首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vegetation growth models often concentrate on the interaction of vegetation with soil moisture but usually omit the influence of groundwater. However the proximity of groundwater can have a profound effect on vegetation growth, because it strongly influences the spatial and temporal distribution of soil moisture and therefore water and oxygen stress of vegetation. In two papers we describe the behavior of a coupled vegetation-groundwater-soil water model including the competition for water and light. In this first paper we describe the vegetation model, compare the model to measured flux data and show the influence of water and light competition in one dimension. In the second paper we focus on the influence of lateral groundwater flow and spatial patterns along a hillslope. The vegetation model is based on a biophysical representation of the soil-plant-atmosphere continuum. Transpiration and stomatal conductance depend both on atmospheric forcing and soil moisture content. Carbon assimilation depends on environmental conditions, stomatal conductance and biochemical processes. Light competition is driven by tree height and water competition is driven by root water uptake and its water and oxygen stress reaction. The modeled and measured H2O and CO2 fluxes compare well to observations on both a diurnal and a yearly timescale. Using an upscaling procedure long simulation runs were performed. These show the importance of light competition in temperate forests: once a tree is established under slightly unfavorable soil moisture conditions it can not be outcompeted by smaller trees with better soil moisture uptake capabilities, both in dry as in wet conditions. Performing the long simulation runs with a background mortality rate reproduces realistic densities of wet and dry adapted tree species along a wet to dry gradient. These simulations show that the influence of groundwater is apparent for a large range of groundwater depths, by both capillary rise and water logging. They also show that species composition and biomass have a larger influence on the water balance in eco-hydrological systems than soil and groundwater alone.  相似文献   

2.
In many arid zones around the word, the vegetation spontaneously forms regular patterns to optimize the use of the scarce water resources. The patterns act as early warning signal that fragile ecosystems may suddenly undergo irreversible shifts, thus, interpreting the structural shape of vegetation patterns is crucial to deciphering the ecosystem history and its expected further development. The sudden and irreversible shift of delicate ecosystems as a consequence of minor variation of the climatic forcing has been studied extensively in the past. The attitude of the ecosystem to recover after a catastrophic event, such as fire, did not receive as much attention so far. Here we modelled fire, as a sudden shift of the ecosystem state variables and functionality and evaluated post-fire scenarios under the hypothesis that two major feedbacks shaped the vegetation patterns: a positive feedback between preferential infiltration and plant growth, and a second feedback between infiltration and vegetation burning. A simple model solving a set of partial differential equations for soil moisture, plant biomass, surface water and dead biomass balance predicted significantly diverse post-fire vegetation patterns depending on the fire severity and on the degree of soil water repellency induced by the vegetation burning.  相似文献   

3.
Vegetation management in shallow groundwater table environments requires an understanding of the interactions between the physical and biological factors that determine root-zone soil salinization and moisture. In this study, the effects of groundwater depth and flood irrigation strategies on water and salt dynamics and reed water use were analyzed in the shallow groundwater region of the Yellow River Delta in China using the HYDRUS-1D model. The results indicated that there is a conflict between water, salt stress, and reed water use with variations in groundwater depth. A water table depth of 3.5 m is the minimum limit to maintain a safe level of soil salinity, but at this depth, the environmental stress on reeds is worsened by the decrease in soil water storage. Maintaining the flood pulses on the wetland, especially during May, may be critical for restoring the reed wetland in the Yellow River Delta.  相似文献   

4.
张喜旺  吴炳方 《生态环境》2010,26(6):1290-1294
基于TRMM降雨降雨资料时间序列数据和MODIS-NDVI16d合成产品的时间序列数据,分析密云水库上游降雨与植被的耦合关系对侵蚀的影响。结果表明:(1)侵蚀将发生在降雨强度大,同时植被覆盖差的时段,而密云水库上游地区植被的年内生长曲线形态与降雨的分布形态相似性较大,表明研究区的植被具有较好的保护水土能力;(2)研究区侵蚀主要发生在7—8月,而在1—3月以及11—12月几乎不会发生侵蚀;(3)研究区侵蚀的发生与植被覆盖有很紧密的联系,大部分的侵蚀发生在植被覆盖差的"其他"类内。研究方法可以清楚地了解研究区内降雨与植被的耦合关系及对侵蚀的影响,研究的结果将为在年内选择具有代表性的时段分析侵蚀状况提供很好的参考资料。  相似文献   

