首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bumblebee colonies experience daily and seasonal fluctuations in ambient temperature, but proper brood development requires a stable nest temperature. This study examined how adaptive colony responses to changing ambient temperature are achieved through the in-nest workers’ behavioral plasticity. We studied three Bombus huntii colonies in the laboratory. In the first experiment, we manipulated ambient temperature and recorded brood cell incubation and wing fanning by individually marked, known-age bees. The colonies maintained their nests closer to appropriate brood development temperatures (28 to 32°C) when exposed to a range of ambient temperatures from 10.3 to 38.6°C. Incubation activity was greater in cooler treatment conditions, whereas in the highest temperature treatment, some bees fanned and others moved off the brood. As the ambient temperature dropped, workers increased the duration of their incubating bouts, but, except at the highest temperature, the number of workers that incubated did not differ significantly among treatments. A subset of the bees incubated significantly more than their nest mates, some of which never incubated. Worker body size, but not age, was a good predictor of incubation rates, and smaller bees incubated at higher rates. In the second experiment, we removed the most actively incubating workers. Immediately after removals, the total colony incubation effort was lower than pre-removal levels, but incubation effort rebounded toward pre-removal levels after 24 h. The increased thermoregulatory demand after removals was met primarily by bees increasing their rates of incubation rather than by bees switching from a different task to incubation. We conclude that some B. huntii workers specialize on nest thermoregulation, and that changes in work rates are more important than task switching in meeting thermal challenges.  相似文献   

2.
Honeybee colonies are highly integrated functional units characterized by a pronounced division of labor. Division of labor among workers is mainly age-based, with younger individuals focusing on in-hive tasks and older workers performing the more hazardous foraging activities. Thus, experimental disruption of the age composition of the worker hive population is expected to have profound consequences for colony function. Adaptive demography theory predicts that the natural hive age composition represents a colony-level adaptation and thus results in optimal hive performance. Alternatively, the hive age composition may be an epiphenomenon, resulting from individual life history optimization. We addressed these predictions by comparing individual worker longevity and brood production in hives that were composed of a single-age cohort, two distinct age cohorts, and hives that had a continuous, natural age distribution. Four experimental replicates showed that colonies with a natural age composition did not consistently have a higher life expectancy and/or brood production than the single-cohort or double-cohort hives. Instead, a complex interplay of age structure, environmental conditions, colony size, brood production, and individual mortality emerged. A general tradeoff between worker life expectancy and colony productivity was apparent, and the transition from in-hive tasks to foraging was the most significant predictor of worker lifespan irrespective of the colony age structure. We conclude that the natural age structure of honeybee hives is not a colony-level adaptation. Furthermore, our results show that honeybees exhibit pronounced demographic plasticity in addition to behavioral plasticity to react to demographic disturbances of their societies.  相似文献   

3.
The age at which worker honey bees begin foraging varies under different colony conditions. Previous studies have shown that juvenile hormone (JH) mediates this behavioral plasticity, and that worker-worker interactions influence both JH titers and age at first foraging. These results also indicated that the age at first foraging is delayed in the presence of foragers, suggesting that colony age demography directly influences temporal division of labor. We tested this hypothesis by determining whether behavioral or physiological development can be accelerated, delayed, or reversed by altering colony age structure. In three out of three trials, earlier onset of foraging was induced in colonies depleted of foragers compared to colonies depleted of an equal number of bees across all age classes. In two out of three trials, delayed onset of foraging was induced in colonies in which foragers were confined compared to colonies with free-flying foragers. Finally, in three out of three trials, both endocrine and exocrine changes associated with reversion from foraging to brood care were induced in colonies composed of all old bees and devoid of brood; JH titers decreased and hypopharyngeal glands regenerated. These results demonstrate that plasticity in age-related division of labor in honey bee colonies is at least partially controlled by social factors. The implications of these results are discussed for the recently developed ‘‘activator-inhibitor” model for honey bee behavioral development. Received: 8 November 1995/Accepted after revision: 10 May 1996  相似文献   

