首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing -10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing -10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, -0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, -20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from -50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed.  相似文献   

2.
Short-rotation willow coppice (SRWC), grown on farmland in Sweden for energy-biomass production, was fertilised with sewage sludge and wood-ash mixtures on the basis of the permitted annual phosphorus supply. Two identical experiments were conducted in central Sweden, on two newly harvested commercial SRWC fields. The maximum legally permitted amount of the sludge-ash mixture, sludge only, ash only, and twice the maximum permitted sludge-ash amount, were applied. The aim was to assess the effect of pH changes following treatment, on the ability of SRWC to take up large amounts of Cd and other metals. The remediation effect of SRWC was also studied. Under the experimental conditions applied, uptake by SRWC was unaffected by pH changes. The differences between the amounts of metals experimentally applied, less the uptake by SRWC after a potential harvest, were broadly within the permitted limits. For Cd, a reduction of total amounts in soil was observed.  相似文献   

3.
A greenhouse study was undertaken to determine the suitability of adding papermill sludge to neutral/alkaline gold mine tailings to improve the establishment of Festuca rubra, Agropyron trachycaulum and Medicago sativa. Festuca rubra root and shoot biomass and A. Trachycaulum shoot biomass were increased with papermill sludge amendment. The addition of papermill sludge and fertilizer drastically increased the shoot and root biomass of M. sativa (20-30 times) while A. trachycaulum and F. rubra showed a more moderate increase in growth. Photosynthetic pigment content of the leaves was higher in papermill sludge treatments than in the treatments without papermill sludge. The organic carbon content, macro-aggregate content and field capacity of the gold mine tailings were increased while the bulk density was decreased by the addition of papermill sludge. This study suggests that addition of papermill sludge and adequate fertilization can alleviate some of the adverse conditions of neutral/alkaline gold mine tailings.  相似文献   

4.
Abstract

Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing ~10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing ~10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, ~0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, ~20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from ?50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed.  相似文献   

5.
Lee TM  Lai HY  Chen ZS 《Chemosphere》2004,57(10):1459-1471
The availability of metal in contaminated soil can be reduced by the addition of soil amendments. The objectives of this study are to study the effects of applying different soil amendments on the concentration of Cd and Pb in soil solution, DTPA or EDTA extractable Cd and Pb, and the uptake of Cd and Pb by wheat (Triticum vulgare) when growing in long-term Cd and Pb-contaminated soils, more than 20 years. The soil amendments, including check, compost, zinc oxide, calcium carbonate, calcium carbonate mixed with zinc oxide, and calcium carbonate mixed with compost, were conducted in a four replicates pot cultural study. The amended soils were incubated for six months under 60% of water holding capacity. Following incubation, wheat was grown for four months in greenhouse. Analyses of Cd concentration demonstrated a significant decrease in soil solution concentration and DTPA or EDTA extractable in soils amended with calcium carbonate or calcium carbonate mixed with ZnO (or compost) (p<0.01). These amendments can significantly reduce the Cd concentration in the grain, leaf and stem, or reduce the total Cd uptake in all parts of wheat species grown in highly contaminated soil amended with calcium carbonate or calcium carbonate mixed with ZnO (or compost) (p<0.01). The concentration of Cd in soil solution and extracted with DTPA or EDTA can predict the Cd concentration in wheat, especially for soil solution.  相似文献   

6.
Leaching of arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil arsenic levels. Thus, an environmental concern arises regarding accumulation of As in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to evaluate As accumulation by vegetables from the soils adjacent to the CCA-treated utility poles and fences and examine the effects of soil amendments on plant As accumulation. Carrot (Daucus carota L.) and lettuce (Lactuca sativa L.) were grown for ten weeks in the soil with or without compost and phosphate amendments. As expected, elevated As concentrations were observed in the pole soil (43 mg kg(-1)) and in the fence soil (27 mg kg(-1)), resulting in enhanced As accumulation of 44 mg kg(-1) in carrot and 32 mg kg(-1) in lettuce. Addition of phosphate to soils increased As accumulation by 4.56-9.3 times for carrot and 2.45-10.1 for lettuce due to increased soil water-soluble As via replacement of arsenate by phosphate in soil. However, biosolid compost application significantly reduced plant As uptake by 79-86%, relative to the untreated soils. This suppression is possibly because of As adsorbed by biosolid organic mater, which reduced As phytoavailability. Fractionation analysis showed that biosolid decreased As in soil water-soluble, exchangeable, and carbonate fraction by 45%, whereas phosphate increased it up to 2.61 times, compared to the untreated soils. Our results indicate that growing vegetables in soils near CCA-treated wood may pose a risk of As exposure for humans. Compost amendment can reduce such a risk by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils. Caution should be taken for phosphate application since it enhances As accumulation.  相似文献   

