首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Group living confers both benefits and costs to the individuals involved. Benefits may include enhanced defense, thermoregulation, and increased foraging efficiency while costs often involve competition for resources such as food, shelter, and mates. Communication provides a medium of exchange among individuals engaged in either cooperative or competitive interactions. The functional analysis of signals within groups therefore requires testing both cooperative and competitive functions, although the latter is infrequently done. In this paper, I study the use of two vibrational signals in a gregarious, processionary Australian sawfly larva, Perga affinis: tapping and contractions. Tapping involves striking the substrate with the sclerotized portion of the abdominal tail and a contraction is a fast, whole-body twitch, which is both tactile and vibrational in its transmission. For tapping, I first demonstrate that it is a form of communication, as tapping of one larva elicits tapping in another, and that it is transmitted through substrate vibrations. I then test whether the signal is mostly cooperative or competitive in nature by examining it in light of two hypotheses: (1) the Group Coordination hypothesis, stating that the signal functions to maintain group cohesiveness and (2) the Competitive Signaling hypothesis, stating that tapping serves as a competitive assessment signal between larvae while feeding. For contractions, I test only the group coordination hypothesis that they serve to coordinate and initiate group movement. Results support the group coordination hypothesis for each signal. While feeding, lone larvae (without potential competitors) were significantly more likely to tap than those in groups, and this trend continued in non-feeding situations. Contractions regularly preceded periods of group movement during processions and were given with increasing frequency before departure from preforaging clusters. The vibrational signals in this processionary species likely function cooperatively to maintain group cohesiveness and coordinate movement.  相似文献   

2.
Paraeuchaeta norvegica (8.5 mm total length) and yolk-sac stage Atlantic cod larvae (4 mm total length) (Gadus morhua) larvae were observed in aquaria (3 l of water) using silhouette video photography. This allowed direct observations (and quantitative measurement) of predator–prey interactions between these two species in 3-dimensions. Tail beats, used by cod larvae to propel themselves through the viscous fluid environment, also generate signals detectable by mechanoreceptive copepod predators. When the prey is close enough for detection and successful capture (approximately half a body-length), the copepod launches an extremely rapid high Reynolds number attack, grabbing the larva around its midsection. While capture itself takes place in milliseconds, minutes are required to subdue and completely ingest a cod larva. The behavioural observations are used to estimate the hydrodynamic signal strength of the cod larva’s tail beats and the copepod’s perceptive field for larval fish prey. Cod larvae are more sensitive to fluid velocity than P. norvegica and also appear capable of distinguishing between the signal generated by a swimming and an attacking copepod. However, the copepod can lunge at much faster velocities than a yolk-sac cod larva can escape, leading to the larva’s capture. These observations can serve as input to the predator–prey component of ecosystem models intended to assess the impact of P. norvegica on cod larvae.  相似文献   

3.
For many sedentary or sessile benthic marine invertebrates the planktonic duration of the larval stage is believed to be a key determinant of the magnitude of genetic differences between populations. An obvious dichotomy in dispersal potential exists within cheilostome bryozoans that develop from either (1) a cyphonautes larva that spends several weeks in the plankton or (2) a brooded coronate larva that settles soon after release from the adult colony. This study characterises the pattern of variation at allozyme loci among British populations of four species of bryozoan—two species with cyphonautes and two with coronate larvae. There is some variation in the estimates of genetic differentiation among similarly separated populations that may be a consequence of non-equilibrium genetic conditions arising from sporadic migration, possibly through dispersal by rafting on macroalgae by mature colonies. Despite this, however, both the level of genetic differentiation between populations and the pattern of migrant exchange correlate with the larval developmental mode. Bryozoan species that brood coronate larvae show higher levels of genetic heterogeneity between populations and significant isolation by distance genetic structure while, by contrast, distance has little or no effect upon the amount of genetic differentiation among populations of bryozoans with cyphonautes larvae. For cheilostome bryozoans, therefore, it appears that genetic differentiation between populations is directly associated with the type of larval development. These data are discussed also with respect to levels of gene diversity and the geological pattern of cheilostome bryozoan species diversity.  相似文献   