5.
Monitoring, understanding and modelling carbon emission and fixation fluxes are key actions to guide climate change stakeholders in the application of mitigation strategies. In this study, we use the remote sensing model C-Fix at the local stand scale to improve the integration of algorithms for water and temperature limitation. These new algorithms are applied to estimate net ecosystem productivity in a fully water limited mode.  相似文献   

6.
Prognostic vegetation models have been widely used to study the interactions between environmental change and biological systems. This study examines the sensitivity of vegetation model simulations to: (i) the selection of input climatologies representing different time periods and their associated atmospheric CO2 concentrations, (ii) the choice of observed vegetation data for evaluating the model results, and (iii) the methods used to compare simulated and observed vegetation. We use vegetation simulated for Asia by the equilibrium vegetation model BIOME4 as a typical example of vegetation model output. BIOME4 was run using 19 different climatologies and their associated atmospheric CO2 concentrations. The Kappa statistic, Fuzzy Kappa statistic and a newly developed map-comparison method, the Nomad index, were used to quantify the agreement between the biomes simulated under each scenario and the observed vegetation from three different global land- and tree-cover data sets: the global Potential Natural Vegetation data set (PNV), the Global Land Cover Characteristics data set (GLCC), and the Global Land Cover Facility data set (GLCF). The results indicate that the 30-year mean climatology (and its associated atmospheric CO2 concentration) for the time period immediately preceding the collection date of the observed vegetation data produce the most accurate vegetation simulations when compared with all three observed vegetation data sets. The study also indicates that the BIOME4-simulated vegetation for Asia more closely matches the PNV data than the other two observed vegetation data sets. Given the same observed data, the accuracy assessments of the BIOME4 simulations made using the Kappa, Fuzzy Kappa and Nomad index map-comparison methods agree well when the compared vegetation types consist of a large number of spatially continuous grid cells. The results of this analysis can assist model users in designing experimental protocols for simulating vegetation.  相似文献   

7.
Savannas are ecosystems known for their high environmental and economic value. They cover at least 20% of the global land surface and, in some cases, can act as a boundary between tropical rainforest and deserts. Water is an important determinant of savanna ecosystems.In this paper, we present a theoretical stochastic model of root competition for water, which couples, soil water availability, phenology, and root and shoot architecture applied to three Neotropical savanna grasses. Soil moisture was simulated using a daily balance, as proposed by Rodriguez-Iturbe et al. [Rodriguez-Iturbe, I., Porporato, A., Ridolfi, L., Isham, V., Cox, D.R., 1999. Probabilistic modelling of water balance at a point: the role of climate, soil and vegetation. Proc. R. Soc. London, Ser. A 455, 3789–3805.]. To simulate rainfall stochasticity, we used daily precipitation data from the airport weather station in the State of Barinas, Venezuela, for the period 1991–2007. Competition among neighbouring plants took into account the spatial distribution of the individuals. As a final step, the model allowed us to calculate the shoot dynamic of the species as a function of soil water availability.Using these data, we compared the behaviour of isolated plants, pairs and trios, and we found below-ground competition to be a fundamental component of global (shoot + root) competition. Finally, our model suggests various circumstances that allow poor competitor plants to coexist in competition for water with more successful competitors. Apparently, this is not only due to transpiration rates, but also to differences in shoot emergence and shoot growth.  相似文献   

