首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some of the effets of dieldrin on the development of two species of crabs, Leptodius floridanus (Rathbun) and Panopeus herbstii (Milne-Edwards), were studied. It was found that the larvae of neither species were able to complete their development at 10 ppb dieldrin or higher in seawater. Groups of L. floridanus larvae reared in 1 ppb dieldrin in seawater had a 15 to 27% higher mortality during development to the postlarval stage than controls. The highest mortality occurred during the first zoeal stage. The time of development to the megalopal stage was as much as 11.4% longer among larvae reared in 1 ppb than among controls. The survival of L. floridanus larvae was not affected by 0.5 ppb dieldrin in seawater. The survival of P. herbstii larvae to the first crab stage was not affected by 1 ppb dieldrin in seawater at 28.5 °C, 30%.S. It was concluded that a comprehensive study of the toxicity of a given pesticide to all stages in the life cycle of a species is necessary to give even an incomplete idea of how the pesticide might affect the animal in its natural environment.  相似文献   

2.
The effects of food limitation on growth rates and survival of marine invertebrate larvae have been studied for many years. Far less is known about how food limitation during the larval stage influences length of larval life or postmetamorphic performance. This paper documents the effects of food limitation during larval development (1) on how long the larvae ofCrepidula fornicata (L.) can delay metamorphosis in the laboratory after they have become competent to metamorphose and (2) on postmetamorphic growth rate. To assess the magnitude of nutritional stress imposed by different food concentrations, we measured growth rates (as changes in shell length and ash-free dry weight) for larvae reared in either 0.45-m filtered seawater or at phytoplankton concentrations (Isoehrysis galbana, clone T-ISO) of 1 × l03, 1 × 104, or 1.8 × 105 cells ml–1. Larvae increased both shell length and biomass at 1 × 104 cells ml–1, although significantly more slowly than at the highest food concentration. Larvae did not significantly increase (p > 0.10) mean shell length in filtered seawater or at a phytoplankton concentration of only 1 × 103 cells ml–1, and in fact lost weight under these conditions. To assess the influence of food limitation on the ability of competent individuals to postpone metamorphosis, larvae were first reared to metamorphic competence on a high food concentration ofI. galbana (1.8 × 105 cells ml–1). When at least 80% of subsampled larvae were competent to metamorphose, as assessed by the numbers of indlviduals metamorphosing in response to elevated K+ concentration in seawater, remaining larvae were transferred either to 0.45-m filtered seawater or to suspensions of reduced phytoplankton concentration (1 × 103, 1 × 104, or 5 × 104 cells ml–1), or were maintained at 1.8 × 105 cells ml–1. All larvae were monitored daily for metamorphosis. Individuals that metamorphosed in each food treatment were transferred to high ration conditions (1.8 × 105 tells ml–1) for four additional days to monitor postmetamorphic growth. Competent larvae responded to all food-limiting conditions by metamorphosing precociously, typically 1 wk or more before larvae metamorphosed when maintained at the highest food ration. Surprisingly, juveniles reared at full ration grew more slowly if they had spent 2 or 3 d under food-limiting conditions as competent larvae. The data show that a rapid decline in phytoplankton concentration during the larval development ofC. fornicata stimulates metamorphosis, foreshortening the larval dispersal period, and may also reduce the ability of postmetamorphic individuals to grow rapidly even when food concentrations increase.  相似文献   