4.
Skin darkened tadpoles sometimes appear spontaneously. Darkened was artificially induced in Xenopus larvae by yohimbine or chlorpromazine. These phenomena look like that are seen at pinealectomized or hypothalamus separated Xenopus larva. In this experiment, such a morphological color changed Xenopus larva is suggested by cause of inhibition of alpha2-adrenargic receptor or dopamine receptor from gastrula stages.  相似文献   

5.
To find conditions under which humans cooperate within groups of unrelated individuals has been of major interest in the behavioral sciences. The experimental paradigm for studying potential cooperation in social dilemmas is the public goods game. Here humans regularly fail to sustain a public resource cooperatively. However, the need to maintain good reputation for other social interactions, such as indirect reciprocity, has been identified as an effective mechanism to sustain cooperation in public goods situations. As a side effect of building a good reputation through cooperative actions, an individual provides direct benefits to members of his/her own social group. These benefits could be an incentive to reward a good reputation of group members. Here we show experimentally that building a good reputation through cooperative behavior in a public goods situation is rewarded in future social interactions, not only within ones own social group but also, at a similar level, in other social groups: humans regard cooperative behavior of others as an honest signal irrespective of past direct personal benefits. Reputation gained within as well as outside ones own social group can be a driving force for selfish individuals to cooperate in public goods situations, and thereby sustain any public resource.Communicated by T. Czeschlik  相似文献   

6.
Most marine fishes undergo a pelagic larval phase, the early life history stage that is often associated with a high rate of mortality due to starvation and predation. We present the first study that examines the effects of prey swimming behavior on prey-capture kinematics in marine fish larvae. Using a digital high-speed video camera, we recorded the swimming velocity of zooplankton prey (Artemia franciscana, Brachionus rotundiformis, a ciliate species, and two species of copepods) and the feeding behavior of red drum (Sciaenops ocellatus) larvae. From the video recordings we measured: (1) zooplankton swimming velocity in the absence of a red drum larva; (2) zooplankton swimming velocity in the presence of a red drum larva; and (3) the excursion and timing of key kinematic events during prey capture in red drum larvae. Two-way ANOVA revealed that: (1) swimming velocity varied among zooplankton prey; and (2) all zooplankton prey, except rotifers and ciliates, increased their swimming velocity in the presence of a red drum larva. The kinematics of prey capture differed between two developmental stages in S. ocellatus larvae. Hyoid-stage larvae (3–14 days old) fed on slow swimming B. rotundiformis (rotifers) while hyoid-opercular stage larvae (15 days and older) ate fast moving A. franciscana. Hyoid-opercular stage red drum larvae had a larger gape, hyoid depression and lower jaw angle, and a longer gape cycle duration relative to their hyoid-stage conspecifics. Interestingly, the feeding repertoire within either stage of red drum development was not affected by prey type. Knowledge of the direct relationship between fish larvae and their prey aids in our understanding of optimal foraging strategies and of the sources of mortality in marine fish larvae.  相似文献   

7.
C. Clemmesen 《Marine Biology》1994,118(3):377-382
RNA/DNA ratios in individual herring (Clupea harengus) larvae (collected from Kiel Bay, Baltic Sea, in 1989) were measured and proved suitable for determining nutritional status. Significant differences between fed and starving larvae appeared after 3 to 4 d of food deprivation in larvae older than 10 d after hatching. The RNA/DNA ratio showed an increase with age or length of the larvae and was less pronounced in starving larvae compared to fed larvae. The individual variability of RNA/DNA ratios in relation to larval length of fed larvae and of larvae deprived of food for intervals of 6 to 9 d is presented. Based on the length dependency and the individual variability found within the RNA/DNA ratios, a laboratory calibration is given to determine whether a larva caught in the field has been starving or not. An example for a field application is shown.  相似文献   