7.
The fate of polybrominated diphenyl ethers (PBDEs) in sewage sludge after agricultural application was analysed. This study was based on the analysis of sewage sludge and sludge amended soil samples collected during 2005. PBDE concentrations in sewage sludge ranged from 197 to 1185ng/g dry weight (dw), being deca-BDE-209 the predominant congener. PBDE levels in soils ranged between 21 and 690ng/g dw, being BDE-209 also the predominant congener in all soil samples. Sewage-sludge amendment at the research stations increased concentrations of all BDE congeners 1.2- to 45-fold, with the highest increases for BDE-209. Results obtained evidenced the cumulative effect of the sludge application rates. Moreover, high levels found at soils four years after the last sludge application indicate persistence of PBDEs in soils, including deca-BDE-209.  相似文献   

8.
Oleszczuk P  Hollert H 《Chemosphere》2011,83(4):502-509
Understanding the effect of soil type on the overall toxicity of sewage sludge is one of the most important issues concerning environmental risks associated with the sewage sludge land application. The aim of the study was to determine the influence of different soils (sandy, loamy and OECD soil) on sewage sludges toxicity in relation to plants (Lepidium sativum, Sorghum saccharatum, Sinapis alba) and an invertebrate species (Heterocypris incongruens). The most evident negative influence of sewage sludges on root growth was observed in the case of OECD soil. The EC(50) values determined on the basis of the root growth inhibition of all tested plants were in the range 0.1-6.4%, 0.03-9.4% and 6.6-22.1% (% of sewage sludgekg(-1) soil) for OECD, sandy and loamy soil, respectively. Soil type also affects the sewage sludge toxicity in relation to H. incongruens. The LC(50) (mortality) values ranged from 0.26% to 11.5% depending on the sludge tested. For EC(50) (growth inhibition) values ranged from 10.7% to 36.2%.  相似文献   

9.
The different stages involved in coal mining-related activities result in a degraded landscape and sites associated with large amounts of dumped waste material. Remediation of these contaminated soils can be carried out by application of industrial organic sludge if the concerns regarding the potential negative environmental impacts of this experimental practice are properly addressed. In this context, the objective of this study was to use ecotoxicological tests to determine the quantity of organic industrial sludge that is required as a soil amendment to restore soil production while avoiding environmental impact. Chemical analysis of the solids (industrial sludge and soil) and their leachates was carried out as well as a battery of ecotoxicity tests on enzymes (hydrolytic activity), bacteria, algae, daphnids, earthworms, and higher plants, according to standardized methodologies. Solid and leachate samples of coal-contaminated soil were more toxic than those of industrial sludge towards enzyme activity, bacteria, algae, daphnids, and earthworms. In the case of the higher plants (lettuce, corn, wild cabbage, and Surinam cherry) the industrial sludge was more toxic than the coal-contaminated soil, and a soil/sludge mixture (66:34 % dry weight basis) had a stimulatory effect on the Surinam cherry biomass. The ecotoxicological assessment of the coal-contaminated soil remediation using sludge as an amendment is very important to determine application rates that could promote a stimulatory effect on agronomic species without negatively affecting the environment.  相似文献   

10.
This paper describes a project that assessed the potential for mercury (Hg) release to air and water from soil amended with combustion products to simulate beneficial use. Combustion products (ash) derived from wood, sewage sludge, subbituminous coal, and a subbituminous coal-petroleum coke mixture were added to soil as agricultural supplements, soil stabilizers, and to develop low-permeability surfaces. Hg release was measured from the latter when intact and after it was broken up and mixed into the soil. Air-substrate Hg exchange was measured for all materials six times over 24 hr, providing data that reflected winter, spring, summer, and fall meteorological conditions. Dry deposition of atmospheric Hg and emission of Hg to the atmosphere were both found to be important fluxes. Measured differences in seasonal and diel (24 hr) fluxes demonstrated that to establish an annual estimate of air-substrate flux from these materials data on both of these time steps should be collected. Air-substrate exchange was highly correlated with soil and air temperature, as well as incident light. Hg releases to the atmosphere from coal and wood combustion product-amended soils to simulate an agricultural application were similar to that measured for the unamended soil, whereas releases to the air for the sludge-amended materials were higher. Hg released to soil solutions during the Synthetic Precipitation Leaching Procedure for ash-amended materials was higher than that released from soil alone. On the basis of estimates of annual releases of Hg to the air from the materials used, emissions from coal and wood ash-amended soil to simulate an agricultural application could simply be re-emission of Hg deposited by wet processes from the atmosphere; however, releases from sludge-amended materials and those generated to simulate soil stabilization and disturbed low-permeability pads include Hg indigenous to the material.  相似文献   