3.
Effects of Dimilin® (TH 6040), an insect growth regulator which interferes with the formation of the insect cuticle, were studied on the larval development of Rhithropanopeus harrisii (Gould) and Sesarma reticulatum (Say) (Crustacea: Brachyura). When larvae were exposed to 0.5 (R. harrisii only), 1, 3, 5, 7, and 10 ppb Dimilin from hatching to the first crab stage, survival in both species decreased in relation to increased concentrations of Dimilin. Survival of R. harrisii larvae wa significantly lower at 1 ppb and higher levels compared with control experiments, and in S. reticulatum a significant decrease in survival began at the 3 ppb level. At 10 ppb Dimilin, no larvae survived to the megalopa stage in either of the two species. The results indicate that early stage larvae of R. harrisii are more sensitive to Dimilin than those of S. reticulatum. When R. harrisii larvae were treated with 10 ppb Dimilin during the intermolt period of each of the 4 zoeal stages, nearly all larvae died during molting to the succeeding stage. First zoeal larvae of R. harrisii exposed to 10 ppb Dimilin at various days during the intermolt period were more sensitive to the compound late than early in the period. It is suggested that Dimilin also may interfere with the formation of the cuticle in crab larvae.  相似文献   

4.
Ultrastructure of larval cuticle during the molt cycle of the estuarine crab Rhitropanopeus harrisii (Gould) (Crustacea: Brachyura) was studied in control larvae as well as in larvae exposed to 10 ppb of the insect growth regulator Dimilin® (diflubenzuron). First zoeal larvae were used as test organisms. It has earlier been shown that 10 ppb Dimilin is lethal to zoeal larvae of R. harrisii, and nearly all exposed larvae died during molting to the next stage (Christiansen et al., 1978). Distinct differences in structure of the cuticle were found between the two groups of larvae. Both endocuticle and exocuticle appear to be deformed in Dimilin-treated larvae, whereas formation of epicuticle did not seem to be affected. The results indicate that Dimilin probably inhibits chitin synthesis in crab larvae as shown earlier by several authors for insect larvae.  相似文献   

5.
Larvae of the red abalone (Haliotis rufescens Swainson) are functionally incapable of capturing particulate foods. The aim of this study was to determine whether these larvae could acquire energy from seawater in the form of dissolved organic material. Trochophore and veliger larvae were shown to acquire energy by transporting dissolved organic material from seawater. Both larval stages took up all classes of amino acids tested. The influx of radiolabeled alanine represented the net substrate flux, as determined by direct chemical measurement for both trochophore and veliger larvae. Although veliger larvae have a transport system to take up taurine from seawater, a net efflux was observed for this amino acid. The release of taurine occurred independently of the presence of either taurine or other amino acids in the medium. Transported alanine was used in both anabolic and catabolic pathways. The percent of 14C-alanine in the trichloroacetic acid-insoluble fraction (macromolecules) of veliger larvae ranged from 21 to 56% of the total radioactivity in the larvae. No lipid biosynthesis was detected from 14C-labeled alanine. Veliger larvae catabolized 15 to 19% of the total alanine taken up and released it as 14CO2. The metabolic rate (oxygen consumption) and the rate of amino acid uptake were both determined for the same group of veliger larvae. The percent contribution that the uptake of amino acids, from a total concentration of 1.6 M, made to the metabolic demand of abalone larvae ranged from 39 to 70%. Thus, these lecithotrophic larvae are not energetically independent of their environment, a result which differs from the current view of energy allocation to nonfeeding larvae.Please address all requests for reprints to Dr. Manahan at the University of Southern California  相似文献   

6.
The transfer of chlorinated hydrocarbons (CHC) in a laboratory simulation of a three trophic level marine food chain was studied. The food chain consisted of the algal flagellate Dunaliella sp., the rotifer Brachionus plicatilis, and the larva of the Northern anchovy Engraulis mordax. CHC were introduced into the seawater at concentrations representative of near-shore conditions off southern California without the use of dispersing agents. Each trophic level appeared to be in a steady-state at the time of first sampling, 5 days after inoculation. Apparent partition coefficients were calculated for each trophic level. The CHC contamination in the diet of the rotifers and anchovy larvae was also calculated. Unfed anchovy larvae accumulated the same amount of CHC as fed larvae and the final concentration appeared to be dependent on the CHC concentration in the seawater. The data in this report suggest that CHC accumulation is not a food-chain phenomenon but rather the result of direct partitioning of the compounds between the seawater and the test organisms.  相似文献   

