首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
南京大气PM2.5中碳组分观测分析   总被引:16,自引:1,他引:16       下载免费PDF全文
为了解南京地区大气细颗粒物及化学成分在灰霾期间的污染水平及可能来源,于2007年6月至2008年5月,采集PM2.5样品,并测定了其中有机碳(OC)和元素碳(EC)的含量.并考察了有机碳和元素碳的季节变化特征,比较分析了南京地区灰霾与非灰霾期间含碳气溶胶的污染特征.结果显示,南京大气中PM2.5、OC和EC浓度变化范围分别是12.1~287.1,2.6~47.0和1.0~33.6mg/m3,其中夏季PM2.5(109.6mg/m3)和OC(20.8mg/m3)的值在四个季度中最高,呈现出夏季>秋季>冬季>春季的季节变化特征;EC则具有秋季>春季>冬季>夏季的季节变化特征. 霾日的OC、EC、总碳含量(TC)浓度及OC与EC比值分别是非霾日的2.0、1.8、1.9和1.7倍.后向轨迹分析表明,在有利的天气背景下,具有丰富水汽和污染物的混合气团最易使南京产生霾天气.  相似文献   

2.
为探究临沂市冬季环境空气PM2.5中水溶性离子污染特征及来源,于2016年12月11日—2017年1月9日在临沂大学、兰山区政府、高新区翠湖嘉园、汤庄办事处、河东区政府、临沂开发区6个采样点开展样品采集.结果表明:①采样期间全市ρ(PM2.5)日均值的平均值为144.86 μg/m3,ρ(PM2.5)日均值在2016年12月20日和2017年1月4日出现峰值,分别为304.46和341.65 μg/m3.②水溶性离子日均质量浓度大小顺序依次为ρ(NO3-)> ρ(SO42-)> ρ(NH4+)> ρ(Cl-)> ρ(K+)> ρ(Ca2+)> ρ(Na+)> ρ(F-)> ρ(Mg2+)> ρ(NO2-),其中,在PM2.5中w(NO3-)、w(SO42-)、w(NH4+)分别为22.33%、16.57%、13.62%,说明NO3-、SO42-和NH4+是临沂市PM2.5的主要组成部分.③临沂市污染天和非污染天ρ(PM2.5)日均值分别为164.00和56.86 μg/m3.随污染水平增加,PM2.5中w(NO3-)明显增高,w(SO42-)和w(NH4+)基本不变,说明w(NO3-)的增加导致ρ(PM2.5)的升高.污染天和非污染天的NOR(氮氧化率)分别为0.28和0.11,SOR(硫氧化率)分别为0.34和0.28,说明污染越重,NOR和SOR越高,并且NOx的气-粒转化速率较SO2慢.污染天ρ(Cl-)和ρ(K+)分别为7.22和1.77 μg/m3,分别是非污染天的2.5和3.0倍.④采样期间非污染天和污染天的N/S〔ρ(NO3-)/ρ(SO42-)〕分别为0.85和1.39,说明非污染天时固定源对PM2.5的贡献相对较大,而污染天时移动源对PM2.5的贡献相对较大.⑤通过PMF模型法解析出3个因子.因子1对PM2.5中水溶性离子的贡献率为56.13%,代表二次源和生物质燃烧源;因子2的贡献率为25.22%,代表工业源和垃圾焚烧源;因子3的贡献率为18.65%,代表扬尘源.研究显示,临沂市冬季PM2.5污染严重,水溶性离子来源复杂,应采取多源控制的污染防治对策.   相似文献   

