首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
The cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) is one of the most serious crop pests in northern China, calling for accurate prediction of pest outbreaks and strategies for pest control. A computer model is developed to simulate the population dynamics of H. armigera over a wide area in northern China. The area considered covers 12 provinces where serious outbreaks of H. armigera have been observed. In this model, pest development is driven by local ambient temperature, and adults migrate long distances between regions and select preferred hosts for oviposition within a region. Six types of host including cotton, wheat, corn, peanut, soybean and a single category composed of all other minor hosts are considered in this model. Survival rates of eggs and larvae are based on life-table data, and simulated as a function of host type, host phenology and temperature. The incidence of diapause depends on temperature and photoperiod experienced during the larval stage. Survival rate of non-diapause pupae is a nonlinear function of rainfall, and overwinter survival rate is a nonlinear function of temperature. Insecticide is applied when population density exceeds the economic threshold on a host crop within a region. Comparisons of model output with light-trap data indicate that our model reflects the pest population dynamics over a wide area, and could potentially be used for testing novel pest control strategies in northern China.  相似文献   

2.
Several studies have proven the importance of field margins in sustaining biodiversity and other work has been done on the effect of field management on field margin flora. However few models have been built to predict the effects of field management on the flora. Our project addresses this need for a model capable of predicting the effect of cropping techniques and their timing on the flora of field margins. Primula vulgaris is a biodiversity indicator, characteristic of undisturbed flora and found in field margins and woodlands: its population has been declining for several years. We created a temporal matrix model of P. vulgaris populations on field margins, taking into account the effects of field, field margin and roadside management based on literature and expert knowledge. We then analysed its sensitivity to demographic parameters by comparing lambda (growth rate) sensitivity and elasticity. We compared the management parameter effect using the relative growth rate of the population after 6 years of simulation. Sensitivity analysis to biological parameters showed the importance of adult survival and seed production and germination. Results show that P. vulgaris is particularly sensitive to broad-spectrum herbicides and that other management techniques like early mowing, scything and scrub-killer (diluted broad-spectrum herbicide or specific herbicide) are less aggressive. Our simulations show that management of cash crops in Brittany is too aggressive for P. vulgaris populations and that 4-5 years of grassland in the adjacent field are necessary to maintain populations.  相似文献   

3.
Most fish farming waste output models provide gross waste rates as a function of stocked or produced biomass for a year or total culture cycle, but without contemplating the temporality of the discharges. This work aims to ascertain the temporal pattern of waste loads by coupling available growth and waste production models and developing simulation under real production rearing conditions, considering the overlapping of batches and management of stocks for three widely cultured species in the Mediterranean Sea: gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and Atlantic bluefin tuna (Thunnus thynnus). For a similar annual biomass production, the simulations showed that waste output and temporal dumping patterns differ between the three species as a result of the disparities in growth velocity, nutrient digestibility, maintenance metabolic budget and husbandry. The simulations allowed the temporal patterns including the periods of maximum discharge and the dissolved and particulate nitrogen and phosphorus content in the wastes released to be determined, both of which were seen to be species-specific.  相似文献   

