首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously we reported that there are subfamily differences in drone production in queenless honey bee colonies, but these biases are not always explained by subfamily differences in oviposition behavior. Here we determine whether these puzzling results are best explained by either inadequate sampling of the laying worker population or reproductive conflict among workers resulting in differential treatment of eggs and larvae. Using colonies composed of workers from electrophoretically distinct subfamilies, we collected samples of adult bees engaged in the following behavior: true egg laying, false egg laying, indeterminate egg laying, egg cannibalism, or nursing (contact with larvae). We also collected samples of drone brood at four different ages: 0 to 2.5-h-old eggs, 0 to 24-h-old eggs, 3 to 8-day-old larvae, and 9 to 14-day-old larvae and pupae. Allozyme analyses revealed significant subfamily differences in the likelihood of exhibiting egg laying, egg cannibalism, and nursing behavior, as well as significant subfamily differences in drone production. There were no subfamily differences among the different types of laying workers collected from each colony, suggesting that discrepancies between subfamily biases in egg-laying behavior and drone production are not due to inadequate sampling of the laying worker population. Subfamily biases in drone brood production within a colony changed significantly with brood age. Laying workers had significantly more developed ovaries than either egg cannibals or nurses, establishing a physiological correlate for the observed behavioral genetic differences. These results suggest there is reproductive conflict among subfamilies and individuals within queenless colonies of honey bees. The implications of these results for the evolution of reproductive conflict, in both queenright and queenless contexts, are discussed.  相似文献   

2.
Variability exists among worker honey bees for components of division of labor. These components are of two types, those that affect foraging behavior and those that affect life-history characteristics of workers. Variable foraging behavior components are: the probability that foraging workers collect (1) pollen only; (2) nectar only; and (3) pollen and nectar on the same trip. Life history components are: (1) the age the workers initiate foraging behavior; (2) the length of the foraging life of a worker; and (3) worker length of life. We show how these components may interact to change the social organization of honey bee colonies and the lifetime foraging productivity of individual workers. Selection acting on foraging behavior components may result in changes in the proportion of workers collecting pollen and nectar. Selection acting on life-history components may affect the size of the foraging population and the distribution of workers between within nest and foraging activities. We suggest that these components define possible sociogenic pathways through which colony-level natural selection can change social organization. These pathways may be analogous to developmental pathways in the morphogenesis of individual organisms because small changes in behavioral or life history components of individual workers may lead to major changes in the organizational structure of colonies. Correspondence to: R.E. Page, Jr.  相似文献   

3.
We conducted experiments designed to examine the distribution of foraging honey bees (Apis mellifera) in suburban environments with rich floras and to compare spatial patterns of foraging sites used by colonies located in the same environment. The patterns we observed in resource visitation suggest a reduced role of the recruitment system as part of the overall colony foraging strategy in habitats with abundant, small patches of flowers. We simultaneously sampled recruitment dances of bees inside observation hives in two colonies over 4 days in Miami, Florida (1989) and from two other colonies over five days in Riverside, California (1991). Information encoded in the dance was used to determine the distance and direction that bees flew from the hive for pollen and nectar and to construct foraging maps for each colony. The foraging maps showed that bees from the two colonies in each location usually foraged at different sites, but occasionally they visited the same patches of flowers. Each colony shifted foraging effort among sites on different days. In both locations, the mean flight distances differed between colonies and among days within colonies. The flight distances observed in our study are generally shorter than those reported in a similar study conducted in a temperate deciduous forest where resources were less dense and floral patches were smaller.  相似文献   

