共查询到20条相似文献,搜索用时 87 毫秒
1.
南京大气PM2.5中碳组分观测分析 总被引:16,自引:1,他引:16
为了解南京地区大气细颗粒物及化学成分在灰霾期间的污染水平及可能来源,于2007年6月至2008年5月,采集PM2.5样品,并测定了其中有机碳(OC)和元素碳(EC)的含量.并考察了有机碳和元素碳的季节变化特征,比较分析了南京地区灰霾与非灰霾期间含碳气溶胶的污染特征.结果显示,南京大气中PM2.5、OC和EC浓度变化范围分别是12.1~287.1,2.6~47.0和1.0~33.6mg/m3,其中夏季PM2.5(109.6mg/m3)和OC(20.8mg/m3)的值在四个季度中最高,呈现出夏季>秋季>冬季>春季的季节变化特征;EC则具有秋季>春季>冬季>夏季的季节变化特征. 霾日的OC、EC、总碳含量(TC)浓度及OC与EC比值分别是非霾日的2.0、1.8、1.9和1.7倍.后向轨迹分析表明,在有利的天气背景下,具有丰富水汽和污染物的混合气团最易使南京产生霾天气. 相似文献
2.
为探究临沂市冬季环境空气PM2.5中水溶性离子污染特征及来源,于2016年12月11日—2017年1月9日在临沂大学、兰山区政府、高新区翠湖嘉园、汤庄办事处、河东区政府、临沂开发区6个采样点开展样品采集.结果表明:①采样期间全市ρ(PM2.5)日均值的平均值为144.86 μg/m3,ρ(PM2.5)日均值在2016年12月20日和2017年1月4日出现峰值,分别为304.46和341.65 μg/m3.②水溶性离子日均质量浓度大小顺序依次为ρ(NO3-)> ρ(SO42-)> ρ(NH4+)> ρ(Cl-)> ρ(K+)> ρ(Ca2+)> ρ(Na+)> ρ(F-)> ρ(Mg2+)> ρ(NO2-),其中,在PM2.5中w(NO3-)、w(SO42-)、w(NH4+)分别为22.33%、16.57%、13.62%,说明NO3-、SO42-和NH4+是临沂市PM2.5的主要组成部分.③临沂市污染天和非污染天ρ(PM2.5)日均值分别为164.00和56.86 μg/m3.随污染水平增加,PM2.5中w(NO3-)明显增高,w(SO42-)和w(NH4+)基本不变,说明w(NO3-)的增加导致ρ(PM2.5)的升高.污染天和非污染天的NOR(氮氧化率)分别为0.28和0.11,SOR(硫氧化率)分别为0.34和0.28,说明污染越重,NOR和SOR越高,并且NOx的气-粒转化速率较SO2慢.污染天ρ(Cl-)和ρ(K+)分别为7.22和1.77 μg/m3,分别是非污染天的2.5和3.0倍.④采样期间非污染天和污染天的N/S〔ρ(NO3-)/ρ(SO42-)〕分别为0.85和1.39,说明非污染天时固定源对PM2.5的贡献相对较大,而污染天时移动源对PM2.5的贡献相对较大.⑤通过PMF模型法解析出3个因子.因子1对PM2.5中水溶性离子的贡献率为56.13%,代表二次源和生物质燃烧源;因子2的贡献率为25.22%,代表工业源和垃圾焚烧源;因子3的贡献率为18.65%,代表扬尘源.研究显示,临沂市冬季PM2.5污染严重,水溶性离子来源复杂,应采取多源控制的污染防治对策. 相似文献
3.
