首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
黄河上游灌区高产连作稻田氮肥的过量施用引起土壤氮素盈余,进而导致稻田N2O排放量增大.为了探明水稻连作模式下稻田N2O排放特征及影响因素,采用静态箱-气相色谱法,开展了为期2年的连作水稻田试验研究.试验共设置3个施氮处理,包括常规氮肥300kg.hm-2(N300)、优化氮肥240kg.hm-2(N240)和对照不施氮肥(N0),并在稻田连作的第2年,对N240处理灌溉节水30%.2年连作试验结果表明,水稻生长季稻田N2O排放主要发生在水稻施基肥后及水稻生长的中后期,在稻田灌水泡田后N2O排放速率达最大值.稻田高氮肥(300kg.hm-2)施用显著增加N2O的排放量,优化氮肥(240kg.hm-2)处理可有效降低土壤N2O排放量(p〈0.01).水稻生长季稻田淹水状态时N2O排放量极低,稻田灌溉节水会相应增加土壤N2O排放量.土壤温度变化对稻田N2O的生成和排放会产生较大影响,但受稻田肥水管理等因素的影响,温度与N2O排放量相关性不显著.灌区稻田土壤N2O排放通量与田面水NO3--N含量变化及耕层0~40cm土壤NO3--N积累量变化有显著的相关性.稻田连作显著增加了耕层土壤剖面0~40cm土层NO3--N的积累量,耕层土壤NO3--N积累量的增加进而加大了土壤N2O排放的风险.在宁夏黄灌区稻田常规灌水和高氮肥(300kg.hm-2)水平下,2年连作稻田水稻生长季土壤N2O总排放量分别达55.98×104kg.a-1和51.48×104kg.a-1,在100a时间尺度上的全球增温潜势(GWPs)均值为16.02×107kg.hm-2(以CO2计),表明黄灌上游灌区高氮肥施用导致稻田N2O排放量增大,由此引起的增温潜势严重.  相似文献   

2.
黄河上游灌区连作稻田N2O排放特征及影响因素   总被引:1,自引:1,他引:0  
黄河上游灌区高产连作稻田氮肥的过量施用引起土壤氮素盈余,进而导致稻田N2O排放量增大.为了探明水稻连作模式下稻田N2O排放特征及影响因素,采用静态箱-气相色谱法,开展了为期2年的连作水稻田试验研究.试验共设置3个施氮处理,包括常规氮肥300kg.hm-2(N300)、优化氮肥240kg.hm-2(N240)和对照不施氮肥(N0),并在稻田连作的第2年,对N240处理灌溉节水30%.2年连作试验结果表明,水稻生长季稻田N2O排放主要发生在水稻施基肥后及水稻生长的中后期,在稻田灌水泡田后N2O排放速率达最大值.稻田高氮肥(300kg.hm-2)施用显著增加N2O的排放量,优化氮肥(240kg.hm-2)处理可有效降低土壤N2O排放量(p<0.01).水稻生长季稻田淹水状态时N2O排放量极低,稻田灌溉节水会相应增加土壤N2O排放量.土壤温度变化对稻田N2O的生成和排放会产生较大影响,但受稻田肥水管理等因素的影响,温度与N2O排放量相关性不显著.灌区稻田土壤N2O排放通量与田面水NO3--N含量变化及耕层0~40cm土壤NO3--N积累量变化有显著的相关性.稻田连作显著增加了耕层土壤剖面0~40cm土层NO3--N的积累量,耕层土壤NO3--N积累量的增加进而加大了土壤N2O排放的风险.在宁夏黄灌区稻田常规灌水和高氮肥(300kg.hm-2)水平下,2年连作稻田水稻生长季土壤N2O总排放量分别达55.98×104kg.a-1和51.48×104kg.a-1,在100a时间尺度上的全球增温潜势(GWPs)均值为16.02×107kg.hm-2(以CO2计),表明黄灌上游灌区高氮肥施用导致稻田N2O排放量增大,由此引起的增温潜势严重.  相似文献   

