首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forest productivity is strongly affected by seasonal weather patterns and by natural or anthropogenic disturbances. However weather effects on forest productivity are not currently represented in inventory-based models such as CBM-CFS3 used in national forest C accounting programs. To evaluate different approaches to modelling these effects, a model intercomparison was conducted among CBM-CFS3 and four process models (ecosys, CN-CLASS, Can-IBIS and 3PG) over a 2500 ha landscape in the Oyster River (OR) area of British Columbia, Canada. The process models used local weather data to simulate net primary productivity (NPP), net ecosystem productivity (NEP) and net biome productivity (NBP) from 1920 to 2005. Other inputs used by the process and inventory models were generated from soil, land cover and disturbance records. During a period of intense disturbance from 1928 to 1943, simulated NBP diverged considerably among the models. This divergence was attributed to differences among models in the sizes of detrital and humus C stocks in different soil layers to which a uniform set of soil C transformation coefficients was applied during disturbances. After the disturbance period, divergence in modelled NBP among models was much smaller, and attributed mainly to differences in simulated NPP caused by different approaches to modelling weather effects on productivity. In spite of these differences, age-detrended variation in annual NPP and NEP of closed canopy forest stands was negatively correlated with mean daily maximum air temperature during July-September (Tamax) in all process models (R2 = 0.4-0.6), indicating that these correlations were robust. The negative correlation between Tamax and NEP was attributed to different processes in different models, which were tested by comparing CO2 fluxes from these models with those measured by eddy covariance (EC) under contrasting air temperatures (Ta). The general agreement in sensitivity of annual NPP to Tamax among the process models led to the development of a generalized algorithm for weather effects on NPP of coastal temperate coniferous forests for use in inventory-based models such as CBM-CFS3: NPP′ = NPP − 57.1 (Tamax − 18.6), where NPP and NPP′ are the current and temperature-adjusted annual NPP estimates from the inventory-based model, 18.6 is the long-term mean daily maximum air temperature during July-September, and Tamax is the mean value for the current year. Our analysis indicated that the sensitivity of NPP to Tamax was nonlinear, so that this algorithm should not be extrapolated beyond the conditions of this study. However the process-based methodology to estimate weather effects on NPP and NEP developed in this study is widely applicable to other forest types and may be adopted for other inventory based forest carbon cycle models.  相似文献   

2.
Meeting environmental, economic, and societal targets in energy policy is complex and requires a multicriteria assessment framework capable of exploring trade-offs among alternative energy options. In this study, we integrated economic analysis and biophysical accounting methods to investigate the performance of electricity production in Finland at plant and national level. Economic and environmental costs of electricity generation technologies were assessed by evaluating economic features (direct monetary production cost), direct and indirect use of fossil fuels (GER cost), environmental impact (CO2 emissions), and global environmental support (emergy cost). Three scenarios for Finland's energy future in 2025 and 2050 were also drawn and compared with the reference year 2008. Accounting for an emission permit of 25 €/t CO2, the production costs calculated for CHP, gas, coal, and peat power plants resulted in 42, 67, 68, and 74 €/MWh, respectively. For wind and nuclear power a production cost of 63 and 35 €/MWh were calculated. The sensitivity analysis confirmed wind power's competitiveness when the price of emission permits overcomes 20 €/t CO2. Hydro, wind, and nuclear power were characterized by a minor dependence on fossil fuels, showing a GER cost of 0.04, 0.13, and 0.26 J/Je, and a value of direct and indirect CO2 emissions of 0.01, 0.04, and 0.07 t CO2/MWh. Instead, peat, coal, gas, and CHP plants showed a GER cost of 4.18, 4.00, 2.78, and 2.33 J/Je. At national level, a major economic and environmental load was given by CHP and nuclear power while hydro power showed a minor load in spite of its large production. The scenario analysis raised technological and environmental concerns due to the massive increase of nuclear power and wood biomass exploitation. In conclusion, we addressed the need to further develop an energy policy for Finland's energy future based on a diversified energy mix oriented to the sustainable exploitation of local, renewable, and environmentally friendly energy sources.  相似文献   