4.
Regulation of honey bee age polyethism by juvenile hormone   总被引:5,自引:1,他引:4  
Summary Previous studies suggested that juvenile hormone (JH) is involved in the regulation of physiological processes that are associated with division of labor in honey bees but the effects of JH on behavior were not clear. The hypothesis that JH affects worker age polyethism was tested by observing individually marked bees topically treated with different doses of the JH analog methoprene. Methoprene caused dose-dependent changes in the timing and frequency of occurrence of four important age-dependent tasks: brood and queen care, food storage, nest maintenance, and foraging. Weak or no effects were observed for social interactions, self-grooming, and other non-task behaviors that were not performed in an age-dependent manner. These results support the hypothesis that JH is involved in the control of age polyethism. A model is presented that explains the role of JH in regulating division of labor. JH may regulate the colony's allocation of labor by altering the probabilities of response to tasks. According to this model, hormone titers increase with age according to a genetically determined pattern of development, but this rise may be modulated by environmental and colony factors such as food availability and population structure. Extrinsic regulation of JH may be a mechanism underlying the ability of workers to respond to changing colony needs.  相似文献   

5.
Foraging behavior and the mechanisms that regulate foraging activity are important components of social organization. Here we test the hypothesis that brood pheromone modulates the sucrose response threshold of bees. Recently the honeybee proboscis extension response to sucrose has been identified as a ”window” into a bee’s perception of sugar. The sucrose response threshold measured in the first week of adult life, prior to foraging age, predicts forage choice. Bees with low response thresholds are more likely to be pollen foragers and bees with high response thresholds are more likely to forage for nectar. There is an associated genetic component to sucrose response thresholds and forage choice such that bees selected to hoard high quantities of pollen have low response thresholds and bees selected to hoard low quantities of pollen have higher response thresholds. The number of larvae in colonies affects the number of bees foraging for pollen. Hexane-extractable compounds from the surface of larvae (brood pheromone) significantly increase the number of pollen foragers. We tested the hypothesis that brood pheromone decreases the sucrose response threshold of bees, to suggest a pheromone- modulated sensory-physiological mechanism for regulating foraging division of labor. Brood pheromone significantly decreased response thresholds as measured in the proboscis extension response assay, a response associated with pollen foraging. A synthetic blend of honeybee brood pheromone stimulated and released pollen foraging in foraging bioassays. Synthetic brood pheromone had dose-dependent effects on the modulation of sucrose response thresholds. We discuss how brood pheromone may act as a releaser of pollen foraging in older bees and a primer pheromone on the development of response thresholds and foraging ontogeny of young bees. Received: 24 May 2000 / Revised: 26 September 2000 / Accepted: 15 October 2000  相似文献   

6.
Honey bee foragers specialize on collecting pollen and nectar. Pollen foraging behavior is modulated by at least two stimuli within the nest: the presence of brood pheromone and young larvae and the quantity of stored pollen. Genetic variation in pollen foraging behavior has been demonstrated repeatedly. We used selected high and low pollen-hoarding strains of bees that differ dramatically in the quantity of pollen collected to determine if the observed differences in foraging could be explained by differential responses to brood stimuli. Workers from the high and low pollen-hoarding strains and wild-type bees were co-fostered in colonies with either brood or no brood. As expected based on previous studies, returning high pollen-hoarding foragers collected heavier pollen loads and lighter nectar loads than low pollen-hoarding bees. Effects of brood treatment were also observed; bees exposed to brood collected heavier pollen loads and initiated foraging earlier than those from broodless colonies. More specifically, brood treatment resulted in increased pollen foraging in high pollen-hoarding bees but did not affect pollen foraging in low pollen-hoarding bees, suggesting that high pollen-hoarding bees are more sensitive to the presence of brood. However, response to brood stimuli does not sufficiently explain the differences in foraging behavior between the strains since these differences persisted even in the absence of brood.  相似文献   

