首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirteen airborne fungal species frequently isolated in composting plants were screened for microbial volatile organic compounds (MVOC), i.e., Aspergillus candidus, A. fumigatus, A. versicolor, Emericella nidulans, Paecilomyces variotii, Penicillium brevicompactum, Penicillium clavigerum, Penicillium crustosum, Penicillium cyclopium, Penicillium expansum, Penicillium glabrum, Penicillium verruculosum, and Tritirachium oryzae. Air samples from pure cultures were sorbed on Tenax GR and analyzed by thermal desorption in combination with GC/MS. Various hydrocarbons of different chemical groups and a large number of terpenes were identified. Some compounds such as 3-methyl-1-butanol and 1-octen-3-ol were produced by a number of species, whereas some volatiles were specific for single species. An inventory of microbial metabolites will allow identification of potential health hazards due to an exposure to fungal propagules and metabolites in the workplace. Moreover, species-specific volatiles may serve as marker compounds for the selective detection of fungal species in indoor domestic and working environments.  相似文献   

2.
A new series of 1, 3-Benzoxazines were synthesized, characterized (1H NMR and 13C NMR) and evaluated for their pesticidal activity. Six new 3-alkyl-3, 4-dihydro-4-methyl-2H-1, 3-benzoxazines (1-6) were prepared by hydroxymethylation of secondary amines with formaldehyde in 65–68% yields. These compounds were screened for there IGR activity against Spodoptera litura and for antifungal fungal activity in vitro against Sclerotium rolfsii ITCC 6181 by poisoned food technique. Insect Growth Regulatory (IGR) activity against Spodoptera litura showed that compound 3-Nonyl-3,4-dihydro-4-methyl-2H-1,3-benzoxazines was most effective as IGR with larval GI50 of 1.863 μ g/Insect. Compounds 3-Octyl-3,4-dihydro-4-methyl-2H-1,3-benzoxazines and 3-Decyl-3,4-dihydro-4-methyl-2H-1,3-benzoxazines were effective IGRs. Antifungal screening revealed that compound 3-Dodecyl-3, 4-dihydro-4-methyl-2H-1,3-benzoxazines, was highly effective against Sclerotium rolfsii with LC50 value 31.7 mg L?1 comparable with commercial fungicide Hexaconazole (LC50 1.27 mg L?1). Also compounds 3-Nonyl-3, 4-dihydro-4-methyl-2H-1,3-benzoxazines and 3-Decyl-3,4-dihydro-4-methyl-2H-1,3-benzoxazines displayed promising fungitoxicity. The results described in this paper are promising and provides new array of synthetic chemicals to be utilized as pesticides.  相似文献   

3.
Lysis of cyanobacteria with volatile organic compounds   总被引:2,自引:0,他引:2  
Ozaki K  Ohta A  Iwata C  Horikawa A  Tsuji K  Ito E  Ikai Y  Harada K 《Chemosphere》2008,71(8):1531-1538
One of bacteria collected from Lake Sagami, Japan, Brevibacillus sp., was found to have a lytic activity of cyanobacteria, but did not produce active compounds. Instead, the co-culturing of Microcystis with the Brevibacillus sp. enhanced the production of two volatile compounds, beta-cyclocitral and 3-methyl-1-butanol, and the former had a characteristic lytic activity. It was confirmed that these volatile compounds were derived from the cyanobacteria themselves. beta-Ionone, geosmin and 2-methylisoborneol derived from cyanobacteria and similar volatile compounds, terpenoids, produced by plants also had a lytic activity. The minimum inhibitory concentration values of the cyanobacterial metabolites were estimated to be higher than those of compounds from plants except for a few compounds. Among them, beta-cyclocitral only produced a characteristic color change of culture broth from green to blue. This color change is similar to the phenomenon observed when a sudden decline in growth of cyanobacteria begins in a natural environment.  相似文献   