3.
小麦-玉米轮作体系农田氮素淋失特征及氮素表观平衡   总被引:3,自引:0,他引:3  
连续6年采用渗漏计法研究了不同施氮处理下陕西关中小麦-玉米轮作区农田土壤90 cm深度处氮素(N)淋失特征和土壤-作物体系氮素表观平衡状况.结果表明:该地区农田氮素淋溶主要发生在降雨量较多的玉米季,且集中在8月和9月.监测期内,TN和NO-3-N年平均流失量分别为2.72~23.07 kg·hm-2和1.53~18.72 kg·hm-2,年流失率分别为0.65%~3.44%和0.82%~3.32%,且年总氮、硝态氮流失量均随年施氮量增加呈指数增加.氮素淋失形态中,NO-3-N比例较高,可占总氮淋失量的56.00%~81.00%,且随着氮肥用量的降低,其占总氮淋失量的比例也随之减小.可见,施氮量的大小在一定程度上会影响淋失液中各形态氮的比例.氮素表观平衡结果显示,随着施氮量提高,氮素在土壤中的残留和表观氮盈余均呈现指数增加趋势.长期施氮条件下,土壤-作物体系氮素表观损失率的幅度为32.60%~55.20%,土壤表观残留率为-0.17%~8.20%.多年监测结果表明,优化施氮模式下,作物不仅可以获得较高的产量和氮肥利用率,农田氮素淋失量也大幅降低,在节约肥料资源的同时减轻了潜在的环境风险.  相似文献   

4.
季节性冻融格局变化对高山森林土壤氮素淋溶损失的影响   总被引:8,自引:4,他引:4  
气候变化情景下冻融格局的改变可能导致寒冷生物区土壤氮的淋溶损失,从而改变土壤养分循环和森林溪流的水体环境.因此,为了解季节性冻融循环及其变化对高山森林土壤氮淋溶损失的影响,于2010年5月到2012年4月期间,采用土柱培养实验,利用海拔形成的温度差异模拟气候变暖过程,将高山森林(海拔3600 m)土壤分别培养在海拔3600 m(A1)、3300 m(A2)和3000 m(A3)的森林地表,研究了生长季节与冻融季节不同关键时期的土壤氮淋溶特征.结果表明:川西高山森林土壤氮素淋溶损失随着海拔增加而增加,其损失量为(1.85±0.39)kg·hm-2·a-1(A3)(1.87±0.34)kg·hm-2·a-1(A2)(2.94±0.73)kg·hm-2·a-1(A1),其中,62%以上的氮损失发生在季节性冻融期间.冻融季节高山森林土壤氮素淋溶流失的主要形式为铵态氮和硝态氮,且铵态氮的淋溶损失量高于硝态氮,而生长季节土壤氮素淋溶损失的主要形式是可溶性有机氮.这意味着冻融循环格局在很大程度上控制着高山森林土壤氮素淋溶损失特征,未来气候变暖可能降低高寒森林土壤氮素肥力,增加森林溪流中的氮含量.  相似文献   

5.
青铜峡灌区水稻田化肥氮去向研究   总被引:14,自引:1,他引:13  
青铜峡灌区是我国古老的特大型灌区和粮食主产区之一,灌区农田氮肥的过量施用已经导致化肥氮向水体流失.用15N示踪微区试验方法研究了青铜峡引黄灌区习惯灌溉量条件下水稻田化肥氮素去向.结果表明,施氮量为当地习惯施氮300kg.hm-2时,水稻吸收的化肥氮在籽粒中最多,氮肥的当季利用率为45.93%,吸收的土壤氮约占52.63%;作物中的回收率为27.90%,在0~90cm土壤中的残留率为23.31%,作物-土壤体系中的回收率为51.21%,氮肥的损失率为48.79%;氮肥除了被当季作物吸收和部分以矿质氮残留在土壤中外,灌区19×104hm2的水稻田化肥氮年流失量为2.78×104t,生产1000kg水稻(净籽粒),排放纯氮20.17kg;在0~90cm土壤层中均有化肥氮残留,残留化肥氮主要富集在表层0~30cm,在60~90cm检测到化肥氮,说明青铜峡引黄灌区在习惯灌溉量条件下,水稻田当季的化肥氮淋溶到90cm以下,成为浅层地下水的潜在污染源.  相似文献   