7.
The daily patterns of task performance in honey bee colonies during behavioral development were studied to determine the role of circadian rhythmicity in age-related division of labor. Although it is well known that foragers exhibit robust circadian patterns of activity in both field and laboratory settings, we report that many in-hive tasks are not allocated according to a daily rhythm but rather are performed 24 h per day. Around-the-clock activity at the colony level is accomplished through the performance of some tasks by individual workers randomly with respect to time of day. Bees are initially arrhythmic with respect to task performance but develop diel rhythmicity, by increasing the occurrence of inactivity at night, prior to becoming foragers. There are genotypic differences for age at onset of rhythmicity and our results suggest that these differences are correlated with genotypic variation in rate of behavioral development: genotypes of bees that progressed through the age polyethism schedule faster also acquired behavioral rhythmicity at an earlier age. The ontogeny of circadian rhythmicity in honey bee workers ensures that essential in-hive behaviors are performed around the clock but also allows the circadian clock to be engaged before the onset of foraging. Received: 6 October 1997 / Accepted after revision: 28 March 1998  相似文献   

8.
Honey bee workers exhibit an age-based division of labor (temporal polyethism, DOL). Younger bees transition through sets of tasks within the nest; older bees forage outside. Components of temporal polyethism remain unrevealed. Here, we investigate the timing and pattern of pre-foraging behavior in distinct strains of bees to (1) determine if a general pattern of temporal DOL exists in honey bees, (2) to demonstrate a direct genetic impact on temporal pacing, and (3) to further elucidate the mechanisms controlling foraging initiation. Honey bees selected for differences in stored pollen demonstrate consistent differences in foraging initiation age. Those selected for increased pollen storage (high pollen hoarding strain, HSBs) initiate foraging earlier in life than those selected for decreased pollen storage (low pollen hoarding strain, LSBs). We found that HSBs both initiate and terminate individual pre-foraging tasks earlier than LSBs when housed in a common hive environment. Unselected commercial bees (wild type) generally demonstrated intermediate behavioral timing. There were few differences between genotypes for the proportion of pre-foraging effort dedicated to individual tasks, though total pre-foraging effort differences differed dramatically. This demonstrates that behavioral pacing can be accelerated or slowed, but the pattern of behavior is not fundamentally altered, suggesting a general pattern of temporal behavior in honey bees. This also demonstrates direct genetic control of temporal pacing. Finally, our results suggest that earlier HSB protein (pollen) consumption termination compared to LSBs may contribute to an earlier decline in hemolymph vitellogenin protein titers, which would explain their earlier onset of foraging.  相似文献   

9.
杀虫剂在最近的蜜蜂数量减少中所扮演的角色是有争议的,部分原因是实地研究常常无法检测到实验室研究所预测的效果。这种不一致性突出了蜜蜂毒理学研究领域的一个关键空白:对蜜蜂在它们的环境中杀虫剂暴露的模式和过程知之甚少。本文作者提出蜜蜂暴露杀虫剂的2个关键过程:1)工蜂采集花蜜的过程中收集农药;2)工蜂带回的农药在蜂巢中的再分配。工蜂收集农药的过程必须被理解为环境污染和蜜蜂觅食活动之间的时空交集。这意味着农药暴露是分配的,而不是离散的,觅食工蜂的一个子集可能会获得有害剂量的农药,而群体暴露将会显得安全。蜂箱中农药的分布是一个复杂的过程,主要是由群体成员之间食物转移的相互作用而产生,而这一过程中花粉和花蜜之间有重要的区别。因此应该优先将关于蜜蜂生物学的大量文献用于发展更严谨的蜂蜜农药暴露机制模型。与效应机制模型结合,暴露机制模型具有整合蜜蜂毒理学领域的潜力,以促进风险评估和基础研究。
精选自Sponsler, D. B. and Johnson, R. M. (2017), Mechanistic modeling of pesticide exposure: The missing keystone of honey bee toxicology. Environmental Toxicology and Chemistry, 36: 871–881. doi: 10.1002/etc.3661
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.3661/full
  相似文献   