7.
E. Pfeiler 《Marine Biology》1997,127(4):571-578
Bonefish (Albula sp.) larvae (leptocephali) from the Gulf of California complete metamorphosis in ˜10 d in natural seawater (35‰S; Ca2+ conc = 10.5 mM). The increase in ossification that occurs near the end of the non-feeding metamorphic period, in addition to the ability of larvae to complete metamorphosis in dilute seawater (8‰ S) prompted the present study, where the effects of varying the external calcium ion concentration, [Ca2+]e, of artificial seawater (ASW) on the survival, development and internal (whole-body) calcium ion content, (Ca2+)i, of unfed metamorphosing larvae were investigated. Early-metamorphosing larvae placed in␣ASW, where [Ca2+]e = 10.1 mM, survived for up to 10 d and developed normally without exogenous nutrients. In shorter-term experiments (4 to 5 d), no differences in survival were found for larvae in ASW with [Ca2+]e rang-ing from 1.5 to 10.1 mM. However, in Ca2+-free ASW, most larvae died within 27 h and no larvae survived more than 42 h; the median lethal time (LT50), and its 95% confidence limits, were 14.5 (10.0 to 20.9) h. High mortality (81% after 20 h) also occurred in 1.0 mM Ca2+ ASW, but 2 of 16 larvae tested survived for 96 h. The 96 h median tolerance limit (TLM), corrected for control mortality, was 1.2 mM Ca2+. In natural seawater, larval (Ca2+)i remained relatively constant ( = 0.419 mg larva−1)␣in early- and intermediate-metamorphosing larvae, and then increased to a mean value of 0.739 mg larva−1 in advanced larvae, indicating that Ca2+ was␣taken up from the medium at this stage; the increase in (Ca2+)i corresponded to the period of ossification of the vertebral column. Internal (whole-body) magnesium ion content (Mg2+)i showed no significant change during metamorphosis ( = 0.089 mg larva−1). No significant differences in (Ca2+)i were found in advanced larvae in natural seawater and those in ASW, with [Ca2+]e ranging from 2.0 to 10.1 mM. However, clearing and staining revealed that ossification of the vertebral column had not yet occurred in advanced larvae from 2.0 to 10.1 mM Ca2+ ASW. Also, low [Ca2+]e (1.0 to 2.0 mM) usually produced deformed larvae that swam erratically, at times showing “whirling” behavior. Received: 21 August 1996 / Accepted: 26 August 1996  相似文献   

8.
The swimming behaviour of laboratory-reared newly hatched cod larvae (Gadus morhua L.) was observed in a control solution of artificial seawater and in seven solutions, each with a different concentration of arginine (109 to 10-3 M). The behaviour of 20 larvae was analysed in each of the eight solutions; the individual observation time was 1 min. Individual movements were recorded on video and analyzed using a computer-assisted program. The larvae swam in straight lines (a trajectory), rested, moved and started swimming again. For the parameters analyzed, i.e., number of movements, angle between successive trajectories and straightness index, there was no significant difference between the behaviour of the larvae in the different solutions. However, for the larvae in 10-5, 10-4 and 10-3 M arginine solutions, the analyzed parameters, i.e., time active, frequency of trajectories (number of movements exceeding body length), distance swum min-1, length of individual trajectories and trajectory velocity, were all significantly lower than for the larvae in the control solution of artificial seawater and for larvae in the solutions of 10-9, 10-8, 10-7 and 10-6 M arginine. The results show that the mean distance swum by cod larvae min-1 was two to five times longer in artificial seawater without arginine and in the four lower concentrations of arginine than in the three higher concentrations. Scanning micrographs show that newly hatched (pre-feeding) cod larvae possess olfactory organs. It seems reasonalbe to assume that the observed changes in swimming behaviour are mediated by the olfactory sense and are important in the feeding strategy of cod larvae. We suggest that the observed behaviour increases the probability of the larvae localizing patches of prey organisms and remaining in the patch once they have found it. The results show that chemokinesis is a mechanism by which the spatial distribution of fish larvae will be correlated with their prey.  相似文献   