8.
Cape hakes, Merluccius paradoxus and M. capensis, are important gadoid fish that are commercially harvested in the Benguela Current system off Namibia and South Africa. The aim of this study was to elucidate the nutritional condition and feeding preferences of their larvae. Hake eggs and larvae were sampled in austral spring of two consecutive years, 2007 and 2008, off the west coast of South Africa. They were identified to species using genetics, and total lipid content and fatty acid (FA) composition were analysed for each individual egg and larva to compare the condition of different early life stages of both hake species. Higher abundances of M. paradoxus eggs and larvae were consistently found compared to M. capensis. In both species, eggs contained wax esters (WE) and had significantly higher lipid content per dry mass than larvae. Lipid content as well as FA composition changed with the developmental stage of larvae. Quantities of essential fatty acid (EFA) increased with feeding of larvae due to dietary lipid incorporation. In 2007, yolk-sac larvae contained significantly lower total lipids than in 2008. It is argued that this was due to reduced lipid transfer by the spawning females to the eggs. These findings indicate that maternal effects are important in determining condition of hake larvae and that this may have an effect on their survival and subsequent recruitment.  相似文献   

9.
Contact calls are utilized by several bird and mammal species to maintain group cohesion and coordinate group movement. From a signal design perspective, contact calls typically exhibit acoustic features that make them easily localizable and encode information about individual or group identity. Pallid bats (Antrozous pallidus) are unusual among vespertilionids in that they often emit a loud, partially audible frequency-modulated social call several times in rapid succession while in flight. This call appears to function as a contact call in that it is frequently given when bats return from foraging and perform circular flights before entering a crevice roost. However, the degree to which pallid bats respond to the calls of conspecifics and what information is provided in the call is unknown. Thus, the goal of this study was to investigate pallid bat calling behavior to determine if calls attract roostmates or elicit responses from them and provide sufficient information for individual recognition. In playback studies, we found that contact calls, elicit calls, and approaches and that free-flying bats respond more to familiar than unfamiliar calls. In addition, analysis of frequency and temporal measurements of calls collected from multiple sites and spectral cross correlation analysis of calls recorded from the same radio-tagged bats on multiple evenings revealed that the frequency pattern of contact calls is highly repeatable over time within individuals but exhibits significant differences among individuals. Thus, contact call structure appears to be unique to individuals and stable through time, which makes these calls well-suited for roostmate recognition.  相似文献   

10.
Group living is associated with costs but also with potential benefits, such as a decrease in predation risk through, for example, higher defence efficiency. Mobbing is among the most specialised forms of anti-predator strategies involving group defence and has mainly been investigated in passerine birds and some mammals. Variation in the mobbing response has been found in several species according to phenotypic variation such as sex or age. This suggests that there are differential benefits between mobbers, which may have promoted individual specialisation in mobbing behaviour. We studied mobbing behaviour in a communal roosting raptor, the Marsh harrier (Circus aeruginosus), which shows active group defence. Our study population exhibits extreme colour polymorphism, with two colour morphs in males, as well as sexual dichromatism and colour variation with age. We used different decoys, placed at different distances from the roost, to manipulate experimentally the perceived predation risk and to elicit mobbing behaviour. Using the experimental design that maximised mobbing response in harriers, we then focused on the sequence and the specific behaviours involved in recruitment of mobbers, and whether individual investment in terms of defence was associated with phenotypic characteristics of individuals (i.e. sex, age and colour morph). We found that the main behaviour involved in successfully attracting mobbers was alarm calling. We also detected differential individual investment in relation to sex and age, but more importantly, we provide the first evidence for specialised male phenotypic roles during mobbing events, signalled by colour polymorphism: grey males tended not to be involved in mobbing and almost never behaved as recruiters or mobbers, while brown males behaved mainly as recruiter birds. These findings suggest that colour morph may signal the individual’s anti-predatory abilities through different behavioural strategies between males.  相似文献   