11.
Copper (Cu) input to agricultural soils results from Cu containing pesticides and or that in soil amendments, such as manure or sewage sludge. Soil and soil solution properties influence the adsorption and desorption of Cu by the soil, which in turn determines its plant availability and/or phytotoxicities. Effects of different anion enrichment in the equilibrium solution on Cu adsorption by different soils (pH range of 6.2-9.9) were investigated in this study over a range of Cu concentrations. With Cu concentrations in the range of 0-100 mg L(-1) in the equilibration solution, 95-99% of applied Cu was adsorbed by all three soils. The adsorption of Cu was similar regardless of using either 0.01 M CaCl2 or Ca(NO3)2 as the equilibration solution. When the Cu concentration in the equilibration solution was further increased in the range of 500-2000 mg L(-1), the adsorption of Cu decreased from 60 to 24% of applied Cu in two soils with pH 6.2-7.9. In a high pH soil (pH=9.9), the Cu adsorption decreased from 77 to 34%. Addition of incinerated sewage sludge (ISS) to a Palouse silt loam soil (pH = 6.2) increased the Cu adsorption as compared to that by unamended soil. This was, in part, due to an increase in the soil suspension pH with ISS amendment.  相似文献   

12.
The influence of long-term farming practices on the soil's behaviour to adsorb hydrophobic organic compounds (HOCs) over long times was investigated. Adsorption of five naphthalene derivatives (naphthalene, 1-naphthol, 1-naphthylamine, 1-hydroxy-2-naphthoic acid, 1,4-naphthoquinone) was examined on soils with varying amounts and origins of soil organic matter obtained after amendment with different organic materials over more than 40 years. Soil organic matter, pore sizes and aggregate stability were significantly altered influencing the adsorption behaviour of the soils. Samples of soil amended with peat having an organic carbon content of 3.4% sorbed naphthalene derivatives stronger than the soil treated with sewage sludge (2.6% C(org)). All other treatments, calcium nitrate, plots without nitrogen fertilizers, grassland, animal manure, green manure and the fallowed soil sorbed less and no significant difference was found between them although the organic carbon content ranged from 1.0% to 2.6%. Thus, a decrease of the carbon content of a soil does not necessarily imply a reduction of sorption capacities for hydrophobic compounds such as naphthalene derivatives. Furthermore, the importance of protonation of HOCs for the adsorption on soil surfaces was shown. Different polarities of electronic structures of HOCs distinctly influence their adsorption behaviour.  相似文献   

13.
Amendment of agricultural soils with municipal sewage sludges provides a valuable source of plant nutrients and organic matter. Nevertheless, addition of heavy metals and risks of eutrophication continue to be of concern. Metal behaviour in soils and plant uptake are dependent on the nature of the metal, sludge/soil physico-chemical properties and plant species. A pot experiment was carried out to evaluate plant production and heavy metal uptake, soil heavy metal pools and bioavailability, and soil P pools and possible leaching losses, in agricultural soils amended with sewage sludge for at least 10 years (F20) compared to non-amended soils (control). Sewage sludge application increased soil pH, N, Olsen-extractable-P, DOC and exchangeable Ca, Mg and K concentrations. Total and EDTA-extractable soil concentrations of Cu and Zn were also significantly greater in F20, and soil metal (Cu, Mn and Zn) and P fractionation altered. Compared to the control, in F20 relative amounts of acid-extractable (Mn, Zn), reducible (Mn, Zn) and oxidisable (Cu, Zn) metal fractions were greater, and a dominance of inorganic P forms was observed. Analyses of F20 soil solutions highlighted risks of PO4 and Cu leaching. However, despite the observed increases in metal bioavailability sewage sludge applications did not lead to an increase in plant shoot concentrations (in wild plants or crop species). On the contrary, depending on the plant species, Mn and Zn tissue concentrations were within the deficiency level for most plants.  相似文献   