6.
氮肥施用对紫色土-玉米根系系统N2O排放的影响   总被引:10,自引:2,他引:10  
通过不同施氮水平与不同氮肥品种2个田间试验,结合静态箱-气相色谱法研究了川中丘陵区2005年5~9月石灰性紫色土-玉米根系系统的N2O排放变化.结果表明:1)施用氮肥显著地增加了N2O排放,在3个施氮水平下(0、150和250 kg·hm-2),N2O排放总量分别为0.88、2.19和2.52 kg·hm-2;施氮量越高,N2O排放量也越高.当施氮量超过一定水平后,施肥量高低对N2O排放总量的影响并不显著.由氮肥施用引起的N2O排放量占施氮量的0.87%(150 kg·hm-2)和0.66%(250 kg·hm-2).2)氮肥品种显著影响N2O排放,尿素(酰胺态氮肥)和硫酸铵(铵态氮肥)处理的N2O排放量分别为2.09和1.80 kg·hm-2,显著高于硝酸钾(硝态氮肥)处理(1.27 kg·hm-2),三者排放量分别占施氮量的0·80%、0.60%和0.27%.3)降雨是玉米生长季N2O排放的主要影响因子,而无机氮则是影响N2O排放的主要限制因子.  相似文献   

7.
三峡库区典型退耕还林模式土壤养分流失控制   总被引:12,自引:6,他引:6  
吴东  黄志霖  肖文发  曾立雄 《环境科学》2015,36(10):3825-3831
选择三峡库区典型退耕还林模式,包括园地(茶园)及林地(板栗)与原有坡耕地对照,观测并分析其土壤养分(氮磷)输出途径及数量情况,以评估实施退耕还林工程对流域土壤养分输出的影响.结果表明:1退耕后土壤养分氮磷年流失量(包括随泥沙和地表径流流失的量)减少;总氮(TN)年输出量从大到小依次为坡耕地(2 444.27 g·hm-2)茶园地(998.70g·hm-2)板栗林地(532.61 g·hm-2);总磷(TP)为坡耕地(1 690.48 g·hm-2)茶园地(488.06 g·hm-2)板栗林地(129.00 g·hm-2);与坡耕地比较,退耕还林模式(园地、林地)总氮、总磷年输出载荷分别减少了68.68%和81.75%.2茶园地、板栗林地与坡耕地相比,土壤养分速效态氮流失量明显减少,硝态氮(NO-3-N)输出总量依次为坡耕地(113.79g·hm-2)茶园地(73.75 g·hm-2)板栗林地(56.06 g·hm-2);铵态氮(NH+4-N)养分输出次序为茶园最大(69.34 g·hm-2),坡耕地次之(52.45 g·hm-2),板栗林地最小(47.23 g·hm-2).3硝态氮、铵态氮主要通过地表径流输出,所占总量比例分别为91.4%和92.2%;总氮和总磷主要通过泥沙输出,所占总量比例分别为86.6%和98.4%.通过退耕还林等措施,该地区地表径流以及土壤侵蚀输出明显减少,土壤养分流失得到有效控制.  相似文献   

