investigation are necessary to accurately characterise the source term. The dispersive influx is sensitive to variability in the plume mixing zone width. Consumption of aqueous oxidants greatly exceeds that of mineral oxidants in the plume, but electron acceptor supply is insufficient to meet the electron donor demand and the plume will grow. The aquifer potential for degradation of these contaminants is limited by high contaminant concentrations and the supply of bioavailable electron acceptors. Natural attenuation will increase only after increased transport and dilution.  相似文献   

20.
建立了地下水环境中甲基叔丁基醚(MTBE)运移过程的变系数动力学模型,并对模型进行了验证和参数灵敏度分析.模拟结果表明,地下水流速和阻滞系数对于MTBE的运移过程影响最为显著,而水动力弥散系数的影响较小,忽略其变化不会对预测地下水环境中污染物运移的环境动力学行为造成太大误差.由此得到的结论可定量研究MTBE在地下水环境中的对流.扩散特征,还可为MTBE污染地下水的预测预报、修复治理等研究提供科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号