8.
▪ Overviewed evolution and environmental applications of stabilized nanoparticles. ▪ Reviewed theories on particle stabilization for enhanced reactivity/deliverability. ▪ Examined various in situ remediation technologies based on stabilized nanoparticles. ▪ Summarized knowledge on transport of stabilized nanoparticles in porous media. ▪ Identified key knowledge gaps and future research needs on stabilized nanoparticles. Due to improved soil deliverability and high reactivity, stabilized nanoparticles have been studied for nearly two decades for in situ remediation of soil and groundwater contaminated with organic pollutants. While large amounts of bench- and field-scale experimental data have demonstrated the potential of the innovative technology, extensive research results have also unveiled various merits and constraints associated different soil characteristics, types of nanoparticles and particle stabilization techniques. Overall, this work aims to critically overview the fundamental principles on particle stabilization, and the evolution and some recent developments of stabilized nanoparticles for degradation of organic contaminants in soil and groundwater. The specific objectives are to: 1) overview fundamental mechanisms in nanoparticle stabilization; 2) summarize key applications of stabilized nanoparticles for in situ remediation of soil and groundwater contaminated by legacy and emerging organic chemicals; 3) update the latest knowledge on the transport and fate of stabilized nanoparticles; 4) examine the merits and constraints of stabilized nanoparticles in environmental remediation applications; and 5) identify the knowledge gaps and future research needs pertaining to stabilized nanoparticles for remediation of contaminated soil and groundwater. Per instructions of this invited special issue, this review is focused on contributions from our group (one of the pioneers in the subject field), which, however, is supplemented by important relevant works by others. The knowledge gained is expected to further advance the science and technology in the environmental applications of stabilized nanoparticles.  相似文献   

9.
In a previous paper (Dixon et al., 1978) the ecosystem model, CERES, was described. In this paper an application of CERES is presented to show the versatility of the model and its capability to simulate solute transport. Simulation results for 10 days in May illustrate the hourly patterns of photosynthesis, leaf sugar levels and translocation. A 1-year simulation shows seasonal dynamics of biomass fluxes in plants and litter.The third simulation shows the effects of a lead mine-smelter complex on an oak-hickory forest in southeastern Missouri. Results from a 6-year simulation with CERES coupled with other models in the Unified Transport Model illustrate toxic metal effects on litter decomposition and slight reduction of root growth with the parameters chosen. Heavy metal pollutants from the lead mine and smelter complex were introduced to the ecosystem as wetfall and dryfall. The DRYADS and DIFMAS models calculated the heavy metal uptake by the vegetation and accumulation in litter. During the 6-year period, the steady annual input of plant litter and the reduced decomposition rate resulted in an increase in litter mass of nearly 50%.  相似文献   

10.
Securing adequate safe drinking water and proper sanitation is a major challenge facing the developing world. The “Water for Life Decade” emphasizes the importance of upgrading national water quality and sanitation services. This study assessed the domestic water profile in the city of Beirut. Samples were collected from three types of household water sources (municipality, private wells, and vended water bottles) and assessed for their physiochemical and microbiological profile. At the same time, a cross-sectional survey assessing water consumption patterns and the prevalence of water-borne diseases was conducted. The results showed a deficient water quality profile in all three water sources. The measured physiochemical and bacteriological parameters reflected the high frequency of water-borne diseases. Action to secure a safe domestic water supply is essential. The plan should guarantee the protection of water sources, ensure sufficient treatment of domestic water and upgrade the national program for potable water quality control. Periodic quality monitoring and legislating the chaotic water-vending sector are indispensable. Additionally, the deterioration of private well sources by sea and wastewater infiltration necessitates the enforcement of legislation associated with the use and management of private wells. Consumer awareness and active contributions to promote and protect public health are important.  相似文献   