9.
E. D. Houde 《Marine Biology》1977,43(4):333-341
Bay anchovy (Anchoa mitchilli) eggs were stocked at densities from 0.5 to 32.0 l-1 and larvae were fed on wild plankton (copepod nauplii) in concentrations that ranged from 50 to 5000 prey l-1. Lined sole (Achirus lineatus) eggs were stocked at 0.5 to 16.0 l-1 and larvae were fed wild plankton at concentrations from 50 to 1000 prey l-1. Some larvae of each species survived at all stock and food levels to the transformation stage at 16 days after hatching. Survival rates for both species exceeded 40% when food concentration was 1000 l-1 or higher. Growth and dry weight yields also increased significantly at the higher food concentrations. Effects of initial stocking density were not well defined, but both survival and growth decreased at the highest stocking rates. Standardized culture of bay anchovy and lined sole larvae can be based on a food concentration of 1000 copepod nauplii l-1 to routinely produce healthy larvae.  相似文献   

10.
Accumulation rates of cadmium, the amount of food ingested and assimilated, the amount of oxygen consumed and changes in dry flesh weight have been measured in Mytilus edulis L. exposed to 0, 10 and 100 ppb cadmium for 17 d in aquaria with seawater flowing continously and at constant algal concentration. The accumulation rates were linear at 10 and 100 ppb, amounting to 0.58 and 8.89 ppm d-1, respectively. Body loads up to 150 ppm caused no effects on either clearance, ingestion, assimilation, respiration, or growth. High net growth efficiencies between 55–59% were obtained, indicating near optimal experimental conditions. It is suggested that the setup and experimental procedure provide an excellent tool in the study of accumulation and sublethal effects of environmental pollutants in suspension feeding bivalves.  相似文献   

11.
L. V. Basch 《Marine Biology》1996,126(4):693-701
Effects of larval and algal culture density and diet composition on development and survival of temperate asteroid larvae were studied in the laboratory at Santa Cruz, California, USA, during summer and fall of 1990. Larvae of Asterina miniata were reared at two densities, 0.5 or 1.0 ml-1, and fed one or two species of cultured phytoflagellates — Dunaliella tertiolecta alone or mixed with Rhodomonas sp. — at three concentrations of 5x102, 5x103, and 5x104 total cells ml-1. Algal concentration strongly influenced larval development; however, larval density also had a marked effect. Development progressed further with increasing algal concentration. Larval growth and differentiation were sometimes uncoupled; i.e., growth measures were directly related to food level, while differentiation indicators were less so. At the lowest food level, growth was negative and differentiation was arrested at early precompetent stages; these larvae never formed juvenile rudiments or brachiolar attachment structures. Development times of larvae given more food ranged from 26 to 50 d and depended directly on food availability. Development time to metamorphosis at the highest food concentration was similar for siblings fed D. tertiolecta alone or mixed with Rhodomonas sp. In contrast, when food level was an order of magnitude lower, larvae fed the algal mixture metamorphosed significantly earlier than larvae fed the unialgal diet. This suggests interactive effects of food quantity and food quality. Survival was little affected by larval or food density, except at the lowest ration. Feeding experiments in well-controlled laboratory conditions are useful to predict and compare the physiological or developmental scope of response of larvae to defined environmental factors; however, results from such studies should not be extrapolated to predict rates and processes of larval development in nature.  相似文献   