4.
The benefits of genetically modified herbicide-tolerant (GMHT) sugar beet (Beta vulgaris) varieties stem from their presumed ability to improve weed control and reduce its cost, particularly targeting weed beet, a harmful annual weedy form of the genus Beta (i.e. B. vulgaris ssp. vulgaris) frequent in sugar beet fields. As weed beet is totally interfertile with sugar beet, it is thus likely to inherit the herbicide-tolerance transgene through pollen-mediated gene flow. Hence, the foreseeable advent of HT weed beet populations is a serious threat to the sustainability of GM sugar beet cropping systems. For studying and quantifying the long-term effects of cropping system components (crop succession and cultivation techniques) on weed beet population dynamics and gene flow, we developed a biophysical process-based model called GeneSys-Beet in a previous study. In the present paper, the model was employed to identify and rank the weed life-traits as function of their effect on weed beet densities and genotypes, using a global sensitivity analysis to model parameters. Monte Carlo simulations with simultaneous randomization of all life-trait parameters were carried out in three cropping systems contrasting for their risk for infestation by HT weed beets. Simulated weed plants and bolters (i.e. beet plants with flowering and seed-producing stems) were then analysed with regression models as a function of model parameters to rank processes and life-traits and quantify their effects. Key parameters were those determining the timing and success of growth, development, seed maturation and the physiological end of seed production. Timing parameters were usually more important than success parameters, showing for instance that optimal timing of weed management operations is more important than its exact efficacy. The ranking of life-traits though depended on the cropping system and, to a lesser extent, on the target variable (i.e. GM weeds vs. total weed population). For instance, post-emergence parameters were crucial in rotations with frequent sugar beet crops whereas pre-emergence parameters were most important when sugar beet was rare. In the rotations with frequent sugar beet and insufficient weed control, interactions between traits were small, indicating diverse populations with contrasted traits could prosper. Conversely, when sugar beet was rare and weed control optimal, traits had little impact individually, indicating that a small number of optimal combinations of traits would be successful. Based on the analysis of sugar beet parameters and genetic traits, advice for the future selection of sugar beet varieties was also given. In climatic conditions similar to those used here, the priority should be given to limiting the presence of hybrid seeds in seed lots rather than decreasing varietal sensitivity to vernalization.  相似文献   

5.
The Manila clam Ruditapes philippinarum (Adams and Reeve, 1850) is one of the mollusc species that, driven mainly by the shellfish market industry, has extended throughout the world, far beyond the limits of its original habitat. The Manila clam was introduced into France for aquaculture purposes, between 1972 and 1975. In France, this venerid culture became increasingly widespread and, since 1988, this species has colonised most of the embayments along the French Atlantic coast. In 2004, this development resulted in a fishery of ca. 520 t in Arcachon Bay.  相似文献   

6.
Summary. In a local population of Ostrinia zaguliaevi Mutuura & Munroe (Lepidoptera: Crambidae), extensive variation was found in the blend ratio of three sex pheromone components, (Z)-9-tetradecenyl acetate (Z9-14:OAc, 10.2-63.8%), (Z)-11-tetradecenyl acetate (Z11-14:OAc, 32.2-86.8%), and (E)-11-tetradecenyl acetate (E11-14:OAc, 2.1-11.9%). The variation was observed over a three-year period (2002-2004). Mother-daughter regression analyses have shown that although the heritability of the minor component E11-14:OAc was not significant, the heritability of the proportions of Z9-14:OAc and Z11-14:OAc were substantial (0.5–0.6). In artificial selection experiments, the mean % Z9-14:OAc in the sex pheromone changed significantly within three generations (37% in the control line, 48 and 52% for two lines selected for increase, and 23 and 30% for two lines selected for decrease). Despite these changes, the amounts of fatty acyl pheromone precursors, (Z)-9-, (Z)-11- and (E)-11-tetradecenoate, in the pheromone gland were not significantly affected by the selection. Taken together, variation in the pheromone blend of O. zaguliaevi is likely to be attributable to a few genes involved in the reduction or acetylation of fatty acyl pheromone precursors, the last two steps in pheromone biosynthesis.  相似文献   

7.
The dynamics that govern the elevation of a coastal wetland relative to sea level are complex, involving non-linear feedbacks among opposing processes. Changes in the balance between these processes can result in significant alterations to vegetation communities that are adapted to a specific range of water levels. Given that current sedimentation rates in Padilla Bay, Washington are likely less than historical levels and that eustatic sea level rise is accelerating, the extensive Zostera marina (eelgrass) meadows in the bay may be at risk of eventual submergence. We developed a spatially explicit relative elevation model and used it to project changes in the productivity and distribution of eelgrass in Padilla Bay over the next century. The model is mechanistic and incorporates many of the processes and feedbacks that govern coastal wetland elevation change. Accretion estimates made using 210Pb dating of sediment cores, sediment characteristics measured within cores, and eelgrass productivity and decomposition data were used to initialize and calibrate the model. Validation was performed using an elevation change rate measured with a network of surface elevation tables. Both the field data and model simulations revealed a net accretion deficit for the bay. Simulations using current rates of sea level rise indicated an overall expansion of eelgrass within Padilla Bay over the next century as it migrates from the center of the bay shoreward.  相似文献   