《环境科学与技术》2015,(6)
2013年12月1-9日利用常规气象观测资料和NCEP再分析资料,结合气态污染物和颗粒物化学组分外场观测,对2013年1月11-16日南京冬季一次持续重霾天气过程与颗粒物污染特征进行分析。结果表明,此次重霾过程,南京地面相对湿度较高且伴随静小风,近地层的水平输送条件较差,污染物不易扩散;天气环流形势稳定,地面受高压控制且处于均压场内,垂直方向存在明显逆温,为霾的形成提供有利的气象条件;大气PM10和PM2.5的小时最大浓度分别高达433μg/m3和325μg/m3,水平能见度低于1 km。PM2.5平均占PM10的72.4%,PM1平均占PM2.5的50.6%,颗粒物以细粒子为主,且PM2.5对能见度的影响随相对湿度的增加而减弱。水溶性离子SO42-、NO3-、NH4+是PM2.5中的主要成分,其占总浓度61%,同时SO2转化率(SOR)和NO2转化率(NOR)分别为0.35和0.31,表明霾天更有利于二次气溶胶转化。此外,PM2.5中无机盐的主要存在形式有(NH4)2SO4、NH4NO3以及少量NH4Cl。水溶性离子浓度与能见度呈现明显负相关性,说明PM2.5中水溶性离子对能见度的降低起主要作用。 相似文献
4.
5.
南京市大气中PM10、PM2.5日污染特征 总被引:16,自引:0,他引:16
于2001年秋季(11月)、夏季(8月)对南京市五大典型功能区的大气颗粒物(PMl0、PM2.5)进行了监测研究。结果发现,南京市颗粒物污染严重,PMl0、PM2.5的超标率分别达到了65%、85%;颗粒物浓度季节变化大,11月污染物浓度明显大于8月,PMl0、PM2.5分别相差l68.44μg/m^3、190.1μg/m^3;PMl0中PM2.5比重较大,大约为75.9%,对人体健康潜在危害大。 相似文献
6.
7.
在连续2年进行累积1周同步采样的基础上,对北京市城区和居住区2个采样点环境空气中PM2.5的浓度及其时间变化特征进行了分析.PM2.5周平均浓度的变化范围为37~346靏/m3,年均浓度接近或超过PM10的二级年均标准.PM2.5浓度具有明显的季节变化特征,即冬季最高,夏季最低.2个采样点PM2.5浓度的周变化与季节变化均相似.PM2.5与PM10、TSP的比值均在冬季最高,春季最低,反映采暖燃烧源对细颗粒物的贡献较大,而沙尘天气对粗颗粒物的贡献较大;其年均值分别为55%和29%. 相似文献
8.
目的了解铜陵市颗粒物中的元素特征和主要来源。方法选择2014年冬季和春季的部分时段,在铜陵市国家环境空气监测站——新民污水处理厂(工业区)采集PM_(10)和PM_(2.5)样品,使用X射线荧光光谱(XRF)法进行元素的定量测试。采样期间,冬季的空气质量以良和中、轻度污染为主;春季以中度和重度污染天气为主,采样期间出现了明显的重污染。结果 PM_(2.5)和PM_(10)中S和Si元素的浓度均比其余元素高,P和Cu元素的浓度远低于其余元素。空气污染的指数越高,Fe、Mg、Al、Si则更易富集在PM_(10)上,而K、Cu、Na、Cl、S元素更易富集在PM_(2.5)上,Ca和P这两种元素在PM_(10)和PM_(2.5)上的富集程度相当。空气颗粒物中,富集最多的元素是K,其次为Fe和Mg;元素Cu、K、Cl在PM_(10)中的富集程度要高于PM_(2.5)。结论扬尘(包括地面扬尘和建筑尘)是PM_(10)的最大来源,其次是开采矿山和燃烧生物质,燃煤、炼铜等工企业排放贡献最小;对于PM_(2.5)而言,最大的来源是风沙、扬尘和开采矿山,其次是燃煤、燃烧生物质和其他的工企业排放,炼铜的贡献最小。 相似文献
9.