4.
Three types of surfactants and related reference compounds containing sulfonate (-SO3Na), sulfate (-OSO3Na) or thioether carboxylate (-S-Cn-COOK) group were photodecomposed in an aqueous heterogeneous dispersion system. The photomineralization to SO42−ions was examined for the surfactants with different chemical structures. The photocatalytic activities of TiO2 and ZnO were compared for the sulfonates of dodecylbenzene sulfonate (DBS) and polystyrene sulfonate (PSS), the sulfates of sodium dodecyl sulfate (SDS), and the potassium salts of S-dodecylthioglycol acid (TGA), S-dodecylthiopropionic acid (TPA) and S-dodecylthiomalic acid (TMA). ZnO catalyst exhibited higher activity in the formation of SO42−ion than TiO2 catalyst.  相似文献   

5.
As part of a study on the oxidation mechanism of heterocyclic aromatic compounds, some aspects of the atmospheric chemistry of several alkyl derivatives of furan have been investigated. The aim of this work was to identify the products of the reactions of chlorine atoms with 2-methylfuran, 2-ethylfuran and 2,5-dimethylfuran. Experiments were performed in two different smog chambers at 296 ± 2 K and 1000 ± 20 mbar of synthetic air. The experimental investigation was carried out using in situ long-path FTIR absorption spectroscopy and both SPME-GC/FID-ECD and SPME-GC/MS as sampling and detection techniques. The major primary products from the addition reaction channel were 4-oxo-2-pentenoyl chloride and formaldehyde for the reactions of 2-methylfuran and 2,5-dimethylfuran; 4-oxo-2-hexenoyl chloride and acetaldehyde for the reaction of 2-ethylfuran and 5-chloro-2(5H)-furanone for the reactions of both 2-methylfuran and 2-ethylfuran. Other minor products were 4-oxo-2-pentenal, 4-oxo-2-hexenal and 3-hexene-2,5-dione for the 2-methylfuran, 2-ethylfuran and 2,5-dimethylfuran reactions, respectively. From the abstraction pathway, HCl, furfural, 2-acetylfuran, 5-methylfurfural, maleic anhydride and 5-hydroxy-2(5H)-furanone were detected. The formation of furfural, 2-acetylfuran and 5-methylfurfural confirmed the H-atom abstraction from the alkyl group of 2-methylfuran, 2-ethylfuran and 2,5-dimethylfuran, respectively. This mechanism was not observed in previous studies with OH and NO3 radicals. A mechanism is proposed to explain the main reaction products observed. The observed products confirm that addition of Cl atoms to the double bond of the alkylfuran is the dominant reaction pathway.  相似文献   

6.
An experiment was carried out to decompose chlorinated dioxins (PCDDs, PCDFs) Chlorobenzenes, NOx and odourous compounds (H2S, CH4S, C2H6S2, C8H8, C2H6S, C2H4O, NH3) simultaneously using a catalyst in the MSW incineration plant. The experiments were conducted at temperatures from 200°C to 400°C and from 3000h−1 to 6000h−1 at space velocity. A catalyst containing V2O5 and WO3 on the basis of TiO2 is used, an oxidizing catalyst of the honeycomb type. The average decomposition efficiencis were 95%, 98%, 92% for PCDDs(48CDDs), PCDFs(48CDFs) and Chlorobenzenes(36CLBs) at a reaction temperature of 350°C and a space velocity of 3000h−1, more than 90% for NOx at a reactiont temperature of 300°C and more than 80% for odourous compounds at the reaction temperature of 300°C and a space velocity of 6000h−1. All those compounds were decomposed successfully with increasing contact time and surface. The rate-determing step was the chemical reaction of catalyst surface.  相似文献   

7.
The molecular composition of PM2.5 (particulate matter with an aerodynamic diameter <2.5 microm) aerosol samples collected during a very warm and dry 2003 summer period at a mixed forest site in Jülich, Germany, was determined by gas chromatography/mass spectrometry in an effort to evaluate photooxidation products of biogenic volatile organic compounds (BVOCs) and other markers for aerosol source characterization. Six major classes of compounds represented by twenty-four individual organic species were identified and measured, comprising tracers for biomass combustion, short-chain acids, fatty acids, sugars/sugar alcohols, and tracers for the photooxidation of isoprene and alpha-/beta-pinene. The tracers for the photooxidation of alpha-/beta-pinene include two compounds, 3-hydroxyglutaric acid and 3-methyl-1,2,3-butanetricarboxylic acid, which have only recently been elucidated. The characteristic molecular distribution of the fatty acids with a strong even/odd number carbon preference indicates a biological origin, while the presence of isoprene and terpene secondary organic aerosol products suggests that the photooxidation of BVOCs contributes to aerosol formation at this site. The sum of the median concentrations of the isoprene oxidation products was 21.2 ng m(-3), while that of the terpene oxidation products was 19.8 ng m(-3). On the other hand, the high median concentration of malic acid (37 ng m(-3)) implies that photooxidation of unsaturated fatty acids should also be considered as an important aerosol source process. In addition, the occurrence of levoglucosan and pyrogallol indicates that the site is affected by biomass combustion. Their median concentrations were 30 and 8.9 ng m(-3), respectively.  相似文献   