8.
Contemporary shallow lakes theory proposes that these ecosystems may experience abrupt regime shifts due to small changes in controlling variables or triggers. So far, these triggers have been related mostly to nutrients as the immediate driver. During May 2004 the río Cruces wetland, a Ramsar site located in Southern Chile, underwent a major regime shift, from a clear water state, vastly dominated by the invasive macrophyte Egeria densa, to a turbid water state. In this article we show, through the analysis of long-term meteorological data that late fall 2004 was anomalous due to the presence of a high-pressure cell that persisted most of the month of May over Southern Chile. This climatic event caused an almost complete absence of precipitations and lower temperatures during this period, including several freezing nights. Eco-physiological experiments showed that 6 h exposure to desiccation kill the macrophyte. We developed a simple-biology dynamic model, under Stella Research 9.1, to show that the climatic anomaly of May 2004, plus the increased sedimentation of the wetland's floodplains, and the associated response of E. densa, explains its sudden disappearance from río Cruces wetland.  相似文献   

9.
Ostertagia ostertagi is a nematode, predominantly affecting cattle in the Pampean region of Argentina. A mathematical model parametrized using fuzzy rule-based systems of the Takagi-Sugeno-Kant type (FTSK) for estimating the development time from egg to infecting larval stage L3 of the gastrointestinal parasite O. ostertagi is here proposed. The estimation of development time of O. ostertagi is essential for the generation of appropriate control mechanisms, since this provides information about the time when parasites are ready to migrate to pastures. For the purpose of reflecting the natural environmental conditions, the mean daily temperature is taken as the main and only regulator of the development time. Humidity conditions are considered to be sufficient for the normal development of the larvae. Hence the individual's daily growth is a function of its length and the mean temperature recorded on the previous day. It is expressed in terms of a difference equation with fuzzy parameters, which are defined using laboratory data. Model outputs are tested against results of field experiments. Simulation results are very satisfactory, yielding a mean estimation error (MEE) of 0.64 weeks, with variance 0.34, and a determination coefficient R2 = 0.74. The model clearly exhibits an inverse relationship between development time and temperature both in controlled and in field conditions. It also exhibits a very sensitive response both to the order in which the temperature sequence occurs, - reproducing the differences observed between spring and autumn - and to the amplitude of the temperature range.  相似文献   

10.
Ticks act as vectors of pathogens that can be harmful to animals and/or humans. Epidemiological models can be useful tools to investigate the potential effects of control strategies on diseases such as tick-borne diseases. The modelling of tick population dynamics is a prerequisite to simulating tick-borne diseases and the corresponding spread of the pathogen. We have developed a dynamic model to simulate changes in tick density at different stages (egg, larva, nymph and adult) under the influence of temperature. We have focused on the tick Ixodes ricinus, which is widespread in Europe. The main processes governing the biological cycles of ticks were taken into account: egg laying, hatching, development, host (small, mainly rodents, or large, like deer and cattle, mammals) questing, feeding and mortality. This model was first applied to a homogeneous habitat, where simulations showed the ability of the model to reproduce the general patterns of tick population dynamics. We considered thereafter a multi-habitat model, where three different habitats (woodland, ecotone and meadow) were connected through host migration. Based on this second application, it appears that migration from woodland, via the ecotone, is necessary to sustain the presence of ticks in the meadow. Woodland can therefore be considered as a source of ticks for the meadow, which in turn can be regarded as a sink. The influence of woodland on surrounding tick densities increases in line with the area of this habitat before reaching a plateau. A sensitivity analysis to parameter values was carried out and demonstrated that demographic parameters (sex ratio, development, mortality during feeding and questing, host finding) played a crucial role in the determination of questing nymph densities. This type of modelling approach provides insight into the influence of spatial heterogeneity on tick population dynamics.  相似文献   