11.
Hanssen SA 《Ecology》2006,87(10):2440-2446
An induced immune challenge can have two counteracting effects on an individual's reproductive investment. (1) The resource demand could increase to "fuel" the immunologic reaction, which in turn can lead to an adaptive decrease in investment in resource-costly activities, such as reproduction. One the other hand, (2) the individual could assume that the immune activity it experiences is indicative of a serious infection. The latter can lead to an adaptive increase in reproductive investment in response to the reduced prospects of survival and future reproduction, so called "terminal investment." To measure such life-history-related consequences of increased immune activity, one group of incubating female Common Eiders (Somateria mollissima) was injected with a nonpathogenic antigen (sheep red blood cells, SRBC) while controls were injected with sterile saline. The eider is a long-lived sea-duck. Females, who incubate the eggs and care for young without assistance from the male, engage in facultative anorexia during incubation leading to a large reduction in body mass. Eiders can abandon their young to other females at the cost of reduced young survival. The immune challenge resulted in a larger mass loss, a prolonged incubation period, and reduced return rate, demonstrating both short- and long-term costs of immune challenge. Additionally, in response to what might have been interpreted as reduced survival chances in immune-challenged females, these females more often tended their own brood after hatching, despite having suffered higher costs during incubation.  相似文献   

12.
Pupae of several insect species are known to generate air-borne sounds and/or substrate-borne vibrations, but the functions of the sounds/vibrations are not well understood. Here, we present the first evidence of vibratory communication between pupae and larvae of a group-living Japanese rhinoceros beetle Trypoxylus dichotoma which inhabits humus soil. The last-instar larvae of this beetle construct their own pupal cells to ensure normal pupation and eclosion. These cells are fragile and subject to damage from burrowing larvae because pupae and larvae co-inhabit the same patches of humus. In laboratory experiments, we demonstrated that pupal cells harboring live pupae were less likely to be broken by larvae than those harboring dead pupae. It was also demonstrated that pupae produced vibrations in response to larvae approaching the pupal cells. High-speed video and vibration analyses showed that pupae emitted 3–7 pulses at 1.3-s intervals by beating their pronotum against the inner wall of the pupal cell. The pupal vibration was of low frequency with a maximum energy at ≈ 100 Hz. The drumming behavior was more frequently observed in the presence of an approaching larva than in its absence. When pupal vibrations were played back near to vacant artificial pupal cells, these cells were rarely disturbed by the larvae. These results provide evidence that pupae generate vibrations to deter conspecific larvae, thereby preventing damage to the cells. This larval response to pupal vibrations may have evolved through preexisting anti-predator and/or sib-killing-avoidance behavior.  相似文献   

13.
In the competition to acquire mates, environmental factors can be important in determining the relative quality of an individual. These aspects of quality are often conveyed through signals used for mate assessment by the most energetically invested sex. In red-backed salamanders, Plethodon cinereus, chemical signals communicate a surprising amount of information, much of which is dependent on the current condition of the sender. One such condition-dependent aspect of information conveyed via chemicals is the quality of the sender’s diet, but it is unclear as to whether this information is actively advertised by the sender (i.e., a signal) or simply inferred from food-derived odors (i.e., a cue). The amount of time on different diets required for changes in signaling is also unknown. I examined how quickly gravid female salamanders could detect a difference between the scents of males on high- vs. low-quality diets without fecal cues. The amount of protein present in two known signaling glands (the mental and postcloacal glands) was also measured after experimental feeding. Gravid females were able to infer the differences in male diet quality after only 1 week. Females also responded to the male scents more quickly after differential feeding had begun. High-quality males had significantly more protein present in both signaling glands than low-quality males. This scenario highlights the ongoing interplay between the quality of an individual and its environment, with males actually advertising the status of this relationship as an honest signal for mate assessment.  相似文献   