8.
Wet and dry atmospheric depositions and soil chemical and microbiological properties were determined in a Mediterranean natural ecosystem of Central Italy near Rome (Castelporziano Estate). The monitoring of depositions permitted us to quantify the exceedances of S and N compounds (expressed as eqH(+)ha(-1)year(-1)) over the critical loads of acidity. Critical loads, i.e. the quantity of a substance which a part of the environment can tolerate without adverse effects occurring, were determined adopting the level 0 methodology following the UN/ECE Convention on Long-range Transboundary Air Pollution. Deposition data were available for the period 1992-1997, and acidity exceedances were referred to the main vegetation types present in the area. Results showed that most part of the Estate has a medium degree of vulnerability to acidification, and the corresponding risk of acidification deriving from the exceedances of atmospheric deposition was rather low. The study of soil chemical and microbiological properties included mainly total soil organic carbon (SOC), microbial biomass-C, biomass-C/SOC, soil respiration, and metabolic quotient (qCO2). Soil organic C metabolism has been discussed on the basis of the results from eight sampling sites.  相似文献   

9.
Over the years several types of biocide-free antifouling paints have entered the market. The prohibition of biocidal antifouling paints in special areas of some European countries such as Sweden, Denmark and Germany has favoured the introduction of these paints to the market.

Several types of biocide-free antifouling paints were subjected to bioassays and selected chemical analysis of leachate and incorporated substances. Both non-eroding coatings (silicones, fibre coats, epoxies, polyurethane, polyvinyl) and eroding coatings (SPCs, ablative) were tested to exclude the presence of active biocides and dangerous compounds. The paints were subjected to the luminescent bacteria test and the cypris larvae settlement assay, the latter delivering information on toxicity as well as on efficacy.

The following chemical analyses of selected compounds of dry-film were performed:

• leaching-rate of organotin compounds from silicones and of nonylphenol and bisphenol A from epoxy and vinyl based coatings,

• concentration and leaching rate of selected organic compounds in polyurethane,

• concentration of heavy metals in eroding coatings.

The results of the bioassays indicated that none of the coatings analysed contained leachable biocides. Nevertheless, some products contained or leached dangerous compounds. The analyses revealed leaching of nonylphenol (up to 74.7 ng/cm2/d after 48 h) and bisphenol A (up to 2.77 ng/cm2/d after 24 h) from epoxy resins used as substitutes for antifouling paints. The heavy metal, zinc, was measured in dry paint film in quantities up to 576 000 ppm in erodable coatings, not incorporated as a biocide but to control the rate of erosion. Values for TBT in silicone elutriates were mostly below the detection limit of 0.005 mg/kg. Values for DBT ranged between <0.005 and 6.28 mg/kg, deriving from catalysts used as curing agents. Some biocide-free paints contained leachable, toxic and dangerous compounds in the dry film, some of which may act as substitutes for biocides or are incorporated as plasticizers or catalysts. Implications to environmental requirements and legislation are discussed.  相似文献   