2015年9月至2016年8月在贵阳市区设置4个采样点位采集PM_(2.5)样品,分别采用原子吸收分光光度计、原子荧光光度计和汞分析仪测定PM_(2.5)中8种致癌有害元素的质量浓度,研究其时空变化特征、富集程度及季节变化规律,并运用富集因子法对其可能来源进行解析。结果表明,Pb、Cr(Ⅵ)、As、Cd和Hg 5种致癌有害元素标准化后的浓度大小排列顺序可能为Cr(Ⅵ)AsHgCdPb,其中As、Cr年均值浓度超过我国《环境空气质量标准》。除Co外,其它7种致癌有害元素的富集因子EF10,且Cd、Hg、Pb和Se 4种元素有显著富集,可能主要来源于燃煤和机动车尾气的排放,冬季富集因子高于其它季节。 相似文献
10.
11.
12.
2008年4月在上海城区(徐家汇)和浙江临安大气污染本底站2个地区同步采集PM2.5样品,利用场发射扫描电镜(FESEM/EDS)和同步辐射相关技术对两地PM2.5的微观形貌、化学元素组成及来源,以及重金属元素Zn的价态进行了分析.结果表明,徐家汇、临安的PM2.5平均质量浓度分别为(131.6±65.2),(83.5±22.9)μg/m3.徐家汇地区PM2.5主要由烟尘、飞灰、矿物质等组成;临安地区PM2.5中主要为不规则形貌颗粒物.上海城区PM2.5中重金属元素的浓度明显高于临安地区样品.同步辐射X射线吸收近边结构谱的结果显示,两地PM2.5中的Zn元素都以ZnSO4为主要存在形式.富集因子法分析19种元素中,除K、Ca外,其他元素在PM2.5中富集程度上海均高于临安地区. 相似文献
13.
蒸汽相变作为预处理措施能显著提高常规除尘设备对PM2.5细颗粒的脱除效率,但对于水汽含量低的原始燃煤烟气蒸汽耗量太大,限制了工程应用,而在燃煤电厂湿法烟气脱硫(WFGD)过程中,烟气降温增湿,再添加少量蒸汽就可以建立PM2.5凝结长大所需要的过饱和环境,进而实现WFGD系统对PM2.5的协同高效脱除。在分析蒸汽相变促进PM2.5脱除影响因素的基础上,结合湿法脱硫过程传热传质特性,定性分析了脱硫塔塔前、塔内和塔出口添加蒸汽对WFGD系统脱除PM2.5的促进作用,并提出具体工艺方案。 相似文献
14.
15.
在北京市的海淀区、朝阳区、丰台区和昌平区选择了49个公共场所(包括办公室、宾馆、图书馆、超市等等), 分别对其室内空气中TSP, PM10, PM2.5和PM1的浓度进行了测定, 并且对室内空气中粉尘含量的影响因素进行了分析和探讨.研究结果表明, 繁忙的交通状况和建筑施工将明显增加公共场所室内空气中TSP, PM10, PM2.5和PM1浓度.频繁的室内清扫有助于降低室内空气中颗粒物的浓度.在室内空气中, PM10浓度与TSP浓度呈现明显的正向线性相关性, 而PM2.5和PM1的浓度与PM10浓度的相关性较差 相似文献
16.
利用大气细颗粒物(PM2.5)水溶性组分在线分析系统连续监测了2008年3~4月济南市PM2.5水溶性组分的浓度变化,并结合气溶胶部分前体物SO2、NO2、O3等的浓度数据和部分气象资料对监测数据进行了分析.结果表明,SO42-、NO3-和NH4+是PM2.5中水溶性离子的主要成分,分别占总水溶性组分的61.1%、13.4%和16.7%,且PM2.5中总水溶性组分的浓度,特别是SO42-的浓度,明显高于国内其他城市.温度、太阳辐射强度、混合层高度和风速等气象因素对总水溶性离子的浓度变化有重要影响.SO42-浓度白天明显高于夜间,而NO3-和NH4+的浓度昼夜变化幅度较小.SO42-和NO3-主要由SO2和NO2转化而来.后推气流轨迹分析表明,来自东北绕行西南方向和东北方向的混合气团结合济南的特殊地形及局地排放的污染物会加重济南春季PM2.5的污染. 相似文献
17.