14.
The use of mid-infrared attenuated total reflectance (ATR) spectroscopy enables direct measurement of nitrate concentration in soil pastes, but strong interfering absorbance bands due to water and soil constituents limit the accuracy of straightforward determination. Accurate subtraction of the water spectrum improves the correlation between nitrate concentration and its nu3 vibration band around 1350 cm(-1). However, this correlation is soil-dependent, due mostly to varying contents of carbonate, whose absorbance band overlaps the nitrate band. In the present work, a two-stage method is developed: First, the soil type is identified by comparing the "fingerprint" region of the spectrum (800-1200 cm(-1)) to a reference spectral library. In the second stage, nitrate concentration is estimated using the spectrum interval that includes the nitrate band, together with the soil type previously identified. Three methods are compared for estimating nitrate concentration: integration of the nitrate absorbance band, cross-correlation with a reference spectrum, and principal component analysis (PCA) followed by a neural network. When using simple band integration, the use of soil specific calibration curves leads to determination errors ranging from 5.5 to 24 mg[N]/kg[dry soil] for the mineral soils tested. The cross-correlation technique leads to similar results. The combination of soil identification with PCA and neural network modeling improves the predictions, especially for soils containing calcium carbonate. Typical prediction errors for light non-calcareous soils are about 4 mg[N]/kg[dry soil], whereas for soils containing calcium carbonate they range from 6 to 20 mg[N]/kg[dry soil], which is less than four percent of the concentration range investigated.  相似文献   

15.
A rapid method for extracting soil solutions using porous plastic soil-moisture samplers was combined with a cation resin equilibration based speciation technique to look at the chemical availability of metals in soil. Industrially polluted, metal sulphate amended and sewage sludge treated soils were used in our study. Cadmium sulphate amended and industrially contaminated soils all had > 65% of the total soil solution Cd present as free Cd2+. However, increasing total soil Cd concentrations by adding CdSO4 resulted in smaller total soil solution Cd. Consequently, the free Cd2+ concentrations in soil solutions extracted from these soils were smaller than in the same soil contaminated by sewage sludge addition. Amendment with ZnSO4 gave much greater concentrations of free Zn2+ in soil solutions compared with the same soil after long-term Zn contamination via sewage sludge additions. Our results demonstrate the difficulty in comparing total soil solution and free metal ion concentrations for soils from different areas with different physiochemical properties and sources of contamination. However, when comparing the same Woburn soil, Cd was much less available as Cd2+ in soil solution from the CdSO4 amended soils compared with soil contaminated by about 36 years of sewage sludge additions. In contrast, much more Zn was available in soil solution as free Zn2+ in the ZnSO4 amended soils compared with the sewage sludge treated soils.  相似文献   

16.
Sorption of fipronil and its metabolites on soils from South Australia   总被引:1,自引:0,他引:1  
This paper reports on the sorption of fipronil [(+/-)-5-amino-1-(2,6-dichloro-alpha,alpha,alpha-trifluoro-p-tolyl)-4-trifluoromethyl-sulfinylpyrazole-3-carbonitrile] and its two main metabolites, desulfynil and sulfide derivatives on a range of soils from South Australia. The Freundlich sorption coefficient (Kf) values for fipronil on the soils ranged from 1.94 to 4.84 using a 5% acetonitrile/water mixture as the soil solution. Its two metabolites had a higher sorption affinity for soils, with Kf values ranging from 11.09 to 23.49 for the sulfide derivative and from 4.70 to 11.77 for the desulfynil derivative. Their sorption coefficients were found to be better related to the soil organic carbon than clay content. The presence of cosolvents in soil solutions had a significant influence on the sorption of fipronil. The Freundlich sorption coefficients showed a log linear relationship with the fractions of both acetonitrile and methanol in solutions. The sorption coefficient of fipronil on Turretfield soil in the aqueous solution was estimated to be from 13.80 to 19.19. Methanol had less effect on the sorption of fipronil than acetonitrile. The Kd values for fipronil on the eight soils using a 5% methanol/water mixture were from 5.34 to 13.85, which reflect more closely the sorption in the aqueous solution. The average Koc value for fipronil on the eight South Australian soils was calculated to be 825+/-214.  相似文献   

17.
ABSTRACT

To test the possible use of composted food waste and wastewater sludge as biofilters to treat gas-phase volatile organic compounds (VOCs), batch experiments were conducted with an isolated strain that could degrade aromatic compounds under aerobic conditions. A benzene and trichloroethylene (TCE) mixture was used as the gas-phase pollutant in experiments with composted food waste, sludge, and soil. Under aerobic conditions, benzene was degraded as a primary substrate and TCE was degraded cometabolically, with water contents varying from 6 to 60% (volume of water added/volume of solid). Optimal water content for VOC removal was 12% for the soil, 36% for the composted food waste, and 48% for the sludge.