10.
The regulation of protein collection through pollen foraging plays an important role in pollination and in the life of bee colonies that adjust their foraging to natural variation in pollen protein quality and temporal availability. Bumble bees occupy a wide range of habitats from the Nearctic to the Tropics in which they play an important role as pollinators. However, little is known about how a bumble bee colony regulates pollen collection. We manipulated protein quality and colony pollen stores in lab-reared colonies of the native North American bumble bee, Bombus impatiens. We debut evidence that bumble bee colony foraging levels and pollen storage behavior are tuned to the protein quality (range tested: 17–30% protein by dry mass) of pollen collected by foragers and to the amount of stored pollen inside the colony. Pollen foraging levels (number of bees exiting the nest) significantly increased by 55%, and the frequency with which foragers stored pollen in pots significantly increased by 233% for pollen with higher compared to lower protein quality. The number of foragers exiting the nest significantly decreased (by 28%) when we added one pollen load equivalent each 5 min to already high intranidal pollen stores. In addition, pollen odor pumped into the nest is sufficient to increase the number of exiting foragers by 27%. Foragers directly inspected pollen pots at a constant rate over 24 h, presumably to assess pollen levels. Thus, pollen stores can act as an information center regulating colony-level foraging according to pollen protein quality and colony need. An erratum to this article can be found at  相似文献   

11.
Within-nest temporal polyethism in the honey bee   总被引:1,自引:1,他引:0  
A well-regulated division of labor has been one of the core adaptations leading to the success of the social insects. Honeybee division of labor has been classically viewed as a sequence of age-related changes in task performance. Kolmes questioned this view arguing that his studies did not support the existence of any age-related within-nest specialization. To resolve this controversy, Kolmes and Seeley conducted a joint study with mixed results. They found support for a cell cleaning caste, but diverged on whether their results supported distinct nursing and middle age castes. In this paper, I follow up on their work to resolve the question of caste number in within-nest honey bees. To determine whether nurses (typically aged 4–12 days) and middle-aged bees (aged 12–20 days) have distinct task repertoires, I conducted focal animal observations on a large number of workers in both age groups working within the same nests at the same time. The results support their being two castes of within-nest bees. Young bees specialized on brood care tasks, while middle-aged bees specialized on nectar processing and nest maintenance. Middle-aged bees were observed caring for brood in less than 1% of the observations. Moreover, both castes exhibited movement patterns that correspond to the traditional view that nurses stay within the broodnest, while middle-aged bees move around a great deal in search of work throughout the nest. A review of studies conducted since the debate of Seeley and Kolmes supports the reliability of these results. This work has relevance for proximate models of temporal polyethism, as it is often assumed by such models that there is only one within-nest caste in the honeybee.  相似文献   

12.
Pollen is the sole source of protein for honey bees, most importantly used to rear young. Honey bees are adept at regulating pollen stores in the colonies based on the needs of the colony. Mechanisms for regulation of pollen foraging in honey bee are complex and remain controversial. In this study, we used a novel approach to test the two competing hypothesis of pollen foraging regulation. We manipulated nurse bee biosynthesis of brood food using a protease inhibitor that interferes with midgut protein digestion, significantly decreasing the amount of protein extractable from hypopharyngeal glands. Experimental colonies were given equal amounts of protease inhibitor-treated and untreated pollen. Colonies receiving protease inhibitor treatment had significantly lower hypopharyngeal gland protein content than controls. There was no significant difference in the ratio of pollen to nonpollen foragers between the treatments. Pollen load weights were also not significantly different between treatments. Our results supported the pollen foraging effort predictions generated from the direct independent effects of pollen on the regulation of pollen foraging and did not support the prediction that nurse bees regulate pollen foraging through amount of hypopharyngeal gland protein biosynthesis.  相似文献   

13.
Honey bee colonies furnish their nests with two types of comb distinguished by cell size: large cells for rearing males (drone comb) and small cells for rearing workers (worker comb). The bees actively regulate the relative quantity of each type, a behavior likely to be important in setting a colony's sex ratio. Experimental analysis of the information pathways and control mechanisms responsible for this regulation found the following results. The amount of drone comb in a nest is governed by negative feedback from drone comb already constructed. This feedback depends on the workers having direct contact with the drone comb in their nest, but does not depend on the queen's contact with the comb. The comb itself, rather than the brood within it, is sufficient to provide the negative feedback, although the brood may also contribute to the effect. These findings show that drone comb regulation does not depend on the queen acting as a centralized information gatherer and behavioral controller. Instead, the evidence points to a decision-making process distributed across the population of worker bees, a control architecture typical of colony organization in honey bees and other large-colony insect societies. Received: 24 May 1997 / Accepted after revision: 30 August 1997  相似文献   