3.
Land use change, natural disturbance, and climate change directly alter ecosystem productivity and carbon stock level. The estimation of ecosystem carbon dynamics depends on the quality of land cover change data and the effectiveness of the ecosystem models that represent the vegetation growth processes and disturbance effects. We used the Integrated Biosphere Simulator (IBIS) and a set of 30- to 60-m resolution fire and land cover change data to examine the carbon changes of California's forests, shrublands, and grasslands. Simulation results indicate that during 1951-2000, the net primary productivity (NPP) increased by 7%, from 72.2 to 77.1 Tg C yr−1 (1 teragram = 1012 g), mainly due to CO2 fertilization, since the climate hardly changed during this period. Similarly, heterotrophic respiration increased by 5%, from 69.4 to 73.1 Tg C yr−1, mainly due to increased forest soil carbon and temperature. Net ecosystem production (NEP) was highly variable in the 50-year period but on average equalled 3.0 Tg C yr−1 (total of 149 Tg C). As with NEP, the net biome production (NBP) was also highly variable but averaged −0.55 Tg C yr−1 (total of -27.3 Tg C) because NBP in the 1980s was very low (-5.34 Tg C yr−1). During the study period, a total of 126 Tg carbon were removed by logging and land use change, and 50 Tg carbon were directly removed by wildland fires. For carbon pools, the estimated total living upper canopy (tree) biomass decreased from 928 to 834 Tg C, and the understory (including shrub and grass) biomass increased from 59 to 63 Tg C. Soil carbon and dead biomass carbon increased from 1136 to 1197 Tg C.Our analyses suggest that both natural and human processes have significant influence on the carbon change in California. During 1951-2000, climate interannual variability was the key driving force for the large interannual changes of ecosystem carbon source and sink at the state level, while logging and fire were the dominant driving forces for carbon balances in several specific ecoregions. From a long-term perspective, CO2 fertilization plays a key role in maintaining higher NPP. However, our study shows that the increase in C sequestration by CO2 fertilization is largely offset by logging/land use change and wildland fires.  相似文献   

4.
A process-based crop growth model (Vegetation Interface Processes (VIP) model) is used to estimate crop yield with remote sensing over the North China Plain. Spatial pattern of the key parameter—maximum catalytic capacity of Rubisco (Vcmax) for assimilation is retrieved from Normalized Difference of Vegetation Index (NDVI) from Terra-MODIS and statistical yield records. The regional simulation shows that the agreements between the simulated winter wheat yields and census data at county-level are quite well with R2 being 0.41-0.50 during 2001-2005. Spatial variability of photosynthetic capacity and yield in irrigated regions depend greatly on nitrogen input. Due to the heavy soil salinity, the photosynthetic capacity and yield in coastal region is less than 50 μmol C m−2 s−1 and 3000 kg ha−1, respectively, which are much lower than that in non-salinized region, 84.5 μmol C m−2 s−1 and 5700 kg ha−1. The predicted yield for irrigated wheat ranges from 4000 to 7800 kg ha−1, which is significantly larger than that of rainfed, 1500-3000 kg ha−1. According to the path coefficient analysis, nitrogen significantly affects yield, by which water exerts noticeably indirect influences on yield. The effect of water on yield is regulated, to a certain extent, by crop photosynthetic capacity and nitrogen application. It is believed that photosynthetic parameters retrieved from remote sensing are reliable for regional production prediction with a process-based model.  相似文献   