3.
2013年12月1-9日利用常规气象观测资料和NCEP再分析资料,结合气态污染物和颗粒物化学组分外场观测,对2013年1月11-16日南京冬季一次持续重霾天气过程与颗粒物污染特征进行分析。结果表明,此次重霾过程,南京地面相对湿度较高且伴随静小风,近地层的水平输送条件较差,污染物不易扩散;天气环流形势稳定,地面受高压控制且处于均压场内,垂直方向存在明显逆温,为霾的形成提供有利的气象条件;大气PM10和PM2.5的小时最大浓度分别高达433μg/m3和325μg/m3,水平能见度低于1 km。PM2.5平均占PM10的72.4%,PM1平均占PM2.5的50.6%,颗粒物以细粒子为主,且PM2.5对能见度的影响随相对湿度的增加而减弱。水溶性离子SO42-、NO3-、NH4+是PM2.5中的主要成分,其占总浓度61%,同时SO2转化率(SOR)和NO2转化率(NOR)分别为0.35和0.31,表明霾天更有利于二次气溶胶转化。此外,PM2.5中无机盐的主要存在形式有(NH4)2SO4、NH4NO3以及少量NH4Cl。水溶性离子浓度与能见度呈现明显负相关性,说明PM2.5中水溶性离子对能见度的降低起主要作用。  相似文献   

4.
南京市空气中颗粒物PM10、PM2.5污染水平   总被引:68,自引:3,他引:68       下载免费PDF全文
 为了初步调查南京市空气中颗粒物PM10、PM2.5的污染水平,于2001年冬、春、秋3季在南京市的5个典型城市功能区,用大流量采样器收集了50个样品.结果表明,南京市PM10、PM2.5的污染很严重,超标率分别为72%和92%,最大超标倍数达到6.3和9.0,而且对人体健康危害更大的PM2.5占PM10的大部分,约为68%,应引起公众和相关职能部门的高度重视.  相似文献   

5.
贵阳市城区近地面PM10/PM2.5及重金属污染水平研究   总被引:6,自引:3,他引:6  
2009年在贵阳市地区内设点采样.共采集了145个大气样品,对近地面大气颗粒物PM10/PM2.5的污染状况及其所含重金属进行调查.结果表明,贵阳PM10/PM2.5的污染严重,对人体健康危害很大;重金属元素分析中Pb和Zn的含量比较高,这些重金属元素更易于富集在细颗粒上,给环境带来了极大的潜在危险.最后文章提出了贵阳...  相似文献   

6.
南京市大气中PM10、PM2.5日污染特征   总被引:16,自引:0,他引:16  
于2001年秋季(11月)、夏季(8月)对南京市五大典型功能区的大气颗粒物(PMl0、PM2.5)进行了监测研究。结果发现,南京市颗粒物污染严重,PMl0、PM2.5的超标率分别达到了65%、85%;颗粒物浓度季节变化大,11月污染物浓度明显大于8月,PMl0、PM2.5分别相差l68.44μg/m^3、190.1μg/m^3;PMl0中PM2.5比重较大,大约为75.9%,对人体健康潜在危害大。  相似文献   

7.
北京PM2.5浓度的变化特征及其与PM10、TSP的关系   总被引:46,自引:4,他引:46       下载免费PDF全文
在连续2年进行累积1周同步采样的基础上,对北京市城区和居住区2个采样点环境空气中PM2.5的浓度及其时间变化特征进行了分析.PM2.5周平均浓度的变化范围为37~346靏/m3,年均浓度接近或超过PM10的二级年均标准.PM2.5浓度具有明显的季节变化特征,即冬季最高,夏季最低.2个采样点PM2.5浓度的周变化与季节变化均相似.PM2.5与PM10、TSP的比值均在冬季最高,春季最低,反映采暖燃烧源对细颗粒物的贡献较大,而沙尘天气对粗颗粒物的贡献较大;其年均值分别为55%和29%.  相似文献   

8.
采用COST733软件将北京地区2007~2016年的大气环流总体分为T1~T9种类型,研究其与霾日的关联性,并结合PM2.5和臭氧地面观测,分析不同天气型对应的污染特征及气象参数分布规律.2007~2016年霾日发生概率21.5%,T4和T9型下霾日最多,T5和T8型最不利于霾日发生.9类天气型下霾日变化具有阶段性,2007~2012年(阶段一)霾日少且年际差异小,2013~2016年(阶段二)霾日增多.对9类天气型下霾日PM2.5及臭氧变化进行分析,T1、T3、T4和T9型霾日多出现在秋冬季,PM2.5日变化为逐时增加态势,4类天气型在第一阶段的白天有浓度波动增长形成的小峰值,但第二阶段减弱消失.大部分天气型的霾日,阶段二的PM2.5浓度较阶段一降低,T7和T9型表现为增加,增幅分别为23.7%和3.9%.所有天气型霾日的臭氧日变化均为单峰型,峰值出现在下午,臭氧日均浓度最高为T8型.此外,阶段二与阶段一相比,T3、T5和T6型臭氧平均浓度增加,其中T5型增幅达到49.8%.将霾日与近地面气象要素关联分析,平均气温、风向、风速可以较好的解释臭氧浓度变化,而PM2.5的变化特征不仅与气象要素相关,在一定程度上也体现了污染排放及区域联动减排的贡献,需两者结合才能更好探究PM2.5浓度整体特征及细节变化.  相似文献   