The extent of VOC sorption and biodegradation at the optimal water content was different for each material. With the same initial VOC concentration, more VOCs were removed by sorption onto the composted food waste and the sludge, while less VOCs were biodegraded in comparison with the results using soil. The reason the biodegradation in the soil was greater may be partly attributed to the fact that, due to less sorption, the aqueous-phase concentration of VOCs, which microorganisms could utilize as a carbon source or cometabolize, was higher. We also speculate that the distribution of microorganisms in each medium affects the rate of biodegradation. A large number of microorganisms were attached to the composted food waste and sludge. Mass transfer of VOCs and oxygen to these microorganisms, which appear to have been heterogeneously distributed in clusters, may have been limited, resulting in hindered biodegradation.  相似文献   

18.
The goal of this research was to assess the potential of several industrial wastes to immobilise metals in two polluted soils deriving from an old Pb/Zn mine. Two different approaches were used to assess the performance of different amendments: a chemical one, using extraction by ethylenediaminetetraacetic acid (EDTA), and a biological one, using Lupinus albus as a bio-indicator. Four amendments were used: inorganic sugar production waste (named ‘sugar foam’, SF), sludge from a drinking water treatment sludge (DWS), organic waste from olive mill waste (OMW) and paper mill sludge (PMS). Amendment to soil ratios ranged from 0.1 to 0.3 (w/w). All the amendments were capable of significantly decreasing (p?<?0.05) EDTA-extractable Pb, Zn and Cu concentrations in the two soils used, with decreases in ranges 21–100, 25–100 and 2–100 % for Pb, Zn and Cu, respectively. The amendments tested were also effective in reducing the bioavailability of Pb and Zn for L. albus, which gave rise to a decrease in shoot metal accumulation by the lupine plants compared to that found in the control soil. That decrease reached up to 5.6 and 2.8 times for Pb and Zn, respectively, being statistically significant in most cases. Moreover, application of the OMW, DWS and SF amendments led to higher average values of plant biomass (up to 71 %) than those obtained in the control soil. The results obtained showed the technology put forward to be a viable means of remediating mine soils as it led to a decrease in the availability and toxicity of metals and, thus, facilitated the growth of a vegetation layer.  相似文献   

19.
The effects of pH on concentrations of zinc, copper and nickel extracted by calcium chloride from a clay loam and two sandy loam soils that had been treated with sewage sludge were studied. Concentrations of all the metals increased rapidly as pH decreased below a threshold value ranging from 6.2 to 7.0 for Zn, 6.2 to 7.2 for Ni and 4.7 to 5.7 for Cu. Both the total concentrations and the threshold pH values were influenced by differences in soil texture and (between the two light-textured soils) by differences in soil cation exchange capacity. The amount of zinc and copper extracted from the mixtures was considerably less than that extracted from the same quantity of sludge alone.  相似文献   

20.
Brick manufacturing industries are challenged to comply with clean air mandates. Dry air scrubbers have been used to remove acid gases from the exhaust air from brick manufacturing plants. The use of dry air scrubbers results in the production of large quantities of an alkaline powder by-product. A greenhouse experiment was conducted to evaluate the potential of using dairy lagoon sludge stabilized with the scrubber by-product as a soil amendment. Lagoon sludge was stabilized with scrubber by-product at an application rate of 20 gl(-1). The sludge-scrubber by-product mixture was applied to a sandy loam soil to provide amendments ranging between 28 and 168 kg of plant available nitrogen (PAN)/ha for the growth of Helianthus annuus (sunflower). Use of the sludge-scrubber by-product mixture as a nitrogen fertilizer did not adversely affect sunflower seedling emergence; however, significantly higher (p<0.05) plant volume indices, leaf area, dry shoot and root masses, and seed yields were obtained for mature plants grown in sludge-treated soil relative to the control or fertilizer treatment. The sludge amendment did not severely impact gas exchange or chlorophyll a fluorescence of the plants and nutrient content of the sunflower tissues was generally within a sufficient range. The increased growth and yield of sunflower plants indicated the potential of the sludge-scrubber by-product mixture as a soil amendment in agricultural crop production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号