4.
Carpenter bees (Xylocopa spp.) act as primary nectar thieves in rabbiteye blueberry (Vaccinium ashei Reade), piercing corollas laterally to imbibe nectar at basal nectaries. Honey bees (Apis mellifera L) learn to visit these perforations and thus become secondary nectar thieves. We tested the hypothesis that honey bees make this behavioral switch in response to an energetic advantage realized by nectar-robbing flower visits. Nectar volume and sugar quantity were higher in intact than perforated flowers, but bees (robbers) visiting perforated flowers were able to extract a higher percentage of available nectar and sugar so that absolute amount of sugar (mg) removed by one bee visit is the same for each flower type. However, because perforated flowers facilitate higher rates of bee flower visitation and the same or higher rates of nectar ingestion, they are rendered more profitable than intact flowers in temporal terms. Accordingly, net energy (J) gain per second flower handling time was higher for robbers on most days sampled. We conclude that the majority evidence indicates an energetic advantage for honey bees that engage in secondary nectar thievery in V. ashei.Communicated by R. Page  相似文献   

5.
Workers in social groups of honeybees (Apis mellifera L.) synchronize their individual free-running circadian rhythms to an overall group rhythm. By monitoring the activity of bees by recording the oxygen consumption and intragroup temperature, it is shown that the rhythm coordination is in part achieved by temperature fluctuations as an intragroup Zeitgeber. Trophallaxis was shown to have only a minor (if any) effect on circadian rhythm synchronization. A model incorporating a feed back loop between temperature and activity can plausibly explain the observed synchronization of individual rhythms in social groups as a self-organization phenomenon. Correspondence to: R.F.A. Moritz  相似文献   

6.
Tremble dances are sometimes performed by returning forager bees instead of waggle dances. Recent studies by Seeley (1992) and Kirchner (1993) have revealed that this behaviour is part of the recruitment communication system of bees. The ultimate cause of tremble dances is, according to Seeley (1992), an imbalance between the nectar intake rate and the nectar processing capacity of the colony. This imbalance is correlated with a long initial search time of returning foragers to find bees to unload them. However, it remained unclear whether a long search time is the direct proximate cause of tremble dancing. Here we report that a variety of experimental conditions can elicit tremble dances. All of them have in common that the total search time that foragers spend searching for unloaders, until they are fully unloaded, is prolonged. This finding supports and extends the hypothesis that a long search time is the proximate cause of tremble dancing. The results also confirm the previous reports of Lindauer (1948) and others about factors eliciting tremble dancing.  相似文献   

7.
Honeybee queens (Apis mellifera) show extreme levels of polyandry, but the evolutionary mechanisms underlying this behaviour are still unclear. The sperm-limitation hypothesis, which assumes that high levels of polyandry are essential to get a lifetime sperm supply for large and long-lived colonies, has been widely disregarded for honeybees because the semen of a single male is, in principle, sufficient to fill the spermatheca of a queen. However, the inefficient post-mating sperm transfer from the queens lateral oviducts into the spermatheca requires multiple matings to ensure an adequate spermatheca filling. Males of the African honeybee subspecies A. m. capensis have fewer sperm than males of the European subspecies A. m. carnica. Thus, given that sperm limitation is a cause for the evolution of multiple mating in A. mellifera, we would expect A. m. capensis queens to have higher mating frequencies than A. m. carnica. Here we show that A. m. capensis queens indeed exhibit significantly higher mating frequencies than queens of A. m. carnica, both in their native ranges and in an experiment on a North Sea island under the same environmental conditions. We conclude that honeybee queens try to achieve a minimum number of matings on their mating flights to ensure a sufficient lifetime sperm supply. It thus seems premature to reject the sperm-limitation hypothesis as a concept explaining the evolution of extreme polyandry in honeybees.Communicated by R.E. Page  相似文献   

8.
In queen-right honeybee colonies workers detect and eat the vast majority of worker-laid eggs, a behaviour known as worker policing. However, if a colony becomes permanently queen-less then up to 25% of the worker population develops their ovaries and lay eggs, which are normally reared into a final batch of males. Ovary development in workers is accompanied by changes in the chemical secretion of the Dufour's gland with the production of queen-like esters. We show that ester production increases with the period that the colony is queen-less. The increased ester production also corresponds to an increase in persistence of worker-laid eggs in queen-right colonies, since the esters somehow mask the eggs true identity. However, in a rare queen-less colony phenotype, workers always eat eggs indiscriminately. We found that the egg-laying workers in these colonies were unusual in that they were unable to produce esters. This apparently maladaptive egg eating behaviour is also seen in queen-less colonies prior to the appearance of egg-laying workers, a period when esters are also absent. However, the indiscriminate egg eating behaviour stops with the appearance of ester-producing egg-laying workers. These observations suggest that esters are providing some contextual information, which affects the egg eating behaviour of the workers.  相似文献   