12.
The performance of an artificial practical diet, kappacarrageenan microbound diet (C-MBD) was assessed on Penaeus monodon larvae at the SEAFDEC Broodstock and Maturation Experimental Laboratory in March 1986. Shrimps were reared from zoea1 to post-larvae1 using five dietary treatments: (a) natural food — Chaetoceros calicitrans and Artemia salina (b) C-MBD; (c) combination of natural food and C-MBD; (d) commercial diet (microencapsulated, MED); (e) combination of natural food and commercial diet. Results showed slow development with larvae fed the commercial diet. Feeding with C-MBD in combination with natural food resulted in the highest % survival among treatments (69.6), but this was not significantly different (P>0.05) from those obtained with larvae fed natural food alone, C-MBD alone or their combination. While mean values for survival of larvae fed the commercial diet, either alone or in combination, was significantly lower (p<0.05) than all other treatments, their mean growth indices were comparable with larvae fed C-MBD alone or in combination. The low levels of protein, lipid and essentially fatty acids (which are considered important nutrients during larval development) contained in the commercial diet may well justify the results on metamorphosis, survival and growth of the larvae fed this diet. The good performance of C-MBD in this experiment suggests that this kind of diet can be used as partial or total replacement to the traditional algal food.  相似文献   

13.
Efficient delivery of nutrients is necessary for the successful study of aquatic larval nutrition. Conventional artificial food particles for larval shrimp (Penaeus vannamei) have poor water stability and poor nutrient retention or both. We developed a novel food particle type that retained low-molecular weight, water-soluble nutrients (vitamins and glucose) within lipid-wall microcapsules embedded with dietary ingredients in particles of gelled alginate-gelatin. The combination of lipid-wall microcapsules (LWMs) embedded in gelled food particles was termed complex microcapsules (CXMs). Eighty-five percent of 14C-activity associated with encapsulated 14C-glucose was retained by CXMs (after 18 h of suspension in seawater). Bioavailability of CXM-encapsulated molecules was demonstrated by release of encapsulated dye marker into the gut lumen of larval shrimp, and by uptake of 14C from encapsulated 14C-glucose. Minimum ingestion rates, calculated from 14C-uptake for larval shrimp (Mysis-1 through Postlarva-2) fed CXMs, ranged from 48 to 99 g dry wt larva-1 d-1, and were similar to literature values reported for ingestion of live rotifers by penaeid larvae. Complex microcapsules described in this study will be a valuable new tool for studying nutrition of suspension-feeders in that both micro-and macronutrients can be delivered to these animals by one particle type.  相似文献   

14.
The energetic cost of metamorphosis in cyprids of the barnacle Balanus amphitrite Darwin was estimated by quantification of lipid, carbohydrate and protein contents. About 38–58% (4–5 mJ individual–1) of cypris energy reserves were used during metamorphosis. Lipids accounted for 55–65%, proteins for 34–44% and carbohydrates for <2% of the energy used. Juveniles obtained from larvae fed 106 cells ml–1 of Chaetoceros gracilis were bigger (carapace length: 560–616 µm) and contained more energy (5.56±0.10 mJ juvenile–1) than their counterparts (carapace length: 420–462 µm; energy content: 2.49±0.20 mJ juvenile–1) obtained from larvae fed 104 cells ml–1. At water temperatures of 30°C and 24°C and food concentrations of 104 and 102 cells ml–1 (3:1 mixture of C. gracilis and Isochrysis galbana) as well as under field conditions (26.9±3.1°C and 2.2±0.8 µg chlorophyll a l–1), juveniles obtained from larvae fed the high food concentration grew faster than juveniles obtained from larvae fed low food concentration until 5 days post-metamorphosis. Laboratory experiments revealed a combined effect of early juvenile energy content, temperature and food concentration on growth until 5 days post-metamorphosis. After 10 days post-metamorphosis, the influence of the early juvenile energy content on growth became negligible. Overall, our results indicate that the energy content at metamorphosis is of critical importance for initial growth of juvenile barnacles and emphasize the dependency of the physiological performance of early juvenile barnacles on the larval exposure to food.Communicated by O. Kinne, Oldendorf/LuheAn erratum to this article can be found at  相似文献   