14.
Small societies of totipotent individuals are good systems in which to study the costs and benefits of group living that are central to the origin and maintenance of eusociality. For instance, in eusocial halictid bees, some females remain in their natal nest to help rear the next brood. Why do helpers stay in the nest? Do they really help, and if yes, is their contribution large enough to voluntarily forfeit direct reproduction? Here, we estimate the impact of helpers on colony survival and productivity in the sweat bee Halictus scabiosae. The number of helpers was positively associated with colony survival and productivity. Colonies from which we experimentally removed one helper produced significantly fewer offspring. However, the effect of helper removal was very small, on average. From the removal experiment, we estimated that one helper increased colony productivity by 0.72 additional offspring in colonies with one to three helpers, while the increase was smaller and not statistically significant in larger colonies. We conclude that helpers do actually help in this primitively eusocial bee, particularly in small colonies. However, the resulting increase in colony productivity is low, which suggests that helpers may be constrained in their role or may attempt to reproduce.  相似文献   

15.
Summary To place social insect foraging behavior within an evolutionary context, it is necessary to establish relationships between individual foraging decisions and parameters influencing colony fitness. To address this problem, we examined interactions between individual foraging behavior and pollen storage levels in the honey bee, Apis mellifera L. Colonies responded to low pollen storage conditions by increasing pollen intake rates 54% relative to high pollen storage conditions, demonstrating a direct relationship between pollen storage levels and foraging effort. Approximately 80% of the difference in pollen intake rates was accounted for by variation in individual foraging effort, via changes in foraging activity and individual pollen load size. An additional 20% resulted from changes in the proportion of the foraging population collecting pollen. Under both high and low pollen storage treatments, colonies returned pollen storage levels to pre-experimental levels within 16 days, suggesting that honey bees regulate pollen storage levels around a homeostatic set point. We also found a direct relationship between pollen storage levels and colony brood production, demonstrating the potential for cumulative changes in individual foraging decisions to affect colony fitness. Offprint requests to: J.H. Fewell at the current address  相似文献   

16.
Summary The currently accepted model for division of labor in honey bees, Apis mellifera, explains variation in the frequency at which workers perform specific tasks as the result of differences in age and environment. Although well documented, the model is incomplete because it fails to take genotypic variability among workers into account. We show that workers from two genetically distinct strains of honey bees differed in the age at which they began foraging and in the relative frequency at which they foraged for pollen. Workers from the two strains also exhibited significant spatial heterogeneity within the nest, suggesting that they differed in the frequency at which they performed within-nest tasks as well. A heuristic model of division of labor that incorporates genotypic effects is presented.  相似文献   

17.
Foraging and the mechanisms that regulate the quantity of food collected are important evolutionary and ecological attributes for all organisms. The decision to collect pollen by honey bee foragers depends on the number of larvae (brood), amount of stored pollen in the colony, as well as forager genotype and available resources in the environment. Here we describe how brood pheromone (whole hexane extracts of larvae) influenced honey bee pollen foraging and test the predictions of two foraging-regulation hypotheses: the indirect or brood-food mechanism and the direct mechanism of pollen-foraging regulation. Hexane extracts of larvae containing brood pheromone stimulated pollen foraging. Colonies were provided with extracts of 1000 larvae (brood pheromone), 1000 larvae (brood), or no brood or pheromone. Colonies with brood pheromone and brood had similar numbers of pollen foragers, while those colonies without brood or pheromone had significantly fewer pollen foragers. The number of pollen foragers increased more than 2.5-fold when colonies were provided with extracts of 2000 larvae as a supplement to the 1000 larvae they already had. Within 1 h of presenting colonies with brood pheromone, pollen foragers responded to the stimulus. The results from this study demonstrate some important aspects of pollen foraging in honey bee colonies: (1) pollen foragers appear to be directly affected by brood pheromone, (2) pollen foraging can be stimulated with brood pheromone in colonies provided with pollen but no larvae, and (3) pollen forager numbers increase with brood pheromone as a supplement to brood without increasing the number of larvae in the colony. These results support the direct-stimulus hypothesis for pollen foraging and do not support the indirect-inhibitor, brood-food hypothesis for pollen-foraging regulation. Received: 5 March 1998 / Accepted after revision: 29 August 1998  相似文献   