9.
The pollen hoarding syndrome consists of a large suite of correlated traits in honey bees that may have played an important role in colony organization and consequently the social evolution of honey bees. The syndrome was first discovered in two strains that have been artificially selected for high and low pollen hoarding. These selected strains are used here to further investigate the phenotypic and genetic links between two central aspects of the pollen hoarding syndrome: sucrose responsiveness and pollen hoarding. Sons of hybrid queen offspring of these two strains were tested for sucrose responsiveness and used to produce colonies with either a highly responsive or an unresponsive father. These two colony groups differed significantly in the amount of pollen stored on brood combs and with regard to their relationship between brood and pollen amounts. Additionally, four quantitative trait loci (QTL) for pollen hoarding behavior were assessed for their effect on sucrose responsiveness. Drone offspring of two hybrid queens were phenotyped for responsiveness and genotyped at marker loci for these QTL, identifying some pleiotropic effects of the QTL with significant QTL interactions. Both experiments thus provided corroborating evidence that the distinct traits of the pollen hoarding syndrome are mechanistically and genetically linked and that these links are complex and dependent on background genotype. The study demonstrates genetic worker–drone correlations within the context of the pollen hoarding syndrome and establishes that an indirect selection response connects pollen hoarding and sucrose responsiveness, regardless of which trait is directly selected.  相似文献   

10.
Summary Three experiments were performed to determine whether brood care in honey bee colonies is influenced by colony genetic structure and by social context. In experiment 1, there were significant genotypic biases in the relative likelihood of rearing queens or workers, based on observations of individually labeled workers of known age belonging to two visually distinguishable subfamilies. In experiment 2, no genotypic biases in the relative likelihood of rearing drones or workers was detected, in the same colonies that were used in experiment 1. In experiment 3, there again were significant genotypic differences in the likelihood of rearing queens or workers, based on electrophoretic analyses of workers from a set of colonies with allozyme subfamily markers. There also was an overall significant trend for colonies to show greater subfamily differences in queen rearing when the queens were sisters (half- and super-sisters) rather than unrelated, but these differences were not consistent from trial to trial for some colonies. Results of experiments 1 and 3 demonstrate genotypic differences in queen rearing, which has been reported previously based on more limited behavioral observations. Results from all three experiments suggest that genotypic differences in brood care are influenced by social context and may be more pronounced when workers have a theoretical opportunity to practice nepotism. Finally, we failed to detect persistent interindividual differences in bees from either subfamily in the tendency to rear queen brood, using two different statistical tests. This indicates that the probability of queen rearing was influenced by genotypic differences but not by the effect of prior queen-rearing experience. These results suggest that subfamilies within a colony can specialize on a particular task, such as queen rearing, without individual workers performing that task for extended periods of time.  相似文献   

11.
There have been numerous reports of genetic influences on division of labor in honey bee colonies, but the effects of worker genotypic diversity on colony behavior are unclear. We analyzed the effects of worker genotypic diversity on the phenotypes of honey bee colonies during a critical phase of colony development, the nest initiation phase. Five groups of colonies were studied (n = 5–11 per group); four groups had relatively low genotypic diversity compared to the fifth group. Colonies were derived from queens that were instrumentally inseminated with the semen of four different drones according to one of the following mating schemes: group A, 4 A-source drones; group B, 4 B-source drones; group C, 4 C-source drones; group D, 4 D-source drones; and group E, 1 drone of each of the A-D drone sources. There were significant differences between colonies in groups A-D for 8 out of 19 colony traits. Because the queens in all of these colonies were super sisters, the observed differences between groups were primarily a consequence of differences in worker genotypes. There were very few differences (2 out of 19 traits) between colonies with high worker genotypic diversity (group E) and those with low diversity (groups A-D combined). This is because colonies with greater diversity tended to have phenotypes that were average relative to colonies with low genotypic diversity. We hypothesize that the averaging effect of genotypic variability on colony phenotypes may have selective advantages, making colonies less likely to fail because of inappropriate colony responses to changing environmental conditions.  相似文献   