农作物秸秆燃烧PM2.5排放因子的研究 总被引:14,自引:2,他引:14
农作物秸秆燃烧是一类重要的生物质燃烧形式,已是大气细粒子的来源之一.建立了实验室模拟-稀释通道采样系统,并利用这一系统测定了浙江、四川、河南、河北、北京(主要粮食产区)五地的玉米、小麦和水稻秸秆燃烧过程中PM2.5的排放因子.结果表明:实验室模拟明火燃烧的w(PM2.5)为7.2~39.0 g/kg,与文献[5],[7]~[8]中野外燃烧结果相似,表明两者燃烧状态具有相似性;排放因子受秸秆燃烧状态影响显著,闷火燃烧为明火燃烧的2.4~11.5倍;同时,农作物种类不同PM2.5排放因子也存在明显差别;而排放因子随秸秆生长地域变化比较小. 相似文献
18.
目前,大气颗粒物中重金属含量分析方法很多,现有环境空气质量标准并未对重金属分析方法进行统一规定,在实际监测过程中各地选择的分析方法都不尽相同。因此,确定合适的分析方法,满足快速准确测定PM_(2.5)中金属元素含量的需求显得极为重要。文章采用ICP-MS与XRF分别测定PM_(2.5)滤膜样品中Al、As等15种金属的含量,并对2组实验结果进行对比及相关性分析。结果显示,2种方法测定元素Al、Mn、Fe、Cu、Zn、As、Se、Pb的相关性系数R在0.818 5~0.953 6之间,趋势线斜率在0.787 9~1.252之间,可比性较好,测定上述元素时2种分析方法均可选用;Ti、V、Cr、Co、Ni、Cd、Ba相关性系数R和趋势线斜率较低,2种方法分析数据差异较大,测定时应选用灵敏度更高的分析方法如ICP-MS。在测定大气颗粒物中重金属元素时,应根据样品实际情况选择合适的分析方法。 相似文献
19.
2008年8─9月北京及周边各省市ρ(PM10)明显低于2006─2007年同期值. 结合污染物监测数据及气象资料,采用影响因子资料统计以及典型个例诊断对比法,研究造成北京奥运会及残奥会期间低ρ(PM10)的原因. 对2006─2008年同期风速的统计表明,2008年7─10月北京各月平均风速均低于往年,2 m/s以上的风发生频率低于往年,不利于大气污染物扩散. 2008年8月北京月降水量与2005年接近,但ρ(PM10)明显优于2005年,可见降水并不是该次ρ(PM10)月均值低的原因. 对比2006─2008年8─9月典型相似累积型天气型背景影响下ρ(PM10)日均值及演变过程发现,2008年ρ(PM10)日均值及演变曲线均低于往年. 根据对影响因子统计和北京及其周边省(市、区)严格的减排措施等分析,指出天气形势及其伴生的气象因素演变可能影响ρ(PM10)日均值波动,但六省(市、区)协同减排是保障优质空气质量的主要原因. 相似文献
20.
《环境科学与技术》2017,(11)
近年来,中国各大城市雾霾天数有明显增长的趋势,雾霾天气的产生与细颗粒物PM_(2.5)有直接的联系。基于2013-2015年MODIS气溶胶光学厚度三级产品MOD08,考虑边界层高度、相对湿度、温度、风速、风向等气象因子,分季节构建BP(误差反向传播)神经网络模型,估算全国PM_(2.5)值,基于此值分析中国PM_(2.5)污染的时空分布。结果表明:(1)对气溶胶光学厚度(AOD)缺失值进行插值后夏季预测模型效果最好,R为0.840 1,春秋季预测模型效果较差,R分别为0.602 5、0.589 9。(2)PM_(2.5)空间分布差异性显著,秋季空间分布差异最显著,夏季降水丰富,空间分布差异显著性降低;高值主要出现在华北和西北小面积区域,低值出现在西部蔵区和海南。(3)高值的华北地区和低值的西部地区都有面积逐渐增加的趋势,高值逐渐扩散到西北小面积区域,低值扩散到中部地区。 相似文献