11.
《Ecological modelling》2005,188(1):76-92
Mechanistic theories of plant competition developed to explain changes in community structure and dynamics along resource availability gradients have been mostly applied to temperate forests and grasslands where light and nutrients are the two main limiting resources. In contrast, the mechanisms underlying the structure and dynamics of water-limited plant communities have been little explored. Also previous mechanistic models rely either on complex simulators, which are difficult to interpret or on simple conceptual models, which ignore too many critical details. In this study, we develop a model of stand dynamics for light and water-limited forests of intermediate complexity and we provide an analytical framework for its analyses. The model is an individual-based simulator that describes the feedback between transpiration, stomatal function and soil water dynamics with asymmetrical competition for light and water. Trees allocate carbon to three main compartments: shoot, stem and roots. We use the model to explore general patterns that may emerge across levels of biological organization from the leaf to the stand. Model predictions are consistent with a number of features of Mediterranean forests structure and dynamics. At the plant-level the leaf-based tradeoff between carbon gain and water loss expresses as a tradeoff between mortality and growth. This tradeoff explains plant morphological changes in above-ground biomass and root to shoot allocation along a water availability gradient. At the community-level, tradeoffs among carbon acquisition and water loss govern the sign of plant interactions along the gradient. Coexistence among morphological types was not observed for the range of parameters and environmental conditions explored. Overall the model provides an unifying explanation for the observed changes in the sign of plant to plant interactions along environmental gradients as well as a process-based formulation that can be linked to empirical studies.  相似文献   

12.
Different P criteria have been set for lotic and lentic waters where the latter had stricter criteria than the former. The binary P criteria have been developed due to differences in limnological features and this helps avoid unneeded costs with stricter criteria for flowing waters that normally have lower potential of algal blooms. However, if different criteria are warranted, the responses of Chl a to TP and TN:TP ratio should vary distinctively between rivers and reservoirs. Contrary to these predictions, inconsistent and statistically indistinguishable variations have been observed between the two types of waterbody in Chl a yield per unit TP. Additionally, there was no significant difference in the strength of relationship between Chl a and TN:TP ratio between waterbody types, although the mass ratio of TN to TP was significantly higher in reservoirs than in rivers. Hence, the data suggest that there is no scientifically defensible reason that lotic and lentic waters require different TP standards and specifically that lentic waters do not necessarily require stricter P criteria. A more holistic and nuanced approach would aid in developing revised or new TP criteria in which water quality issues can be addressed scientifically as well as pragmatically.  相似文献   

13.
CERES is a forest stand growth model which incorporates sugar transport in order to predict both short-term effects and long-term accumulation of trace contaminants and/or nutrients when coupled with the soil chemistry model (SCHEM), and models of solute uptake (DIFMAS and DRYADS) of the Unified Transport Model, UTM. An important feature of CERES is its ability to interface with the soil-plant-atmosphere water model (PROSPER) as a means of both predicting and studying the effects of plant water status on growth and solute transport.CERES considers the biomass dynamics of plants, standing dead and litter with plants divided into leaves, stems, roots, and fruits. The plant parts are divided further into sugar substrate, storage, and in the case of stems and roots, heartwood components.Each ecosystem component is described by a mass balance equation written as a first-order ordinary differential equation.  相似文献   

14.
This paper is the first of three on the coffee production system consisting of (1) the coffee plant, (2) coffee berry borer (CBB) and (3) the role of CBB parasitoids. A previous simulation model of the coffee plant was developed using data from Brazil where coffee phenology is characterized by distinct seasonal flowering (Gutierrez et al., 1998). In contrast, flowering in Colombia is continuous with low seasonality. To capture the differences in coffee phenology and growth in the two climatic regions, the Gutierrez et al. (1998) model was modified using new data from Colombia.The modifications to the model include:
(1)
The effect of solar radiation on floral buds initiation;
(2)
An age structure population model to track the daily input and development of the floral buds;
(3)
The effect of leaf water potential on breaking dormancy in flower buds, and hence on the timing and intensity of flowering;
(4)
The incorporation of both the vegetative and the reproductive demands to predict the photosynthetic rate.
(5)
The effect of low temperature on photosynthesis and defoliation.
Other aspects of the model were re-interpreted and refinements made to generalize its structure for use across coffee varieties and geographic areas. The model, without modification, realistically simulates field data from Brazil and two Colombian locations having different varieties, patterns of rainfall and hence flowering phenology.The model will be used as the base trophic level for incorporating CBB and high tropic levels effects, and for the analysis of management options in the coffee production system.  相似文献   