10.
Lo W  Chua H  Lam KH  Bi SP 《Chemosphere》1999,39(15):135-2736
The removal of lead from aqueous solutions by adsorption on filamentous fungal biomass was studied. Batch biosorption experiments were performed to screen a series of selected fungal strains for effective lead removal at different metal and biomass concentrations. Biosorption of the Pb2+ ions was strongly affected by pH. The fungal biomass exhibited the highest lead adsorption capacity at pH 6. Isotherms for the biosorption of lead on fungal biomass were developed and the equilibrium data fitted well to the Langmuir isotherm model. At pH 6, the maximum lead biosorption capacity of Mucor rouxii estimated with the Langmuir model was 769 mg/g dry biomass, significantly higher than that of most microorganisms. Biomass of Mucor rouxii showed specific selectivity for Pb2+ over other metals ions such as Zn2+. Ni2+ and Cu2+. This fungal strain may be applied to develop potentially cost-effective biosorbent for removing lead from effluents. The technique of scanning electron microscopy coupled with X-ray dispersion analysis shows that Pb2+ has exchanged with K+ and Ca2+ on the cell wall of Mucor rouxii, thereby suggesting ion exchange as one of the dominant mechanisms of metal biosorption for this fungal strain.  相似文献   

11.
Reineke AK  Preiss A  Elend M  Hollender J 《Chemosphere》2008,70(11):2118-2126
N-heterocyclic compounds are known pollutants at tar oil contaminated sites. Here we report the degradation of methyl-, and hydroxy-methyl-substituted quinolines under nitrate-, sulfate- and iron-reducing conditions in microcosms with aquifer material of a former coke manufacturing site. Comparison of degradation potential and rate under different redox conditions revealed highest degradation activities under sulfate-reducing conditions, the prevailing conditions in the field. Metabolites of methylquinolines, with the exception of 2-methylquinolines, were formed in high amounts in the microcosms and could be identified by 1H NMR spectroscopy as 2(1H)-quinolinone analogues. 4-Methyl-, 6-methyl-, and 7-methyl-3,4-dihydro-2(1H)-quinolinone, the hydrogenated metabolites in the degradation of quinoline compounds, were identified by high resolution LC-MS. Metabolites of methylquinolines showed persistence, although for the first time a transformation of 4-methylquinoline and its metabolite 4-methyl-2(1H)-quinolinone is described. The relevance of the identified metabolites is supported by the detection of a broad spectrum of them in groundwater of the field site using LC-NMR technique. LC-NMR allowed the differentiation of isomers and identification without reference compounds. A variety of methylated 2(1H)-quinolinones, as well as methyl-3,4-dihydro-2(1H)-quinolinone isomers were not identified before in groundwater.  相似文献   

12.
Tauno Kuokkanen  Pekka Autio 《Chemosphere》1989,18(9-10):1921-1925
p-Cymene was chlorinated by chlorine in CCl4. The products of the chlorination were separated by distillation and purified by preparative gas chromatography. The structures of chlorocompounds were confirmed by means of their NMR and mass spectra. The distillation gave as the main compounds: (2) 2-chloro-, (4) 2,3-dichloro-, (5) 2,5-dichloro-, (6) 2,3,6-trichloro-, (7) 2,3,5,6-tetrachloro-p-cymenes and as by-products: (8) 2,5,7-trichloro-p-cymene, (9) 2,6-dichloro-1-methyl-4-(1-methylethenyl)benzene (cymenene), and (10) 2,3,6-trichloro-1-methyl-4-(1-methylethenyl)benzene (cymenene).  相似文献   

13.
The present work focuses on the fate of two cancerostatic platinum compounds (CPC), cisplatin and carboplatin, as well as of two inorganic platinum compounds, [PtCl4]2− and [PtCl6]2− in biological wastewater treatment. Laboratory experiments modelling adsorption of these compounds onto activated sludge showed promising specific adsorption coefficients KD and KOC and Freundlich adsorption isotherms. However, the adsorption properties of the investigated substances were differing significantly. Adsorption decreased following the order cisplatin > [PtCl6]2− > [PtCl4]2− > carboplatin. Log KD-values were ranging from 2.5 to 4.3 , log KOC from 3.0 to 4.7.