8.
中国种养系统的氮流动及其环境影响   总被引:6,自引:0,他引:6  
陈敏鹏  陈吉宁 《环境科学》2007,28(10):2342-2349
利用集成完全氮平衡模型和农业污染清单的中国种养系统氮流动模型(nitrogen flow model for farming-feeding system in China,NFM-FFS),研究了2003年中国种养系统中的氮流动及其环境影响.结果表明,2003年中国种养系统土壤虽然氮素表观盈余,但实际亏损623.9×104t,平均亏损13.7 kg/hm2,土壤整体面临含氮量减少和退化的风险.由于中国氮素投入(肥料和各类有机肥)主要集中于耕地系统,对牧草地的投入很少,耕地系统的氮素盈余了1 761.9×104t,平均盈余142.8 kg/hm2,中国牧草地系统氮素亏损2 385.7×104t,平均亏损90.7 kg/hm2.因此平衡耕地和牧草地的氮素投入既可减少农业生产对水环境的影响,又可有效控制牧草地退化.2003年,中国种养系统中总氮损失为2266×104t,其中随径流进入地表水的495.8×104t和淋洗进入地下水的102.4×104t最终沉积在河流、湖泊和海洋中,很少有机会再进入种养系统循环.耕地的肥料施用是中国种养系统向地表水和地下水最主要的氮输出源,应是农业污染控制和管理的重点.  相似文献   

9.
桑蒙蒙  范会  姜珊珊  蒋静艳 《环境科学》2015,36(9):3358-3364
为了解农田常规施肥条件下的不同途径氮素损失特征,本文通过田间原位试验同步研究了长江中下游地区夏玉米生长季氮肥施用后的农田N2O排放、NH3挥发、氮渗漏和地表径流的变化.结果表明,在复合肥为基肥,尿素为追肥,基追肥氮素水平均为150 kg·hm-2的条件下,整个玉米生长季N2O排放系数为3.3%,NH3挥发损失率为10.2%,氮渗漏和地表径流损失率分别为11.2%和5.1%.此外,基肥施用以氮素渗漏损失为主,而追肥氮素损失以氨挥发和渗漏为主,表明不同途径化肥氮素损失主要受氮肥品种影响,玉米季追肥可改用低氨挥发氮肥品种以减少氮素损失.  相似文献   

10.
汪军  王德建  张刚  王远 《环境科学》2013,34(1):27-33
利用原状土柱在田间试验条件下,比较了麦秸还田下乌栅土和黄泥土稻季氮素氨挥发损失规律,每种试验土壤均设对照、氮肥、氮肥加麦秆这3个处理,同步测定施肥后氨挥发、田面水铵态氮浓度与pH、以及表层土壤Eh.结果表明,乌栅土氨挥发速率及其累积氨挥发量显著高于黄泥土,两种土壤的稻季平均氨挥发的氮素损失量分别为41.8 kg·hm-2和11.2kg·hm-2,分别占氮肥用量的15.2%和3.8%;在3个施肥时期中,分蘖肥期氨挥发损失率最高,乌栅土和黄泥土分别占氮肥用量的29.4%和8.3%;麦秸还田显著增加了氮肥的氨挥发损失,麦秸还田下乌栅土和黄泥土稻季氨挥发损失比单施氮肥处理分别增加了19.8%和20.6%.两种土壤氨挥发速率均与田面水NH4+-N浓度、pH呈正相关关系,但与表层土壤Eh的关系还需进一步研究.  相似文献   

11.
太行山低山丘陵区是华北平原地下水补给区,近年来山区农田面积增加,农田过量氮肥投入造成地下水硝酸盐浓度逐年升高,因此,研究典型农田土壤氮淋溶过程对保护补给区地下水具有重要意义.本文以位于太行山低山丘陵区的中国科学院太行山生态试验站冬小麦-夏玉米轮作农田为研究对象,应用根区水质模型(root zone water quality model,RZWQM)对太行山低山丘陵区2015~2016年冬小麦-夏玉米的1个轮作周期内1m土壤剖面水分和硝态氮运移进行模拟.结果表明,土壤硝态氮淋溶主要发生在夏玉米季(雨季),当全年施氮量为300 kg·hm-2时,夏玉米季硝态氮淋失量达到59.9 kg·hm-2,而冬小麦生长季硝态氮淋失量仅为2.12 kg·hm-2.不同施氮量和不同降水年型下玉米季土壤硝态氮淋溶模拟结果表明,当施氮量为0、300和450 kg·hm-2时,2016年(丰水年)极端降水后,玉米季土壤硝态氮潜在淋失量分别为10.5、59.9和136.5 kg·hm-2;当全年施氮量为300 kg·hm-2时,2013(枯水年)、2015(平水年)和2016年(丰水年)玉米季硝态氮淋失量分别占轮作周期总施氮量的9%、10%和20%;当全年施氮量为450 kg·hm-2时,2013(枯水年)、2015(平水年)和2016年(丰水年)玉米季硝态氮淋失量分别占总施氮量的11%、17%和30%,表明大降水事件不仅对地下水形成大量补给,很大程度上也增加了累积在农田土壤中的硝态氮淋溶损失,增加了对区域地下水硝酸盐潜在污染威胁.  相似文献   