12.
Honey bee foragers as sensory units of their colonies   总被引:5,自引:0,他引:5  
Forager honey bees function not only as gatherers of food for their colonies, but also as sensory units shaped by natural selection to gather information regarding the location and profitability of forage sites. They transmit this information to colony members by means of waggle dances. To investigate the way bees transduce the stimulus of nectar-source profitability into the response of number of waggle runs, I performed experiments in which bees were stimulated with a sucrose solution feeder of known profitability and their dance responses were videorecorded. The results suggest that several attributes of this transduction process are adaptations to enhance a bee's effectiveness in reporting on a forage site. (1) Bees register the profitability of a nectar source not by sensing the energy gain per foraging trip or the rate of energy gain per trip, but evidently by sensing the energetic efficiency of their foraging. Perhaps this criterion of nectar-source profitability has been favored by natural selection because the foraging gains of honey bees are typically limited by energy expenditure rather than time availability. (2) There is a linear relationship between the stimulus of energetic efficiency of foraging and the response of number of waggle runs per dance. Such a simple stimulus-response function appears adequate because the range of suprathreshold stimuli (max/min ratio of about 10) is far smaller than the range of responses (max/min ratio of about 100). Although all bees show a linear stimulus-response function, there are large differences among individuals in both the response threshold and the slope of the stimulus-response function. This variation gives the colony a broader dynamic range in responding to food sources than if all bees had identical thresholds of dance response. (3) There is little or no adaptation in the dance response to a strong stimulus (tonic response). Thus each dancing bee reports on the current level of profitability of her forage site rather than the changes in its profitability. This seems appropriate since presumably it is the current profitability of a forage site, not the change in its profitability, which determines a site's attractiveness to other bees. (4) The level of forage-site quality that is the threshold for dancing is tuned by the bees in relation to forage availability. Bees operate with a lower dance threshold when forage is sparse than when it is abundant. Thus a colony utilizes input about a wide range of forage sites when food is scarce, but filters out input about low-reward sites when food is plentiful. (5) A dancing bee does not present her information in one spot within the hive but instead distributes it over much of the dance floor. Consequently, the dances for different forage sites are mixed together on the dance floor. This helps each bee following the dances to take a random sample of the dance information, which is appropriate for the foraging strategy of a honey bee colony since it is evidently designed to allocate foragers among forage sites in proportion to their profitability.  相似文献   

13.
The impact of a parasitic infestation may be influenced by nutritional state, in both individuals and colonies. This study examined the interaction between pollen storage and the effects of an infestation by the mite, Varroa jacobsoni Oudemans, in colonies of the honey bee, Apis mellifera L. We manipulated the pollen storage and mite infestation levels of colonies, and measured pollen foraging and brood rearing. Increased pollen stores decreased both the number of pollen foragers and pollen load size, while initially at least foragers from colonies with moderate infestations carried smaller pollen loads than those from lightly infested colonies. Over the course of the experiment, all colonies significantly increased pollen-foraging rates and pollen consumption, which was presumably a seasonal effect. Lightly infested colonies exhibited a larger increase in pollen forager number than moderately infested colonies, suggesting that more intense mite infestations compromised forager recruitment. Brood production was not affected by the addition of pollen, but moderately infested colonies were rearing significantly less brood by the end of the experiment than lightly infested colonies. Furthermore, the efficiency with which colonies converted pollen to brood decreased as the pollen storage level decreased and the infestation level increased. The results of this study may indicate that honey bee colonies adaptively alter brood-production efficiency in response to parasitic infestations and seasonal changes. Received: 3 May 1999 / Received in revised form: 14 September 1999 / Accepted: 25 September 1999  相似文献   