A pilot membrane bioreactor system (MBR) was installed in a hospital in Vienna and fed with wastewater from the oncologic in-patient treatment ward to investigate CPC-adsorption in a sewage treatment plant. During three monitoring periods Pt-concentrations were measured in the influent (3–250 μg l−1 Pt) and the effluent (2–150 μg l−1 Pt) of the treatment plant using ICP-MS. The monitoring periods (duration 30 d) revealed elimination efficiencies between 51% and 63% based on averaged weekly input–output budgets. The derived log KD-values and log KOC-values ranged from 2.4 to 4.8 and from 2.8 to 5.3, respectively. Species analysis using HPLC-ICP-MS proofed that mainly carboplatin was present as intact drug in the influent and – due to low log KD – in the effluent of the MBR.  相似文献   


14.
Thirty target volatile organic compounds (VOC) were analyzed in personal 48-h exposure samples and residential indoor, residential outdoor and workplace indoor microenvironment samples as a component of EXPOLIS-Helsinki, Finland. Geometric mean residential indoor concentrations were higher than geometric mean residential outdoor concentrations for all target compounds except hexane, which was detected in 40% of residential outdoor samples and 11% of residential indoor samples, respectively. Geometric mean residential indoor concentrations were significantly higher than personal exposure concentrations, which in turn were significantly higher than workplace concentrations for compounds that had strong residential indoor sources (d-limonene, alpha pinene, 3-carene, hexanal, 2-methyl-1-propanol and 1-butanol). 40% of participants in EXPOLIS-Helsinki reported personal exposure to environmental tobacco smoke (ETS). Participants in Helsinki that were exposed to ETS at any time during the 48-h sampling period had significantly higher personal exposures to benzene, toluene, styrene, m,p-xylene, o-xylene, ethylbenzene and trimethylbenzene. Geometric mean ETS-free workplace concentrations were higher than ETS-free personal exposure concentrations for styrene, hexane and cyclohexane. Geometric mean personal exposures of participants not exposed to ETS were approximately equivalent to time weighted ETS-free indoor and workplace concentrations, except for octanal and compounds associated with traffic, which showed higher geometric mean personal exposure concentrations than any microenvironment (o-xylene, ethylbenzene,benzene, undecane, nonane, decane, m,p-xylene, and trimethylbenzene). Considerable differences in personal exposure concentrations and residential levels of compounds with mainly indoor sources suggested differences in product types or the frequency of product use between Helsinki, Germany and the United States.  相似文献   

15.
OH formation from the ozonolysis reactions of seven internal alkenes with 4–6 carbons, styrene, trans-β-methyl styrene, and α-methyl styrene was studied using complementary techniques. A small-ratio relative-rate technique in which small quantities of OH tracers are added to monitor OH formation yields provided the following results: trans-2-butene, 0.64±0.12; cis-2-butene, 0.33±0.05; trans-2-pentene, 0.46±0.08; cis-2-pentene, 0.29±0.06; trans-3-hexene, 0.53±0.08; cis-3-hexene, 0.36±0.07; and 2-methyl-2-butene, 0.98±0.24. For styrene, trans-β-methyl styrene, and α-methyl styrene, OH yields of 0.07±0.04, 0.22±0.09, and 0.23±0.12 were measured, respectively. A second method, which monitors product formation from the OH reaction with 2-butanol was used to derive OH formation yields from 2,3-dimethyl-2-butene, 2-methyl-2-butene and cis-2-pentene, and provided yields of 0.91±0.14, 0.80±0.12, and 0.27±0.07, respectively. The results are briefly discussed in terms of the relationship between structures of these alkenes and OH formation.  相似文献   

16.
A method based on photolysis was developed for the appropriate treatment of organic pollutants in air exhausting from breweries upon wort decoction, and thereby causing smell nuisance. A continuous flow stirred photoreactor was built-up exclusively, allowing OH radicals to react with selected odorous compounds contained in exhaust vapours, such as: 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, 3-methyl-1-butanol, n-hexanal, 2-methylbutyl isobutyrate, 2-undecanone, phenyl acetaldehyde, myrcene, limonene, linalool, humulene, dimethylsulphide, and dimethyltrisulphide. These substances were quantified in brewery broth before and after UV irradiation using high-resolution gas chromatography–mass spectrometry (HRGC–MS). For odour analysis, high-resolution gas chromatography-flame ionisation detection (HRGC-FID) coupled with sensory methods was used. Determined quantum yields of about 10−3 for phenyl acetaldehyde, myrcene, and humulene pointed out that direct photolysis contributed to their decay. Quantum yields of below 10−4 for the other substances indicated that UV irradiation did not contribute significantly to their degradation processes. Hydroxyl radical reaction rate constants and Henry constants of organic compounds were also measured. Substances accompanied with low Henry constants converted rapidly, whereas those with higher ones, relatively slowly. Determined aroma values concluded that after UV–H2O2 treatment, only dimethylsulphide and myrcene remained as important odorous compounds, but in significantly reduced concentrations. The UV–H2O2 treatment of brewery broth has been proved effective to reduce smell-irritating substances formed upon wort decoction.  相似文献   