12.
不同施氮处理下旱作农田土壤CH_4、N_2O气体排放特征研究   总被引:6,自引:0,他引:6  
依托甘肃农业大学布设在定西市李家堡镇的长期施氮定位实验,对不同施氮农田CH4和N2O气体通量,采用静态箱-气相色谱法进行小麦生育期的连续观测,并对影响通量变化的环境因子同期观测.结果表明:5个施氮处理下(0、52.5、105、157.5、210 kg·hm-2),旱作农田土壤在小麦全生育期内表现为CH4累积通量的汇和N2O累积通量的源;且不施氮处理时,CH4累积吸收通量最大;施氮量为210 kg·hm-2时,土壤CH4的累积吸收通量所受抑制最大,即土壤CH4累积吸收通量随施氮量升高而降低.相反,不施氮处理时,土壤N2O的累积排放通量最小,施氮量为210 kg·hm-2时,土壤N2O的累积排放通量最大,土壤N2O累积排放通量随施氮量的增加而增大.综合分析,施氮量增大会抑制全生育期旱作春小麦田土壤CH4吸收通量,提高土壤N2O的排放通量.因此,合理控制施氮量有利于生育期旱作农田土壤减排.CH4平均吸收通量随土壤温度的升高而降低,随土壤水分的升高而升高;相反,N2O平均排放通量随土壤温度的升高而升高,随土壤水分的升高而降低.5~10 cm层次的土壤温度与CH4平均吸收通量呈极显著线性负相关,与N2O平均排放通量呈显著正相关.5~10 cm层次的土壤水分与CH4平均吸收通量呈极显著线性正相关,与N2O平均排放通量呈显著负相关.  相似文献   

13.
杨硕欢  张保成  王丽  胡田田 《环境科学》2016,37(12):4780-4788
为揭示水肥用量对农田生态系统土壤CO_2排放的综合影响,试验设高水W1(90 mm)、中水W0.85(76.5 mm)、低水W0.7(63 mm)这3个灌水水平,300、255、210和0 kg·hm~(-2)这4个施氮水平和90、76.5、63和0 kg·hm~(-2)这4个施磷水平,采用静态暗箱-气相色谱法对夏玉米地土壤CO_2排放进行原位观测,分析土壤CO_2排放对水肥调控的动态响应.结果表明,玉米季农田土壤CO_2排放呈双峰曲线,主峰值出现在拔节期至抽雄期,次峰出现在抽雄至灌浆期,其他阶段排放通量较低.W1在高肥F1(N 300 kg·hm~(-2),P2O590 kg·hm~(-2))和低肥F0.7(N 210 kg·hm~(-2),P2O563 kg·hm~(-2))水平下全生育期土壤CO_2平均排放通量均显著高于W0.7(P0.05);中肥F0.85(N 255 kg·hm~(-2),P2O576.5 kg·hm~(-2))和F0.7水平下,W0.85与W0.7差异不显著(P0.05).W1水平下,F1比F0.7显著增大14.82%(P0.05);W0.85水平下,F0.85比F0.7显著增大8.03%(P0.05);而W0.7水平下各施肥水平间无显著性差异.单施氮(N 210 kg·hm~(-2))或磷(P2O563 kg·hm~(-2))、氮磷配施(N 210 kg·hm~(-2)、P2O563kg·hm~(-2))较不施肥处理分别显著增加23.70%、19.00%和12.30%,且氮磷交互作用极显著(P0.01).方差分析表明,供应水平相差15%时,水肥交互作用对全生育期土壤CO_2平均排放通量影响不显著(P0.05),而对土壤CO_2累计排放量影响显著(P0.05);供应水平相差30%时水肥交互作用对全生育期土壤CO_2平均排放通量和累计排放量均影响显著(P0.05).可见,灌水量、施氮量、施磷量单因素均显著促进土壤CO_2排放,而氮磷配施起抑制作用.土壤CO_2排放与水、肥供应水平均有密切关系,水肥交互显著促进了土壤CO_2排放,通过水肥联合调控可有效调节土壤CO_2排放.  相似文献   