14.
There is a genetic component to plasticity in age polyethism in honey bee colonies, such that workers of some genotypes become precocious foragers more readily than do workers of other genotypes, in colonies lacking older bees. Using colonies composed of workers from two identifiable genotype groups, we determined that intracolony differences in the likelihood of becoming a precocious forager are a consequence of differences in rates of behavioral development that are also evident under conditions leading to normal development. An alternative hypothesis, that differences in the likelihood of becoming a precocious forager are due to differences in general sensitivity to altered colony conditions, was not supported. In three out of three trials, workers from the genotype group that was more likely to exhibit precocious foraging in single cohort colonies also foraged at relatively younger ages in colonies in which workers exhibited normal behavioral development. In contrast, in three out of three trials, workers from the genotype group that was more likely to exhibit precocious foraging in single-cohort colonies did not show disproportionately more overaged nursing in colonies in which workers exhibited delayed development. These results indicate that genotypic differences in plasticity in age-related division of labor are based on genotypic differences in rates of behavioral development.  相似文献   

15.
Summary Honey bee workers are able to nurse or to destroy and thus to recognize the capped queen cells containing a pupa. Fatty acid esters, especially methyl oleate, methyl palmitate and ethyl oleate were found in significant amounts on the queen pupal cuticle. Methyl oleate, the major component, along with smaller amounts of methyl linoleate and methyl linolenate, were involved in the recognition of queen cells by workers. In natural conditions of the colony, queen cells containing a paraffin pupal lure with methyl oleate were accepted 5.9 days by workers, releasing about 1.8 queen pupa equivalents during that period, when control cells (without ester) were kept only 2.1 days. Although these esters are non specific to honey bees, they are of great importance in social regulation of the honey bee colony.  相似文献   

16.
Summary The tremble dance is a behavior sometimes performed by honeybee foragers returning to the hive. The biological significance of this behavior was unclear until Seeley (1992) demonstrated that tremble dances occur mainly when a colony's nectar influx is so high that the foragers must undertake lenghty searches in order to find food storers to unload their nectar. He suggested that tremble dancing has the effect of stimulating additional bees to function as food-storers, thereby raising the colony's capacity for processing nectar. Here I describe vibrational signals emitted by the tremble dancers. Simulation experiments with artificial tremble dance sounds revealed that these sounds inhibited dancing and reduced recruitment to feeding sites. The results suggest that the tremble dance is a negative feedback system counterbalancing the positive feedback of recruitment by waggle dances. Thus, the tremble dance seems to affect not only the colony's nectar processing rate, but also its nectar intake rate.  相似文献   

17.
With very rare exceptions, queenright worker honeybees (Apis mellifera L.) forego personal reproduction and suppress reproduction by other workers, preferring to rear the queens sons. This is in stark contrast to colonies that have lost their queen and have failed to rear a replacement. Under these conditions workers activate their ovaries and lay many eggs that develop parthenogenetically into a final brood of males (drones) before the colony perishes. Interestingly, not all workers contribute equally to this final generation of drones in queenless colonies. Some subfamilies (workers that share the same father) contribute a disproportionately greater number of offspring than other subfamilies. Here we explore some of the mechanisms behind this reproductive competition among subfamilies. We determined the relative contribution of different subfamilies present in colonies to laying workers, eggs, larvae and pupae by genotyping samples of all life stages using a total of eight microsatellite loci. Our colonies were headed by free-mated queens and comprised 8–17 subfamilies and therefore differed significantly from colonies used in an earlier study investigating the same phenomena where colonies comprised an artificially low number of subfamilies. We show that, first, subfamilies vary in the speed with which they activate their ovaries after queen-loss and, second, that the survival of eggs to the larval stage is unequal among subfamilies suggesting that some subfamilies lay eggs that are more acceptable than others. However, there is no statistically significant difference among subfamilies in the survival of larvae to pupae, indicating that ovary activation and egg survival are the critical components to reproductive competition among subfamilies of queenless honeybee workers.Communicated by R. Page  相似文献   