17.
The potential of fly ash to dechlorinate and destroy PCDD, PCDF and PCB was tested under oxygen deficient conditions in the laboratory. Specifically, two types of fly ash were compared, originating either from a fluidized bed incinerator using Ca(OH)2 spray (FA1), or a stoker incinerator without Ca(OH)2 impact (FA2).

Results from the present study indicate that on FA2 type fly ash, the degradation processes of OCDD, OCDF and D10CB occurred primarily via dechlorination/hydrogenation up to temperature settings of 340 °C. In contrast, FA1 type fly ash was found to effect both dechlorination and destruction of these compounds already at temperature settings of 260 °C.

The dechlorination velocity of PCDD and PCDF did not differ significantly. However, the first dechlorination step of OCDF in the 1,9-position occurred faster compared to the first dechlorination step of OCDD.

The isomer pattern resulting from the dechlorination processes was quite similar on both FA1 and FA2, indicating that differences in alkalinity or elemental composition of the two types of fly ashes do not have a significant influence on the position of dechlorination. PCDD and PCDF dechlorination of the 2,3,7,8-positions was not favoured over dechlorination of the 1,4,6,9-positions on either type of fly ash. In contrast, dechlorination of PCB occurred predominantly on the toxicological relevant 3- and 4-positions.

The dechlorination/destruction processes were completed on both types of fly ash at 380 °C within one hour, which correlates well with results obtained from actual plant operation practices.  相似文献   


18.
An overview of the application of organic geochemistry to the analysis of organic matter on aerosol particles is presented here. This organic matter is analyzed as solvent extractable bitumen/ lipids by gas chromatography-mass spectrometry. The organic geochemical approach assesses the origin, the environmental history and the nature of secondary products of organic matter by using the data derived from specific molecular analyses. Evaluations of production and fluxes, with cross-correlations can thus be made by the application of the same separation and analytical procedures to samples from point source emissions and the ambient atmosphere. This will be illustrated here with typical examples from the ambient atmosphere (aerosol particles) and from emissions of biomass burning (smoke). Organic matter in aerosols is derived from two major sources and is admixed depending on the geographic relief of the air shed. These sources are biogenic detritus (e.g., plant wax, microbes, etc.) and anthropogenic particle emissions (e.g., oils, soot, synthetics, etc.). Both biogenic detritus and some of the anthropogenic particle emissions contain organic materials which have unique and distinguishable compound distribution patterns (C14-C40). Microbial and vascular plant lipids are the dominant biogenic residues and petroleum hydrocarbons, with lesser amounts of the pyrogenic polynuclear aromatic hydrocarbons (PAH) and synthetics (e.g., chlorinated compounds), are the major anthropogenic residues. Biomass combustion is another important primary source of particles injected into the global atmosphere. It contributes many trace substances which are reactants in atmospheric chemistry and soot paniculate matter with adsorbed biomarker compounds, most of which are unknown chemical structures. The injection of natural product organic compounds into smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. Although the molecular composition of organic matter in smoke particles is highly variable, the molecular tracers are generally still source specific. Retene has been utilized as a tracer for conifer smoke in urban aerosols, but is not always detectable. Dehydroabietic acid is generally more concentrated in the atmosphere from the same emission sources. Degradation products from biopolymers (e.g., levoglucosan from cellulose) are also excellent tracers. An overview of the biomarker compositions of biomass smoke types is presented here. Defining additional tracers of thermally-altered and directly-emitted natural products in smoke aids the assessment of the organic matter type and input from biomass combustion to aerosols. The precursor to product approach of compound characterization by organic geochemistry can be applied successfully to provide tracers for studying the chemistry and dispersion of ambient aerosols and smoke plumes. Presented at the 6th FECS Conference on Chemistry and the Environment, Atmospheric Chemistry and Air Pollution, August 26–28, 1998, Copenhagen.  相似文献   