14.
黏性土壤严重影响土壤水肥运移.采取适宜的农艺措施优化土壤无机氮分布,减少该类型土壤的氮素损失是农业绿色可持续发展的关键.为明确缓控释肥种肥深施对黏性土壤麦田氮素损失的影响,选择常规化肥(CN)和缓控释肥(RCU)这2种类型肥料,采用撒播撒施(B)和机械化条播深施(D),研究了缓控释肥种肥深施对黏性土壤小麦产量、季节麦田氮素径流流失、氨挥发和N2O排放的影响;并分析了其耕层土壤的无机氮时空分布特征.结果表明,相同肥料类型下,D处理的小麦产量显著高于B处理;而相同施肥方式下,RCU处理的产量显著高于CN处理.D-RCU处理的小麦产量最高,达6.97 t·hm-2.季节径流和氨挥发氮损失量高于N2O形态的氮损失,且不同损失途径对肥料类型和施肥方式的响应不同.肥料类型和径流发生时间是麦田径流氮素流失的主要影响因素.受监测年份降雨年型分配影响,RCU处理的季节径流氮素流失量(20.35 kg·hm-2)较CN处理(10.49 kg·hm-2)显著增加.生育后期是麦田氨挥发损失的主要时期,...  相似文献   

15.
秸秆还田和肥料施用是农田土壤养分输入的主要来源,秸秆还田条件下配合适宜的化肥施用量能够在环境友好的前提下为作物生产提供必要的营养.为明确秸秆还田条件下不同追氮量对麦田土壤真菌群落的影响,从土壤生态功能角度评估冬小麦氮肥管理措施的合理性.在秸秆全量还田基施氮肥150 kg·hm-2基础上,多年定位设置5个追氮量(0、 37.5、 75、 112.5和150 kg·hm-2)处理,采用实时荧光定量PCR和高通量测序技术分析冬小麦成熟期土壤真菌群落丰度、多样性、结构和生态网络,探讨驱动土壤真菌群落变化的主要土壤理化因子.结果表明,和不追施氮肥和低追氮量处理相比,高追氮量处理增加了土壤全氮和无机氮含量,降低了土壤pH值、全磷、有效磷和速效钾含量.和不追施氮肥处理相比,追氮量37.5~150 kg·hm-2处理显著增加了土壤真菌群落丰度(P<0.05),而追施氮肥各处理间差异未达显著水平(P>0.05).土壤真菌群落Heip指数和Shannon指数随追氮量的增加逐渐降低,追氮量150 kg·hm-2  相似文献   