15.
Restoration of abandoned and degraded ecosystems through enhanced management of mature remnant patches and naturally regenerating (regrowth) forests is currently being used in the recovery of ecosystems for biodiversity protection and carbon sequestration. Knowledge of long-term dynamics of these ecosystems is often very limited. Vegetation models that examine long-term forest growth and succession of uneven aged, mixed-species forest ecosystems are integral to the planning and assessment of the recovery process of biodiversity values and biomass accumulation. This paper examined the use of the Ecosystem Dynamics Simulator (EDS) in projecting growth dynamics of mature remnant brigalow forest communities and recovery process of regrowth brigalow thickets. We used data from 188 long-term monitored plots of remnant and regrowth forests measured between 1963 and 2010. In this study the model was parameterised for 34 tree and shrub species and tested with independent long-term measurements. The model closely approximated actual development trajectories of mature forests and regrowth thickets but some inaccuracies in estimating regeneration through asexual reproduction and mortality were noted as reflected in stem density projections of remnant plots that had a mean of absolute relative bias of 46.2 (±12.4)%. Changes in species composition in remnant forests were projected with a 10% error. Basal area values observed in all remnant plots ranged from 6 to 29 m2 ha−1 and EDS projections between 1966 and 2005 (39 years) were 68.2 (±10.9)% of the observed basal area. Projected live aboveground biomass of remnant plots had a mean of 93.5 (±5.9) t ha−1 compared to a mean of 91.3 (±8.0) t ha−1 observed in the plots. In regrowth thicket, the model produced satisfactory projections of tree density (91%), basal area (89%), height (87%) and aboveground biomass (84%) compared to the observed attributes. Basal area and biomass accumulation in 45-year-old regrowth plots was approximately similar to that in remnant forests but recovery of woody understorey was very slow. The model projected that it would take 95 years for the regrowth to thin down to similar densities observed in original or remnant brigalow forests. These results indicated that EDS can produce relatively accurate projections of growth dynamics of brigalow regrowth forests necessary for informing restoration planning and projecting biomass accumulation.  相似文献   

16.
● High fluorine is mainly HCO3·Cl-Na and HCO3-Na type. ● F decreases with the increase of depth to water table. ● High fluoride is mainly affected by fluorine-containing minerals and weak alkaline. ● Fluorine pollution is mainly in the north near Laizhou Bay (wet season > dry season). ● Groundwater samples have a high F health risk (children > adults). Due to the unclear distribution characteristics and causes of fluoride in groundwater of Mihe-Weihe River Basin (China), there is a higher risk for the future development and utilization of groundwater. Therefore, based on the systematic sampling and analysis, the distribution features and enrichment mechanism for fluoride in groundwater were studied by the graphic method, hydrogeochemical modeling, the proportionality factor between conventional ions and factor analysis. The results show that the fluorine content in groundwater is generally on the high side, with a large area of medium-fluorine water (0.5–1.0 mg/L), and high-fluorine water is chiefly in the interfluvial lowlands and alluvial-marine plain, which mainly contains HCO3·Cl-Na- and HCO3-Na-type water. The vertical zonation characteristics of the fluorine content decrease with increasing depth to the water table. The high flouride groundwater during the wet season is chiefly controlled by the weathering and dissolution of fluorine-containing minerals, as well as the influence of rock weathering, evaporation and concentration. The weak alkaline environment that is rich in sodium and poor in calcium during the dry season is the main reason for the enrichment of fluorine. Finally, an integrated assessment model is established using rough set theory and an improved matter element extension model, and the level of groundwater pollution caused by fluoride in the Mihe-Weihe River Basin during the wet and dry seasons in the Shandong Peninsula is defined to show the necessity for local management measures to reduce the potential risks caused by groundwater quality.  相似文献   