9.
目的了解铜陵市颗粒物中的元素特征和主要来源。方法选择2014年冬季和春季的部分时段,在铜陵市国家环境空气监测站——新民污水处理厂(工业区)采集PM_(10)和PM_(2.5)样品,使用X射线荧光光谱(XRF)法进行元素的定量测试。采样期间,冬季的空气质量以良和中、轻度污染为主;春季以中度和重度污染天气为主,采样期间出现了明显的重污染。结果 PM_(2.5)和PM_(10)中S和Si元素的浓度均比其余元素高,P和Cu元素的浓度远低于其余元素。空气污染的指数越高,Fe、Mg、Al、Si则更易富集在PM_(10)上,而K、Cu、Na、Cl、S元素更易富集在PM_(2.5)上,Ca和P这两种元素在PM_(10)和PM_(2.5)上的富集程度相当。空气颗粒物中,富集最多的元素是K,其次为Fe和Mg;元素Cu、K、Cl在PM_(10)中的富集程度要高于PM_(2.5)。结论扬尘(包括地面扬尘和建筑尘)是PM_(10)的最大来源,其次是开采矿山和燃烧生物质,燃煤、炼铜等工企业排放贡献最小;对于PM_(2.5)而言,最大的来源是风沙、扬尘和开采矿山,其次是燃煤、燃烧生物质和其他的工企业排放,炼铜的贡献最小。  相似文献   

10.
林香男  董娴  陈卓 《地球与环境》2019,47(3):254-260
2015年9月至2016年8月在贵阳市区设置4个采样点位采集PM_(2.5)样品,分别采用原子吸收分光光度计、原子荧光光度计和汞分析仪测定PM_(2.5)中8种致癌有害元素的质量浓度,研究其时空变化特征、富集程度及季节变化规律,并运用富集因子法对其可能来源进行解析。结果表明,Pb、Cr(Ⅵ)、As、Cd和Hg 5种致癌有害元素标准化后的浓度大小排列顺序可能为Cr(Ⅵ)AsHgCdPb,其中As、Cr年均值浓度超过我国《环境空气质量标准》。除Co外,其它7种致癌有害元素的富集因子EF10,且Cd、Hg、Pb和Se 4种元素有显著富集,可能主要来源于燃煤和机动车尾气的排放,冬季富集因子高于其它季节。  相似文献   

11.
济南春季大气PM2.5水溶性组分的半连续在线观测   总被引:2,自引:1,他引:2       下载免费PDF全文
利用大气细颗粒物(PM2.5)水溶性组分在线分析系统连续监测了2008年3~4月济南市PM2.5水溶性组分的浓度变化,并结合气溶胶部分前体物SO2、NO2、O3等的浓度数据和部分气象资料对监测数据进行了分析.结果表明,SO42-、NO3-和NH4+是PM2.5中水溶性离子的主要成分,分别占总水溶性组分的61.1%、13.4%和16.7%,且PM2.5中总水溶性组分的浓度,特别是SO42-的浓度,明显高于国内其他城市.温度、太阳辐射强度、混合层高度和风速等气象因素对总水溶性离子的浓度变化有重要影响.SO42-浓度白天明显高于夜间,而NO3-和NH4+的浓度昼夜变化幅度较小.SO42-和NO3-主要由SO2和NO2转化而来.后推气流轨迹分析表明,来自东北绕行西南方向和东北方向的混合气团结合济南的特殊地形及局地排放的污染物会加重济南春季PM2.5的污染.  相似文献   