16.
汉江上游金水河流域氮湿沉降   总被引:10,自引:4,他引:6  
汉江上游金水河流域是南水北调工程的重要水源涵养区,但是氮污染已成为该流域水质的主要威胁因素.该研究对汉江的金水河流域开展了为期1 a(2012-02~2013-02)的氮湿沉降观测,并利用氮输出模型估算了氮湿沉降对河流氮负荷的贡献量.结果表明雨水中总氮(DTN)的浓度在0.24~2.89 mg·L-1之间,铵态氮(NH+4-N)、硝态氮(NO-3N)及有机氮(DON)分别占42.8%、13.3%和43.9%;雨水氮浓度随降雨量增大而变小,明显受到降雨的稀释作用.流域内氮湿沉降主要来自人类活动,沉降负荷在4.97~7.00 kg·(hm2·a)-1之间,受降雨量的主要影响,上游地区的氮湿沉降负荷>下游地区>中游地区,春夏两季约占全年氮湿沉降的81%.流域氮湿沉降对河流氮负荷贡献量约为34 000~46 000 kg,只占流域氮肥贡献量的5.05%~6.78%,远小于流域内农业活动化肥氮的贡献量,不是河流氮的主要来源.  相似文献   

17.
为探讨不同施氮水平对紫花苜蓿草地土壤呼吸速率和土壤生化性质的影响及其关系,本研究于2017年4月至2018年3月采用田间试验和室内分析相结合的方法,设置了无氮(N0,0)、低氮(N1,60 kg·hm~(-2))、中氮(N2,120 kg·hm~(-2))和高氮(N3,180 kg·hm~(-2))这4个施氮水平,监测了不同施氮水平下紫花苜蓿草地土壤呼吸速率及土壤水热的季节变化,并于紫花苜蓿生长季内不同茬次刈割后测定了土壤生化性质.结果表明:(1)不同施氮水平下紫花苜蓿草地土壤呼吸速率均表现出明显的季节性变化特征,在7月下旬达到峰值,12月中旬降至最低;随施氮量的增加紫花苜蓿生长季内土壤呼吸速率逐渐增强,N1、N2和N3施氮水平下的土壤呼吸速率均值分别为0.97、1.04和1.07 g·(m~2·h)~(-1),与N0[0.88 g·(m~2·h)~(-1)]相比,土壤呼吸速率分别增加了10.2%、18.2%和21.6%;施氮对紫花苜蓿非生长季内土壤呼吸速率无显著影响(P0.05).(2)不同施氮水平下紫花苜蓿生长季、非生长季和全年的土壤呼吸速率与土壤温度拟合指数模型均达极显著水平(P0.01),且指数模型的决定系数R~2值表现为生长季(0.46~0.62)非生长季(0.66~0.76)全年(0.80~0.86).(3)施氮在一定程度上降低了紫花苜蓿草地土壤的pH值和速效磷(AP),而提高了速效钾(AK)、土壤有机质(SOM)、土壤脲酶(URE)和土壤蔗糖酶活性(INV).土壤全氮(TN)和碱解氮(AN)含量在不同施氮水平下表现出不同的变化趋势,当施氮量在0~120 kg·hm~(-2)时,TN和AN随施氮量的增加而增加,继续增施氮肥超过N2(120 kg·hm~(-2))水平时则略有下降.(4)通过紫花苜蓿生长季内土壤呼吸与其土壤生化性质之间的相关矩阵分析可知,土壤呼吸速率(R_S)与土壤pH值呈极显著负相关(P0.01),与TN和URE呈极显著正相关(P0.01),与SOM呈显著的正相关(P0.05),与INV呈显著负相关(P0.05).综合考虑土壤生化特性对不同施氮条件下紫花苜蓿草地土壤呼吸速率的影响,可为草地生态系统土壤呼吸强度研究提供理论依据.  相似文献   

18.
戴云山国家级自然保护区大气氮沉降特点   总被引:7,自引:2,他引:5  
袁磊  李文周  陈文伟  张金波  蔡祖聪 《环境科学》2016,37(11):4142-4146
利用干湿沉降采集器,持续观测戴云山国家级自然保护区内大气氮素干、湿沉降,调查当地大气氮沉降的种类和沉降通量.结果表明,2015-03-27~2015-10-09观测期间,戴云山自然保护区大气氮干、湿沉降量分别为2.30 kg·hm~(-2)和14.79kg·hm~(-2),以湿沉降形式为主(87%).干沉降中可溶性有机氮的沉降量为1.21 kg·hm~(-2),占干沉降通量的53%;无机氮以硝态氮为主(0.71 kg·hm~(-2)),铵态氮相对较低(0.37 kg·hm~(-2)).湿沉降中无机氮和可溶性有机氮沉降量分别为9.41 kg·hm~(-2)和5.38 kg·hm~(-2),其中无机氮以铵态氮为主(6.07 kg·hm~(-2)).大气氮湿沉降量和当地降雨量显著正相关,降雨量越大,对应的湿沉降氮量也越大.戴云山国家级自然保护区大气氮素沉降量较高,可能会对当地生态环境产生较大的影响.  相似文献   