15.
W. B. Jaeckle 《Marine Biology》1994,119(4):517-523
Lecithotrophic larvae of the cheilostome bryozoan, Bugula neritina (L.), lose metamorphic competence 12 to 24 h after release from the maternal zooid. The high respiration rate of newly released larvae (mean=306.3 pmol O2 larva-1 h-1, range=149.3 to 466.6, n=18 trials, 22.5°C) from adults collected at Link Port, Fort Pierce, Florida during the winter/spring of 1990–1991 reflects their active swimming behavior. The average energy content per larva was 15.24 mJ (range: 13.35 to 20.17 mJ ind-1, n=5 groups). If all cells have an identical energy content and metabolic rate, then 2 and 20% of the total energy content would be consumed by the onset (2 h post-release) and the loss (24 h post-release) of metamorphic competence. Larvae of B. neritina are a composite of both larval and juvenile tissues and the loss of metamorphic competence may be due to regional depletion of labile energy stores in transitory larval cells, particularly the ciliated cells that comprise the locomotory organ, the corona. Although nonfeeding, B. neritina larvae can acquire nutrients from the environment in the form of dissolved organic materials (DOM) in seawater. Both the amino acid alanine and the fatty acid palmitic acid can be transported from seawater ([S]=1 M, 22.5°C). The rates of alanine influx (appearance of label in tissue) averaged 0.366 pmol larva-1 h-1 and, based on comparisons between rates of solute transport and metabolism, would contribute little (<1% of required energy) to offset the metabolic demand. The average rate of palmitic acid influx was 4.668 pmol larva-1 h-1 and assuming that the measured influx equals the net solute flux, could account for 21 to 72% of energy requirements. These data suggest that the duration of planktonic life of B. neritina larvae is principally regulated by the amount of endogenous energy stores, but may be modulated by available DOM in seawater.  相似文献   

16.
The berried females of the Caribbean king crab Mithrax spinosissimus (Lamarck) used in this study were collected from canals on Big Pine Key, Sugarloaf Key and Lower Matecumbe Key (south Florida, USA) on 9 August, 8 October and 15 November 1986. Viable spawns hatched as first zoeae and molted to second zoeae within ca. 10 to 12 h. Most of the larvae reached the megalopa stage 1 d later, and molted to first crab 4 to 8 d after hatching (water temperature: 27.2° to 28.8°C). Low water temperature and/or early lack of food had a negative effect not only on stage duration, but also on the size of the early crab stages. Successful molt to first crabs occurred, however, in the absence of food. The growth rate (carapace length) between molts in early crab stages varied between ca. 20 and 30%. When provided with good water exchange, stocking density could be very high (>22 500 individuals m-2), with no increase in mortality. The highest mortality rate was recorded when the larvae molted to first crab, and the highest rates of survival were always recorded when feeding was not initiated until after 5 to 8 d after hatching. No cannibalism was observed among larvae, and cannibalism was low in early crab stages. The study indicates that to achieve viable hatches and high larval survival in rearing M. spinosissimus, a continuous and adequate supply of high-quality seawater is a prerequisite both in larviculture and in maintaining brooding females.Contribution No. 93, Department of Oceanography and Ocean Engineering, Florida Institute of Technology  相似文献   