12.
近年来,中国各大城市雾霾天数有明显增长的趋势,雾霾天气的产生与细颗粒物PM_(2.5)有直接的联系。基于2013-2015年MODIS气溶胶光学厚度三级产品MOD08,考虑边界层高度、相对湿度、温度、风速、风向等气象因子,分季节构建BP(误差反向传播)神经网络模型,估算全国PM_(2.5)值,基于此值分析中国PM_(2.5)污染的时空分布。结果表明:(1)对气溶胶光学厚度(AOD)缺失值进行插值后夏季预测模型效果最好,R为0.840 1,春秋季预测模型效果较差,R分别为0.602 5、0.589 9。(2)PM_(2.5)空间分布差异性显著,秋季空间分布差异最显著,夏季降水丰富,空间分布差异显著性降低;高值主要出现在华北和西北小面积区域,低值出现在西部蔵区和海南。(3)高值的华北地区和低值的西部地区都有面积逐渐增加的趋势,高值逐渐扩散到西北小面积区域,低值扩散到中部地区。  相似文献   

13.
2008年4月在上海城区(徐家汇)和浙江临安大气污染本底站2个地区同步采集PM2.5样品,利用场发射扫描电镜(FESEM/EDS)和同步辐射相关技术对两地PM2.5的微观形貌、化学元素组成及来源,以及重金属元素Zn的价态进行了分析.结果表明,徐家汇、临安的PM2.5平均质量浓度分别为(131.6±65.2),(83.5±22.9)μg/m3.徐家汇地区PM2.5主要由烟尘、飞灰、矿物质等组成;临安地区PM2.5中主要为不规则形貌颗粒物.上海城区PM2.5中重金属元素的浓度明显高于临安地区样品.同步辐射X射线吸收近边结构谱的结果显示,两地PM2.5中的Zn元素都以ZnSO4为主要存在形式.富集因子法分析19种元素中,除K、Ca外,其他元素在PM2.5中富集程度上海均高于临安地区.  相似文献   

14.
目前,大气颗粒物中重金属含量分析方法很多,现有环境空气质量标准并未对重金属分析方法进行统一规定,在实际监测过程中各地选择的分析方法都不尽相同。因此,确定合适的分析方法,满足快速准确测定PM_(2.5)中金属元素含量的需求显得极为重要。文章采用ICP-MS与XRF分别测定PM_(2.5)滤膜样品中Al、As等15种金属的含量,并对2组实验结果进行对比及相关性分析。结果显示,2种方法测定元素Al、Mn、Fe、Cu、Zn、As、Se、Pb的相关性系数R在0.818 5~0.953 6之间,趋势线斜率在0.787 9~1.252之间,可比性较好,测定上述元素时2种分析方法均可选用;Ti、V、Cr、Co、Ni、Cd、Ba相关性系数R和趋势线斜率较低,2种方法分析数据差异较大,测定时应选用灵敏度更高的分析方法如ICP-MS。在测定大气颗粒物中重金属元素时,应根据样品实际情况选择合适的分析方法。  相似文献   

15.
上海市冬季PM_(2.5)无机元素污染特征及来源分析   总被引:3,自引:2,他引:3  
为了解高污染季节上海市细颗粒物PM2.5及其无机元素的污染特征和来源,于2013年1月4日至2月1日在上海3个点位采集PM2.5样品,并采用电感耦合等离子光谱仪(ICP-OES)测定样品中19种元素含量.结果表明,采样期间PM2.5污染水平较高,均值达(90.5±41.2)μg·m-3,且郊区明显高于市区和背景参照点.所测无机元素的空间分布规律与PM2.5一致,但背景参照点元素Zn的浓度较高.采样期间Cd、As、Zn、Pb、S和Cu等人为污染元素的富集因子较高.因子分析结果表明冬季上海市PM2.5具有多源性,主要来源于燃煤、自然尘、燃油以及机动车.  相似文献   