17.
Water chestnut peel, an agricultural bio-waste, was used as a biosorbent for removal of rhodamine B (RhB), basic textile dye, from an aqueous solution. The effects of various experimental parameters were studied. The equilibrium data correlated well with a Freundlich isotherm (R2 = 0.98–0.99) followed by a Halsey isotherm model (R2 = 0.98–0.99) which indicated heterogeneity of the adsorbent surface and multilayer adsorption of RhB dye onto the water chestnut peel waste (WCPW). High correlation coefficients (R2 = 0.99) together with close agreement between experimental qe (0.4–1.7 mg g?1) and calculated qe (0.4–2.5 mg g?1) suggested that the adsorption process followed pseudo-second-order kinetics, with k2 values in the range of 52–3.4 × 10?1 g mg?1 min?1 at different concentrations. The overall mechanism of adsorption was controlled by both liquid-film and intra-particle diffusions. The negative values of change in Gibb's free energy (?ΔG0 = 19.2–29.2 kJ mol?1) and positive values of change in enthalpy (ΔH0 = 30.9–117.6 kJ mol?1) revealed the process to be spontaneous and endothermic. WCPW was found to be an effective adsorbent for removal of RhB, a cationic dye, from an aqueous solution.  相似文献   

18.
Restoration of waterbird diversity and abundance is a key objective of river system management in Australia. Therefore, understanding the effects of climatic and hydrological variables on waterbird population dynamics is fundamental for successful river restoration programs. We investigated the population dynamics of waterbirds (total abundance) and seven functional waterbird groups in the floodplains of lower Murrumbidgee River. We found a general declining abundance trend from 1983 to 2007, except for the deep water foragers. We modelled the relative contribution of the climatic and hydrological factors to waterbird population decrease using the generalized additive model (GAM) framework after identifying the negative binomial distribution. Most of the seven functional groups were positively related to both annual rainfall and water usage, defined as the total water volume intercepted by the river reach, and the models indicated that rainfall was slightly more important. Temperature also played a role in waterbird abundance: the maximum summer temperature negatively influenced the abundance of dabbling ducks, shoreline foragers and fish eaters, while the minimum winter temperature positively affected the abundance of dabbling ducks and shoreline foragers. Overall, our results support the practice of providing environmental water for sustaining waterbird populations. However, environmental water provision is likely to be most effective when timed to coincide with antecedent rainfall.  相似文献   

19.
In this paper, we describe the development of a simulation framework for allocating water from different sources to meet the environmental flows of an urban river. The model permits the development of a rational balance in the utilization of storm water, reclaimed water from wastewater treatment plants, and freshwater from reservoirs with consideration of the limited capacities of different water resources. It is designed to permit the full utilization of unconventional water sources for the restoration of river water quality by increasing river flow and improving water quality. To demonstrate practical use of the model, a case study is presented in which the model was used to simulate the environmental water allocation for the Liming River in Daqing City, China, based on the three water sources mentioned above. The results demonstrate that the model provides an effective approach for helping managers allocate water to satisfy the river’s environmental water requirements.  相似文献   

20.
This work aims at discussing some concepts pertaining to the theory and practice of environmental modelling in view of the results of several model validation exercises performed by the group “Model validation for radionuclide transport in the system watershed-river and in estuaries” of project EMRAS (Environmental Modelling for Radiation Safety) supported by the IAEA (International Atomic Energy Agency). The analyses here performed concern models applied to real scenarios of environmental contamination. In particular, the reasons for the uncertainty of the models and the EBUA (empirically based uncertainty analysis) methodology are discussed. The foundations of multi-model approach in environmental modelling are presented and motivated. An application of EBUA to the results of a multi-model exercise concerning three models aimed at predicting the wash-off of radionuclide deposits from the Pripyat floodplain (Ukraine) was described. Multi-model approach is, definitely, a tool for uncertainty analysis. EBUA offers the opportunity of an evaluation of the uncertainty levels of predictions in multi-model applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号