18.
The controversy concerning the extent to which the organization of division of labor in social insects is a developmental process or is based on task allocation dynamics that emerge from colony need independent of worker age and endocrine or neural state has yet to be resolved. We present a novel analysis of temporal polyethism in the ant Pheidole dentata, demonstrating that task attendance by minor workers does not shift among spatially associated sets of behaviors that minimally overlap but rather expands with age. Our results show that the number of tasks performed by older minors increases through the addition and retention of behaviors, with up to a sixfold increase in repertoire size from day 1 to day 20 of adult life. We also show that older minors respond to colony needs by performing significantly more brood care as its demand increases, indicating that they can quickly upregulate nursing according to labor requirements. This level of plasticity was absent in younger siblings. The breadth of responsiveness to task-related olfactory stimuli increased with age. In a binary choice test in which young and old minor workers could orient toward odorants from brood or food, older workers responded to both brood and food, whereas young workers responded only to brood. These dissimilar responses to stimuli associated with nursing and foraging indicate age-related differences in sensory ability and provide a physiological basis for the age-related repertoire expansion model. We discuss repertoire expansion in P. dentata in light of behavioral development and caste flexibility in ants.  相似文献   

19.
Information exchange of environmental cues facilitates decision-making processes among members of insect societies. In honeybee foraging, it is unknown how the odor cues of a resource are relayed to inactive nest mates to enable resource exploitation at specific scented sources. It is presumed that bees need to follow the dance or to be involved in trophallaxis with a successful forager to obtain the discovered floral scent. With this in mind, we evaluated the influence of food scent relayed through in-hive interactions and the subsequent food choices. Results obtained from five colonies demonstrated that bees arriving at a feeding area preferred to land at a feeder carrying the odor currently exploited by the trained forager. The bees that landed at this feeder also showed more in-hive encounters with the trained forager than the individuals that landed at the alternative scented feeder. The most frequent interactions before landing at the correct feeder were body contacts with the active forager, a behavior that involves neither dance following nor trophallaxis. In addition, a reasonable proportion of successful newcomers showed no conspicuous interactions with the active forager. Results suggest that different sources of information can be integrated inside the hive to establish an odor-rewarded association useful to direct honeybees to a feeding site. For example, simple contacts with foragers or food exchanges with non-active foragers seem to be enough to choose a feeding site that carries the same scent collected by the focal forager.  相似文献   

20.
Many organisms live in crowded groups where social density affects behavior and fitness. Social insects inhabit nests that contain many individuals where physical interactions facilitate information flow and organize collective behaviors such as foraging, colony defense, and nest emigration. Changes in nest space and intranidal crowding can alter social interactions and affect worker behavior. Here, I examined the effects of social density on foraging, scouting, and polydomy behavior in ant colonies—using the species Temnothorax rugatulus. First, I analyzed field colonies and determined that nest area scaled isometrically with colony mass—this indicates that nest area changes proportionally with colony size and suggests that ants actively control intranidal density. Second, laboratory experiments showed that colonies maintained under crowded conditions had greater foraging and scouting activities compared to the same colonies maintained at a lower density. Moreover, crowded colonies were significantly more likely to become polydomous. Polydomous colonies divided evenly based on mass between two nests but distributed fewer, heavier workers and brood to the new nests. Polydomous colonies also showed different foraging and scouting rates compared to the same colonies under monodomous conditions. Combined, the results indicate that social density is an important colony phenotype that affects individual and collective behavior in ants. I discuss the function of social density in affecting communication and the organization of labor in social insects and hypothesize that the collective management of social density is a group level adaptation in social insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号