5.
The impact of 2 × CO2 driven climate change on radial growth of boreal tree species Pinus banksiana Lamb., Populus tremuloides Michx. and Picea mariana (Mill.) BSP growing in the Duck Mountain Provincial Forest of Manitoba (DMPF), Canada, is simulated using empirical and process-based model approaches. First, empirical relationships between growth and climate are developed. Stepwise multiple-regression models are conducted between tree-ring growth increments (TRGI) and monthly drought, precipitation and temperature series. Predictive skills are tested using a calibration–verification scheme. The established relationships are then transferred to climates driven by 1× and 2 × CO2 scenarios using outputs from the Canadian second-generation coupled global climate model. Second, empirical results are contrasted with process-based projections of net primary productivity allocated to stem development (NPPs). At the finest scale, a leaf-level model of photosynthesis is used to simulate canopy properties per species and their interaction with the variability in radiation, temperature and vapour pressure deficit. Then, a top-down plot-level model of forest productivity is used to simulate landscape-level productivity by capturing the between-stand variability in forest cover. Results show that the predicted TRGI from the empirical models account for up to 56.3% of the variance in the observed TRGI over the period 1912–1999. Under a 2 × CO2 scenario, the predicted impact of climate change is a radial growth decline for all three species under study. However, projections obtained from the process-based model suggest that an increasing growing season length in a changing climate could counteract and potentially overwhelm the negative influence of increased drought stress. The divergence between TRGI and NPPs simulations likely resulted, among others, from assumptions about soil water holding capacity and from calibration of variables affecting gross primary productivity. An attempt was therefore made to bridge the gap between the two modelling approaches by using physiological variables as TRGI predictors. Results obtained in this manner are similar to those obtained using climate variables, and suggest that the positive effect of increasing growing season length would be counteracted by increasing summer temperatures. Notwithstanding uncertainties in these simulations (CO2 fertilization effect, feedback from disturbance regimes, phenology of species, and uncertainties in future CO2 emissions), a decrease in forest productivity with climate change should be considered as a plausible scenario in sustainable forest management planning of the DMPF.  相似文献   

6.
A multivariate statistical approach integrating the absolute principal components score (APCS) and multivariate linear regression (APCS-MLR), along with structural equation modeling (SEM), was used to model the influence of water chemistry variables on chlorophyll a (Chl a) in Lake Qilu, a severely polluted lake in southwestern China. Water quality was surveyed monthly from 2000 to 2005. APCS-MLR was used to identify key water chemistry variables, mine data for SEM, and predict Chl a. Seven principal components (PCs) were determined as eigenvalues >1, which explained 68.67% of the original variance. Four PCs were selected to predict Chl a using APCS-MLR. The results showed a good fit between the observed data and modeled values, with R2 = 0.80. For SEM, Chl a and eight variables were used: NH4-N (ammonia-nitrogen), total phosphorus (TP), Secchi disc depth (SD), cyanide (CN), arsenic (As), cadmium (Cd), fluoride (F), and temperature (T). A conceptual model was established to describe the relationships among the water chemistry variables and Chl a. Four latent variables were also introduced: physical factors, nutrients, toxic substances, and phytoplankton. In general, the SEM demonstrated good agreement between the sample covariance matrix of observed variables and the model-implied covariance matrix. Among the water chemistry factors, T and TP had the greatest positive influence on Chl a, whereas SD had the largest negative influence. These results will help researchers and decision-makers to better understand the influence of water chemistry on phytoplankton and to manage eutrophication adaptively in Lake Qilu.  相似文献   

7.
For policy decisions with respect to CO2-mitigation measures in the agricultural sector, national and regional estimations of the efficiency of such measures are required. The conversion of ploughed cropland to zero-tillage is discussed as an option to reduce CO2 emissions and promises at the same time effective soil and water conservation. Based on the upscaling of simulation results with the soil and land resources information system SLISYS-BW, estimations of CO2-mitigation rates in relation to crop rotations and soil type have been made for the state of Baden-Württemberg (Germany). The results indicate considerable differences in the CO2-mitigation rates between crop rotations ranging from 0.48 to 0.03 Mg C ha−1 a−1 for winter cereals–spring cereals–rape rotations and winter cereals–spring cereals–corn silage rotations, respectively. The efficiency of the crop rotations is strongly related to the total carbon input and in particular the amount of crop residues. Among the considered soil types, highest CO2-mitigation rates are associated with Cumulic Anthrosols (0.62 Mg C ha−1 a−1) and the lowest with Gleysols (−0.01 Mg C ha−1 a−1). An agricultural extensification scenario with conventional plowing but conversion of the presently applied intensive crop rotations to a clover–clover–winter cereals rotation indicated a CO2-mitigation potential of 466 Gg C a−1. However, the present high market prices for cereals and increasing demand for energy production from biomass encourages an intensification of the agricultural production and an excessive removal of biomass which in future will seriously reduce the potential for carbon sequestration on cropland.  相似文献   