14.
Oxygen consumption of individual larvae of the Antarctic sea-star Odontaster validus was measured during the 50-day period following fertilisation. Values ranged from 0.76 pmol O2 h-1 for one specimen at the coeloblastula stage to 77.6 pmol O2 h-1 for one bipinnaria larva. At 0°C the mean oxygen consumption rate of an individual larva increased from 10.9 pmol O2 h-1 (standard error of the mean, SEM, 0.13) for a gastrula larva, 13 days post-fertilisation, to 25.4 pmol O2 h-1 (SEM 3.5) at the bipinnaria stage (50 days post-fertilisation). Gastrulae reared at -0.5°C did not have significantly different oxygen consumption rates between days 13 and 45 post-fertilisation (mean=11.4 pmol O2 h-1). Individual metabolic rates were highly variable, covering more than a 40-fold range. At 2°C gastrula oxygen consumption was on average 45% higher (17.35 pmol O2 h-1), giving a Q10 temperature effect of 4.4. For bipinnaria, mean oxygen consumption in 2°C larvae (31.4 pmol O2 h-1) was not significantly different from that in larvae at -0.5°C, suggesting bipinnaria metabolism may be less sensitive to temperature change than earlier stages. At 2°C the bipinnaria stage was reached at 30-35 days compared with 45-50 days at 0°C, giving a Q10 of 4.5 for temperature effects on development. The method here used a new, highly sensitive micro-respirometry method that is inexpensive and straightforward in design. Individual larvae of O. validus were held in 35- to 50-µl respirometers. These larvae have very low metabolic rates, and published work on such organisms have utilised at least 25 individuals per chamber. The oxygen content of the respirometers was measured using a 25-µl sample injected into a couloximeter. Oxygen consumption rates down to -1 pmol h-1 can be detected. Under optimum conditions oxygen consumption of a single larva of -4 pmol O2 h-1 was measured with an accuracy of ᆨ%. Values of ~15 pmol h-1 could routinely be measured with this accuracy. This method would allow oxygen consumption to be evaluated in individual field-caught larvae of most marine ectotherms.  相似文献   

15.
衡阳地区黄刺蛾生活史及滞育习性观察   总被引:2,自引:0,他引:2  
黄刺蛾Cmdocampa flavescens Walker 是我国林木、果树和园林绿化树上的重要害虫。该虫在湖南省衡阳地区1年发生1代,以老熟幼虫在茧内滞育越夏越冬,越冬幼虫于次年4月中旬开始化蛹,4月下旬至5月上旬为化蛹盛期,5月中旬成虫开始羽化,5月下旬幼虫开始孵化,6月下旬幼虫开始老熟做茧,7月上旬至次年4月中旬为幼虫滞育期。幼虫取食危害期仅1个月左右,幼虫在茧中滞育时间长达280d以上。  相似文献   

16.
The level of fluctuating asymmetry (FA), defined as random deviations from perfect bilateral symmetry, is assumed to reflect the developmental instability (DI) of an organism. Because environmental and genetic stress may increase DI, FA has been used to assess the level of stress experienced by, for example, fish. In this study, left–right asymmetry of lapillar otoliths was related to nutritional condition as estimated from RNA/DNA ratios, in order to investigate the utility of FA to detect feeding-related stress in Baltic cod, Gadus morhua L., larvae. Cod larvae in intermediate and good nutritional condition showed similar values of FA, and these were more symmetric than for larvae in poor condition. As increased levels of FA were restricted to larvae in a condition comparable to that of larvae experiencing at least 3 days of starvation in laboratory experiments, it is suggested that FA is an insensitive indicator of short-term feeding success of larval cod. However, FA can be used to reveal severely starved larva populations and probably also populations that have been subjected to prolonged sub-optimal feeding conditions.  相似文献   