17.
Females of the spionid polychaete Streblospio benedicti (Webster) produce either small eggs (60–70 μm diameter) and planktotrophic larvae, or large eggs (100–200 μm) and lecithotrophic larvae that reportedly do not feed. This intraspecific polymorphism, a form of poecilogony, is potentially useful in studies of larval ecology and evolution, but necessary data on larval form and function are lacking. This study describes the morphology and nutritional biology of larvae obtained from Atlantic (South Carolina) and Pacific (California and Washington) populations from 2003 to 2005. The two types of larvae produced by Atlantic S. benedicti differed greatly in length (229±22 μm SD for planktotrophs vs. 638±40 μm for lecithotrophs) and chaetiger number (2–5 vs. 10–11) at release from the female’s brood pouch. Planktotrophic larvae bore long provisional chaetae on their first chaetiger; provisional chaetae were absent in lecithotrophic larvae. Larvae from Pacific populations were all of the lecithotrophic form, and were similar to their Atlantic counterparts in all respects. High-speed video microscopy revealed that both types of larvae used opposed bands of cilia to capture suspended particles and transport them to the mouth, where they were often ingested. Lecithotrophic larvae reared with suspended phytoplankton (Rhodomonas sp., 104 cells ml−1) for 2 days grew significantly faster than sibling larvae reared without added food, indicating that these larvae can digest and assimilate ingested food. Larvae of S. benedicti that develop from large eggs are thus facultative planktotrophs instead of obligately non-feeding lecithotrophs, a result that affects the interpretation of comparative studies of the ecology and evolution of larvae in S. benedicti and certain other marine invertebrates.  相似文献   

18.
Live copepods, Calanus finmarchicus (Gunnerus) and C. hyperboreus (Krøyer), exposed to dissolved 14C-labeled trimethylamine (TMA) in seawater, oxidized TMA to trimethylamine oxide (TMAO), which accumulated in the organisms. The amount of TMAO synthesized was dependent on the time of exposure to TMA and the concentration of TMA in the seawater. It was inferred that copepods can produce TMAO by oxidation of TMA found in their plant food. Choline and methionine did not appear to be of importance as precursors of TMAO. There were large seasonal changes in TMA monooxygenase activity of both copepods. The activity was high in spring, and decreased through summer and autumn to a winter low in October to March. The changes in TMAO content of C. finmarchicus were, in comparison, small (this aspect was not tested for C. hyperboreus).  相似文献   

19.
Growth rates of excised apical segments from three Chondrus crispus Stackhouse clones were rapid, reproducible and easily measured using simple equipment. Clonal segments exhibited a high degree of phenotypic stability, with coefficients of variation in growth rates being typically less than 5%. Sensitivity of the assay was demonstrated using 24-h pulses of the toxicants Cu2+ (10 to 150 ppb) and the molluscicide Bayluscide (100 to 500 ppb). As a further demonstration of applicability of this assay system, growth rates were measured over two consecutive 24-h photoperiods using a normally pigmented red gametophytic clone and a green colored mutant derived from it. Growth rates were highest in the first hours of the light phase for both clones, with growth of the green mutant being consistently inferior to that of the normally pigmented one. Significant changes were measured with intervals as short as 4 h using only five apical segments for each treatment. The C. crispus assay described is sensitive, relatively rapid, and statistically robust when applied to toxicant testing in seawater and to physiological studies.  相似文献   

20.
This study investigates the feeding behaviour of the precious red coral Corallium rubrum on bacterioplankton. The effects of flow rate, prey concentration, and seawater temperature were tested. The results obtained show that C. rubrum was able to prey on both pico- and nanoplankton cells. Flagellates constituted the major bacterioplankton food source in terms of carbon and nitrogen, representing from 43 to 70% of the C and N ingested. Flow speed (2, 6, and 11 cm s−1) had no effect on grazing rates, maybe due to the small size of the ingested particles. Conversely, feeding rates increased with prey concentration and seawater temperature. There was a doubling of the picoplankton ingestion rate for a sixfold increase in its concentration. The ingestion of autotrophic flagellates, however, increased at the same time as their concentration, indicating a preference for this type of food. Considering the range of concentrations typically found in the Ligurian Sea, the ingestion of pico- and nanoplankton brings 148 ng C polyp−1 day−1 and 28 ng N polyp−1 day−1. This type of food represents only ca. 4.5% of the total carbon gained by C. rubrum from the different sources, but might be the most important in terms of nitrogen, phosphorus, and other essential elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号