11.
This study provides a method for assessing a multiplicity of environmental factors in red spruce growth in the Great Smoky Mountains National Park (GSMNP) of Southeastern USA. Direct and indirect factors in the annual growth increment are first organized into a schematic input-output envirogram (ARIRS), and this information is then used to construct a simulation model (ARIM). The envirogram represents a structured conceptualization of most environmental factors involved in growth, as developed from relevant literature. This interdisciplinary synthesis distinguishes direct vs. indirect factors in growth and takes account of the systems ecology concept that indirect factors may be as important as or more important than direct ones in regulating growth. The ARIRS envirogram summarizes hierarchically organized, within- and cross-scale, local-to-global interactions, and its construction makes it obvious that growth is influenced by many cross-scale spatiotemporal interactions. More research on genecology is still needed to clarify the role of phenotypic plasticity and adaptive capacity in nutrient cycling, global change, and human disturbance.  相似文献   

12.
A new model for determining leaf growth in vegetative shoots of the seagrass Zostera marina (eelgrass) is described. This model requires the weights of individual mature and immature whole leaves and leaf plastochrone interval (PL) as parameters, differing from the conventional leaf marking technique (CLM) that requires cutting and separation between new and old tissue of leaves. The techniques required for the model are the same as for the plastochrone method, but the parameters differ between both methods in use of the weight of individual immature leaves. In a mesocosm study, eelgrass growth was examined, and parameters for the new model and plastochrone method (the weights of individual mature and immature leaves and PL) were measured. Leaf growth rate was measured using the CLM and determined by the new method and the plastochrone method. The results were then compared between the CLM, the new model, and the plastochrone method. The results obtained with the new model were similar to those obtained with the CLM. However, the results of the plastochrone method differed from those of the CLM, while the weight of immature leaves varied seasonally. The new model was also used to determine leaf growth in a natural eelgrass bed in Mikawa Bay, Japan, and revealed the growth rates in all shoots and those of different ages. This method would be advantageous as an accurate means of direct measurement in fieldwork, and should therefore be a useful tool for monitoring seagrass growth.  相似文献   

13.
This paper aims to find patterns in nest site selection by Little Terns Sterna albifrons, in the Nakdong estuary in South Korea. This estuary is important waterfowl stopover and breeding habitat, located in the middle of the East Asia-Australasian Flyway. The Little Tern is a common species easily observed near the seashore but their number is gradually declining around the world. We investigated their nests and eggs on a barrier islet in the Nakdong estuary during the breeding season (May to June, 2007), and a pattern for the nest site selection was identified using genetic programming (GP). The GP generated a predictive rule-set model for the number of Little Tern nests (training: R2 = 0.48 and test: 0.46). The physical features of average elevation, variation of elevation, plant coverage, and average plant height were estimated to determine the influence on nest numbers for Little Tern. A series of sensitivity analyses stressed that mean elevation and vegetation played an important role in nest distribution for Little Tern. The influence of these two variables could be maximized when elevation changed moderately within the sampled quadrats. The study results are regarded as a good example of applying GP to vertebrate distribution patterning and prediction with several important advantages compared to conventional modeling techniques, and can help establish a management or restoration strategy for the species.  相似文献   