17.
Rhabdopleura compacta (Hineks) has a motile larva. It is evenly ciliated, and swims by rotating about its long axis. The larva is lecithotrophic, and contains a considerable amount of yolk within the blastocoel. The blastocoel is lined with a layer of flattened cells early in development, before gastrulation has begun. The endoderm is formed by invagination. Initially, the endoderm cells are tall, columnar, and contain much yolk. Nerve fibres can be seen amongst the ectoderm cells very early in development. The ectoderm cells are separated from the inner layers and yolk by a basement lamella. There is yolk within the cells as well as in the blastocoel. Some of the yolk within the blastocoelic cavity is contained within cells and some of it is extracellular. The larvae settle during gastrulation, attaching themselves to the substratum. They tend to settle in the highest parts of upturned, empty, lamellibranch shells. Soon afterwards the body regions of the adult become recognisable.  相似文献   

18.
Dispersal attempts can be costly and may often end in failure. Individuals should therefore only disperse when the benefits of dispersal outweigh the costs. While previous research has focussed on aspects of the individual that may affect dispersal success, social factors may also influence dispersal outcomes. One way of achieving successful dispersal could be through cooperative, or coalition dispersal. I investigated this possibility in the cooperatively breeding Arabian babbler Turdoides squamiceps. I found that coalition dispersal appears to be an effective strategy to ensure the success of dispersal attempts, with coalitions more successful than lone individuals at taking over the breeding position in a new group. Lone dispersal was more costly than coalition dispersal, with lone individuals suffering a greater loss of body mass during dispersal attempts. These results suggest a substantial short-term benefit for this type of cooperative behaviour. There was no evidence for dispersal polymorphism in the population, with no detectable phenotypic difference between dispersers and non-dispersers or those that dispersed as part of a coalition compared with those that dispersed alone.  相似文献   

19.
Phylogenetic analyses have demonstrated that nonfeeding larvae have evolved from feeding larvae many times among marine invertebrates. In light of this observation, it is surprising that an intermediate strategy, a larva that can feed but is provisioned with enough energy to metamorphose without acquiring exogenous food (i.e., facultative planktotrophy), is rare. A hypothesis for the lack of facultative planktotrophic species among marine invertebrates is that the transition from feeding to nonfeeding is rapid due to this intermediate stage being evolutionarily unstable. Evidence that would support this hypothesis is if species with facultative planktotrophy have reduced food assimilation when compared with obligate planktotrophs. We studied a species with facultative planktotrophic larvae, Clypeaster rosaceus, that is very near the boundary between facultative and obligatory planktotrophy, to answer two questions: (1) does feeding during the larval stage result in energy gains in larval or juvenile stages and (2) if not, are larvae capable of assimilating exogenous food at all. Our measurements of energetics in larval and juvenile stages show that C. rosaceus larvae accumulate very little if any energy when fed, but stable isotope data indicate that larvae are able to assimilate some food. Our results are consistent with similar studies on facultative planktotrophic larvae suggesting poor food assimilation and rapid loss of larval feeding after a population evolves the ability to reach metamorphosis without feeding (lecithotrophy).  相似文献   

20.
Vaughn D 《Ecology》2007,88(4):1030-1039
While there are numerous reports of predator-induced morphological defenses for freshwater zooplankton, freshwater larvae, and benthic marine animals, a literature search revealed no reports of predator-induced morphological defenses for marine zooplankton. Rarity of predator-induced morphological defenses in marine zooplankton would imply a difference in predation risks compared to those experienced by freshwater organisms and benthic marine adults, whereas the presence of such plasticity in defenses would imply that risks are modified by developmental responses. This study reports a predator-induced change in defenses and vulnerability of a marine planktonic larva. Specifically, when reared in the presence of zoea larvae of Cancer spp., veliger larvae of the intertidal snail Littorina scutulata developed significantly smaller shell apertures and rounder shells than did cohort veligers reared in the absence of predator cues. Pairwise predation trials demonstrated that veligers reared with caged zoeas throughout development had greater survival than predator-naive veligers during short-term exposure to zoeas. The development of predator-induced morphological defenses by some marine larvae introduces a range of testable hypotheses on developmental plasticity that reduces vulnerability of planktonic larvae and other marine zooplankton to predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号