16.
成都市春节期间大气PM_(2.5)化学元素的特征   总被引:1,自引:0,他引:1  
为研究成都市春节期间大气PM2.5化学元素特征,于2010年2月10-28日在中国气象局成都高原气象研究所办公楼顶进行大气PM2.5采样。采用X-射线荧光光谱法(XRF)分析PM2.5中的无机元素。结果表明,除夕、元宵节PM2.5日均质量浓度分别为137.9μg/m3和287.5μg/m3。S、K、Cl、Al、Ba、Mg、Pb和Cu元素在除夕和元宵节2天中质量浓度是其它采样时间浓度的1.44~14.27倍;富集因子分析表明,S、Cl、K、Zn、As、Br、Sr、Cd、Sn、Ba、Pb、Cu主要是人类活动引起的各种污染所致;主成分分析得出,春节期间成都市PM2.5中的元素主要来源于烟花排放、机动车和燃煤排放;其次为冶金及机械制造等排放的烟尘。  相似文献   

17.
<正>向源模型法和反向受体模型法是进行城市PM_(2.5)源解析的2种方法,两者各有所长。该研究应用三维空气质量模型Weather Research and Forecasting Model with Chemistry(WRF-Chem)模型和受体模型Positive Matrix Factorization(PMF),以2014年10月为研究时段,分别对邯郸市的细微颗粒物(PM_(2.5))进行源解析。PMF模型的解析结果表明,邯郸市PM_(2.5)来源为二次源30.2%,燃煤源25.4%、金属冶炼源15.1%、机动车源14.4%、扬尘源9.8%,生物质燃烧源5.2%。应用WRF-Chem模型,Brute-Force方法解析出的结果为,在本地源贡献中,工业源贡献了49.0%,民用源11.9%、农业源9.6%、交通源3.8%和电厂源-1.5%(负值由于PM_(2.5)前体物之间的非线性反应所致)。应用源模型对二次成分(SO_4~(2-)、NO_3~-和NH_4~+)进行再解析,结果显示,燃煤源源贡献率最大,达到25.7%,其次分别为农业源(24.0%)、工业源(6.5%)、生物质源(1.8%)和机动车(0.03%)。结合2种方法得出,邯郸市的PM_(2.5)中,本地燃煤源贡献了37.1%,其次分别为金属冶炼源(18.4%)、机动车源(15.1%)、扬尘源(13.3%)、生物质燃烧源(6.2%)。  相似文献   

18.
南京地区PM2.5污染特征及其影响因素分析   总被引:5,自引:0,他引:5  
文章利用2007年南京市草场门和迈皋桥采样点的PM2.5在线监测资料研究了南京地区PM2.5浓度的时空变化特征。对PM2.5质量浓度进行了月季变化、日变化特征分析。并利用同时期气象资料分析了PM2.5浓度与气象条件的关系。结果表明,南京市细颗粒物污染较严重,草场门采样点各月超标率均在55%以上,年超标率达72%;2采样点各季节霾天气下PM2.5质量浓度均大于非霾日下浓度均值,不管是霾天气还是非霾天气下,草场门采样点各季节PM2.5质量浓度均高于迈皋桥采样点(除秋季非霾天气)。2007年南京市PM2.5质量浓度呈现出春冬季节较高、夏秋季节较低的特点;日变化呈双峰分布。对PM2.5质量浓度与水平能见度的相关性研究表明,南京市大气能见度与细粒子质量浓度呈现很好的负相关性,相关系数高达0.98。草场门采样点霾天气下平均能见度水平仅5.2km,最高能见度为13km,最低为1.7km。  相似文献   

19.
中国四城市空气中粗细颗粒物元素组成特征   总被引:70,自引:0,他引:70  
采集280多个来自中国4城市粗细颗粒物样品,用X一荧光光谱法分析了其中的42种元素报道了空气颗粒物中元素的组成特征,并对元素进行聚类分析,结果表明,主要可分成地壳元素及燃煤或燃油污染元素两大类污染点颗粒物中污染元素的浓度比对照点的要高,而且,这些污染元素在细颗粒物中的富集因子比在粗颗粒物中的富集因子要高出许多倍但城市内污染元素的富集团子在污染点与对照点之间的差别不如同一种元素在两城市间的差别明显  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号