14.
We describe an ecotoxicological model that simulates the sublethal and lethal effects of chronic, low-level, chemical exposure on birds wintering in agricultural landscapes. Previous models estimating the impact on wildlife of chemicals used in agro-ecosystems typically have not included the variety of pathways, including both dermal and oral, by which individuals are exposed. The present model contains four submodels simulating (1) foraging behavior of individual birds, (2) chemical applications to crops, (3) transfers of chemicals among soil, insects, and small mammals, and (4) transfers of chemicals to birds via ingestion and dermal exposure. We demonstrate use of the model by simulating the impacts of a variety of commonly used herbicides, insecticides, growth regulators, and defoliants on western burrowing owls (Athene cunicularia hypugaea) that winter in agricultural landscapes in southern Texas, United States. The model generated reasonable movement patterns for each chemical through soil, water, insects, and rodents, as well as into the owl via consumption and dermal absorption. Sensitivity analysis suggested model predictions were sensitive to uncertainty associated with estimates of chemical half-lives in birds, soil, and prey, sensitive to parameters associated with estimating dermal exposure, and relatively insensitive to uncertainty associated with details of chemical application procedures (timing of application, amount of drift). Nonetheless, the general trends in chemical accumulations and the relative impacts of the various chemicals were robust to these parameter changes. Simulation results suggested that insecticides posed a greater potential risk to owls of both sublethal and lethal effects than do herbicides, defoliants, and growth regulators under crop scenarios typical of southern Texas, and that use of multiple indicators, or endpoints provided a more accurate assessment of risk due to agricultural chemical exposure. The model should prove useful in helping prioritize the chemicals and transfer pathways targeted in future studies and also, as these new data become available, in assessing the relative danger to other birds of exposure to different types of agricultural chemicals.  相似文献   

15.
The growth patterns of macroalgae in three-dimensional space can provide important information regarding the environments in which they live, and insights into changes that may occur when those environments change due to anthropogenic and/or natural causes. To decipher these patterns and their attendant mechanisms and influencing factors, a spatially explicit model has been developed. The model SPREAD (SPatially-explicit Reef Algae Dynamics), which incorporates the key morphogenetic characteristics of clonality and morphological plasticity, is used to investigate the influences of light, temperature, nutrients and disturbance on the growth and spatial occupancy of dominant macroalgae in the Florida Reef Tract. The model species, Halimeda and Dictyota spp., are modular organisms, with an “individual” being made up of repeating structures. These species can also propagate asexually through clonal fragmentation. These traits lead to potentially indefinite growth and plastic morphology that can respond to environmental conditions in various ways. The growth of an individual is modeled as the iteration of discrete macroalgal modules whose dynamics are affected by the light, temperature, and nutrient regimes. Fragmentation is included as a source of asexual reproduction and/or mortality. Model outputs are the same metrics that are obtained in the field, thus allowing for easy comparison. The performance of SPREAD was tested through sensitivity analysis and comparison with independent field data from four study sites in the Florida Reef Tract. Halimeda tuna was selected for initial model comparisons because the relatively untangled growth form permits detailed characterization in the field. Differences in the growth patterns of H. tuna were observed among these reefs. SPREAD was able to closely reproduce these variations, and indicate the potential importance of light and nutrient variations in producing these patterns.  相似文献   

16.
In the present work, source apportionment studies were carried out for particulate matter – one among the significant pollutants as addressed by The National Ambient Air Quality Standards. Advantages and disadvantages of each receptor model were addressed using a combined receptor model which integrates Factor Analysis (FA), Positive Matrix Factorisation (PMF) and Chemical Mass Balance (CMB). Verification of the approach was done using sets of synthetic data as well as field data from Kozhikode. Sampling was carried out in National Institute of Technology, Calicut for a period of over 26 days with 24-hour sampling. The sampling gave an average PM concentration value in the range of 29.174–129.176 µg m?3. Studies using field data revealed five dominant sources and their contributions obtained from CMB and PMF were compared. Soil dust (contribution from CMB: 18%; contribution from PMF: 16%), marine aerosol (17%; 25%), construction and aggregate processing (46%; 11%), garden waste combustion (18%; 45%), and vehicular exhaust (1%; 3%) were major contributors in the site under study. The outcomes of the study integrated with the support of local authorities and by the acceptance of residents can definitely curb the pollution levels in the site under the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号