19.
Goal, Scope and Background Atmospheric sampling (gas and particles) of 5 phenols (phenol, m-cresol, p-cresol, o-cresol, pentachlorophenol) and 15 nitrophenols (3-methyl-2-nitrophenol, 3-nitrophenol, 4-methyl-2-nitrophenol, 5-methyl-2-nitrophenol, 2-methyl-3nitrophenol, 3-methyl-4-nitrophenol, 2,6-dinitrophenol, bromoxynil, 2,5-dinitrophenol, 2,6-dinitro-p-cresol, 2,4-dinitrophenol, ioxynil, DNOC, 3,4-dinitrophenol, dinoseb) on XAD-2 resin (20 gr) and glass fibre filters, respectively, were performed in 2002 by using 'Digitel DA80' high volume samplers. These measurements were undertaken in order to show spatial and geographical variations of concentrations and the role of traffic in the emissions of these compounds to the atmosphere. Methods Sampling were performed in Strasbourg (eastern France), in its vicinity (Schiltigheim) and in Erstein. Sites were chosen to be representative of urban (Strasbourg), suburban (Schiltigheim) and rural (Erstein) conditions. Field campaigns were undertaken simultaneously in urban and suburban sites during all the seasons during 4 hours at a flow rate of 60 m3.h-1, which gives a total of 240 m3 of air per sample. Period of sampling varied between 06h00 to 10h00, 11h00 to 15h00 and 18h00 to 22h00 in order to evaluate a variation of concentration during automobile traffic between urban, suburban and rural areas. Gas and particle samples were separately Soxhlet extracted for 12 h with a mixture of CH2Cl2 / n-hexane (50:50 v/v), concentrated to about 1 mL with a rotary evaporated and finally dried under nitrogen. Dry extracts were dissolved in 1 mL of CH3CN. Before analysis, extracts were sylilated by using MTBSTFA. Analysis was performed by GC/MSD in the SIM mode. Results and Discussion Partitioning of phenolic compounds between gas and particle phases seems to be mainly correlated with vapour pressure. Among phenolic compounds analysed, phenol, p-cresol, pentachlorophenol and 2.4-dinitrophenol were detected in all samples and emissions from traffic seems to be the major source for the presence of these compounds to the atmosphere. No increase of concentrations in autumn tend to confirm this hypothesis since, with the use of domestic heating in colder months, increases of PAHs concentrations were observed and these compounds are known to be emitted by all combustion processes. Pentachlorophenol is a special case since this molecule is only used as wood preservative. Its presence in all atmospheric samples, whatever the locations and the period of time is the consequence of its persistence. Conclusions and Perspectives These measurements demonstrate that phenols and nitrophenols are emitted to the atmosphere and further measurements, in order to confirm their sources, their behaviour and their potential impact to the air quality and to human health should be undertaken especially since the literature collected is relatively old. Concentrations of pentachlorophenol measured are very low and, due to its toxicity, further investigations should be undertaken. - * The basis of this peer-reviewed paper is a presentation at the 9th FECS Conference on 'Chemistry and Environment', 29 August to 1 September 2004, Bordeaux, France.  相似文献   

20.
Tong SP  Liu WP  Leng WH  Zhang QQ 《Chemosphere》2003,50(10):1359-1364
The characteristics of different types of MnO2 catalytic ozonation of sulfosalicylic acid (SSal) and propionic acid (PPA) have been investigated in this paper. The experimental results show the dependence of catalytic activity of MnO2 on organic compounds and the pH of solutions, but it is independent on the type of MnO2. For example, three types of MnO2 have not any catalytic activity when ozonation of PPA under the condition of this experiment. All MnO2 catalytic ozonation of SSal at pH=1.0 have a greater total organic carbon removal than ozonation alone has, however, at pH=6.8 and 8.5, catalytic efficiency is not observed. Furthermore, the batch experimental results indicate that there are no direct relationship between the activity of metal oxide catalytic decomposition of ozone and that of its catalytic degradation of organic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号