18.
In most social insect colonies, workers do not attempt to lay eggs in the presence of a queen. However, in the honey bee (Apis mellifera), a rare phenotype occurs in which workers activate their ovaries and lay large numbers of male eggs despite the presence of a fecund queen. We examined the proximate mechanisms by which this ‘anarchistic’ behaviour is expressed. We tested the effects of brood and queen pheromones on retinue attraction and worker ovary activation using caged worker bees. We found no difference between the anarchistic and wild type queen pheromones in the retinue response elicited in either wild type or anarchistic workers. Further, we found that anarchistic queens produce a pheromone blend that is as effective at inhibiting ovary activation as the wild type queen pheromone. However, anarchistic workers are less inhibited by queen pheromones than their wild type counterparts, in a dose-dependent manner. These results show that the anarchistic phenomenon is not due to changes in the production of queen pheromones, but rather is due in part to a shift in the worker response to these queen-produced signals. In addition, we demonstrate the dose-dependent nature of the effect of queen pheromones on honey bee worker ovary activation.  相似文献   

19.
Resin is an important building material in the nests of honeybees, but little is known about how it is handled within the nest and how its collection is controlled. We studied the functional organization of resin work to better understand how a colony adaptively controls its intake of resin. Two hypotheses have been proposed for how resin collectors stay informed of the need for additional resin: (1) the unloading difficulty hypothesis (resin need is sensed indirectly by the unloading delay) and (2) the caulking activity hypothesis (resin need is sensed directly while engaged in using resin). A falsifiable prediction of the latter hypothesis, but not of the former, is that resin collectors not only gather resin outside the hive but also regularly handle resin inside the hive (taking it from other bees and using it to caulk crevices). Consistent with this prediction are our findings that in the resin sector of a colony’s economy, unlike in the pollen, nectar, and water sectors, there is no strict division of labor between the collectors and the users of a material. Over the course of a day, bees seen collecting resin were also commonly seen using resin. Moreover, we found that the unloading locations of resin collectors are unlike those of water and nectar collectors, being deep inside the hive (at the sites of resin use) rather than at the hive entrance. This arrangement facilitates the engagement in resin use by resin collectors. We conclude that the caulking activity hypothesis is well-supported, but that the unloading difficulty hypothesis also remains viable, for we found that resin collectors experience variable delays in getting rid of their loads, from less than 15 min to more than an hour, consistent with this hypothesis. The stage is now set for experimental tests of these two hypotheses. Both may be correct, which if true will imply that social insect workers, despite their small brains, can acquire and integrate information from multiple sources to improve their knowledge of conditions within the colony.  相似文献   

20.
This study considers the mystery of how the scout bees in a honey bee swarm know when they have completed their group decision making regarding the swarm's new nest site. More specifically, we investigated how the scouts sense when it is appropriate for them to begin producing the worker piping signals that stimulate their swarm-mates to prepare for the flight to their new home. We tested two hypotheses: "consensus sensing," the scouts noting when all the bees performing waggle dances are advertising just one site; and "quorum sensing," the scouts noting when one site is being visited by a sufficiently large number of scouts. Our test involved monitoring four swarms as they discovered, recruited to, and chose between two nest boxes and their scouts started producing piping signals. We found that a consensus among the dancers was neither necessary nor sufficient for the start of worker piping, which indicates that the consensus sensing hypothesis is false. We also found that a buildup of 10–15 or more bees at one of the nest boxes was consistently associated with the start of worker piping, which indicates that the quorum sensing hypothesis may be true. In considering why the scout bees rely on reaching a quorum rather than a consensus as their cue of when to start preparing for liftoff, we suggest that quorum sensing may provide a better balance between accuracy and speed in decision making. In short, the bees appear to begin preparations for liftoff as soon as enough of the scout bees, but not all of them, have approved of one of the potential nest sites.
Thomas D. SeeleyEmail: Fax: +1-607-2544308
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号