19.
模拟氮沉降对太岳山油松林土壤呼吸的影响及其持续效应   总被引:2,自引:2,他引:0  
以太岳山油松林为研究对象,对林地分别作3种凋落物处理:对照(C)、去凋(B)、去凋+切根(A),并设计了4个氮水平:对照(CK,0 kg·hm-2·a-1,以N计,下同)、低氮(LN,50 kg·hm-2·a-1)、中氮(MN,100 kg·hm-2·a-1)和高氮(HN,150 kg·hm-2·a-1),研究了土壤呼吸速率在施氮后的连续变化,以及与温度、湿度、微生物生物量C、N、土壤酶活性的关系.结果表明:去凋+切根、去凋、对照样方不同施氮水平下土壤呼吸速率基本都在施N后的第1 d处在最高峰,随即下降,切根+去凋、去凋处理样方的土壤呼吸速率在施氮后第3 d趋于稳定,而对照处理样方的土壤呼吸速率一直处于下降状态.施氮在一定程度上抑制了切根+去凋处理的土壤呼吸速率,而促进了去凋处理、对照处理的土壤呼吸速率,并且土壤微生物生物量C、N的变化与土壤呼吸速率变化一致,土壤呼吸速率与土壤酶活性、土壤湿度的拟合关系不显著(p0.05),而与土壤温度的拟合关系显著(p0.05).以土壤温度、土壤湿度构建的复合模型R s=aebTWc预测土壤呼吸的准确性高于单因子模型,施氮降低了每种凋落物处理指数关系模型(R s=aebT)的决定系数R2,并且施氮降低了切根+去凋、去凋处理的温度敏感性指数Q10,而对对照处理的Q10无明显影响.  相似文献   

20.
为了解三峡库区小流域不同土地利用方式下土壤氮、磷流失特征,为农业非点源污染防控提供科学依据;采用田间试验的方法,研究了三峡库区石盘丘小流域水田、旱坡地、林地、柑橘园和菜地这5种土地利用方式下地表径流不同形态氮、磷流失浓度与通量的特征.结果表明:全氮流失通量的顺序为水田[17.73 kg·(hm2·a)-1] > 柑橘园[4.86 kg·(hm2·a)-1] > 旱坡地[4.33 kg·(hm2·a)-1] > 菜地[4.00 kg·(hm2·a)-1] > 林地[2.41 kg·(hm2·a)-1];全磷流失通量的顺序为菜地[4.97 kg·(hm2·a)-1] > 柑橘园[1.87 kg·(hm2·a)-1] > 水田[0.93 kg·(hm2·a)-1] > 林地[0.27 kg·(hm2·a)-1] > 旱坡地[0.19 kg·(hm2·a)-1];5种土地利用方式下氮、磷流失主要集中在降雨频繁的4~5月,占全年氮、磷流失总负荷的53.80%~96.52%和56.03%~87.78%;氮流失主要以硝态氮(16.16%~52.70%)的形态流失,全氮流失通量与径流量呈现出显著正相关关系(R2=0.9826);在菜地中颗粒磷是磷流失的主要形态(83.30%),但在其他土地利用方式中表现不显著.不同土地利用方式下不同形态氮、磷流失存在显著差异,其中菜地应针对强降雨情况下颗粒磷流失的问题采取措施,水田应避免在降雨集中时期施肥;科学施肥和合理地土地利用方式配置是治理小流域农业非点源污染的重要途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号