8.
A simulation study was carried out to investigate simultaneously the effects of eco-physiological parameters on competitive asymmetry, self-thinning, stand biomass and NPP in a temperate forest using an atmosphere–vegetation dynamics interactive model (MINoSGI). In this study, we selected three eco-physiological relevant parameters as foliage profiles (i.e. vertical distribution of leaf area density) of individual trees (distribution pattern is described by the parameter η), biomass allocation pattern in individual tree growth (χ) and the maximum carboxylation velocity (Vmax). The position of the maximal leaf area density shifts upward in the canopy with increasing η. For scenarios with η < 4 (foliage concentrated in the lowest canopy layer) or η > 12 (foliage concentrated in the uppermost canopy layer), a low degree of competitive asymmetry was produced. These scenarios resulted in the survival of subordinate trees due to a brighter lower canopy environment when η < 4 or the generation of spatially separated foliage profiles between dominant and subordinate trees when η > 12. In contrast, competition between trees was most asymmetric when 4 ≤ η ≤ 12 (vertically widespread foliage profile in the canopy), especially when η = 8. In such cases, vertically widespread foliage of dominant trees lowered the opportunity of light acquisition for subordinate trees and reduced their carbon gain. The resulting reduction in carbon gain of subordinate trees yielded a higher degree of competitive asymmetry and ultimately higher mortality of subordinate trees. It was also shown that 4 ≤ η ≤ 12 generated higher self-thinning speed, smaller accumulated NPP, litter-fall and potential stand biomass as compared with the scenarios with η < 4 or η > 12. In contrast, our simulation revealed small effects of χ or Vmax on the above-mentioned variables as compared with those of η. In particular, it is notable that greater Vmax would not produce greater potential stand biomass and accumulated NPP although it has been thought that physiological parameters relevant to photosynthesis such as Vmax influence dynamic changes in forest stand biomass and NPP (e.g. the greater the Vmax, the greater the NPP). Overall, it is suggested that foliage profiles rather than biomass allocation or maximum carboxylation velocity greatly govern forest dynamics, stand biomass, NPP and litter-fall.  相似文献   

9.
A mechanistic semi-empirical carbon cycle model of the La Grande reservoir complex in northern Quebec, Canada was conceived in order to investigate the climate impact of such a large alteration of the continental water cycle. The model includes inputs from the drainage basin, organic matter release from flooded soils, CO2 emissions across the water-atmosphere interface and sedimentation. Most input data stems from previous research by our group on those ecosystems. The model includes the seven reservoirs of the La Grande complex and was run for periods of 50 and 100 years. Terrigeneous dissolved, particulate and suspended soil carbon fluxes and concentrations were computed. Over 100 years, 31.3 × 1012 g C are released from flooded soils, equivalent to 28-29% of inputs from the drainage basin. 40-74% of dissolved organic carbon is mineralized. CO2 fluxes over 100 years are 50.5-79.8 × 1012 g C, 46.4-67.9 × 1012 g C more than in the absence of reservoirs. The increase in mineralization of organic matter and in CO2 emissions is a result of the increase in cumulated water residence time due to the creation of the reservoirs. Changes in other carbon sinks and sources likely offset a part of this additional carbon flux to the atmosphere. In the first years following flooding of the reservoir, organic carbon release from flooded soils exceeds CO2 emissions, implying the downstream export of large quantities of eroded soil organic carbon. After this initial period, CO2 emissions are fuelled by organic carbon originating from the drainage basin.  相似文献   

10.
While it is well established that stomata close during moisture stress, strong correlations among environmental (e.g., vapor pressure deficit, soil moisture, air temperature, radiation) and internal (e.g., leaf water potential, sap flow, root-shoot signaling) variables obscure the identification of causal mechanisms from field experiments. Models of stomatal control fitted to field data therefore suffer from ambiguous parameter identification, with multiple acceptable (i.e., nearly optimal) model structures emphasizing different moisture status indicators and different processes. In an effort to minimize these correlations and improve parameter and process identification, we conducted an irrigation experiment on red maples (Acer rubrum L.) at Harvard Forest (summers of 2005 and 2006). Control and irrigated trees experienced similar radiative and boundary layer forcings, but different soil moisture status, and thus presumably different diurnal cycles of internal leaf water potential. Measured soil moisture and atmospheric forcing were used to drive a transient tree hydraulic model that incorporated a Jarvis-type leaf conductance in a Penman–Monteith framework with a Cowan-type (resistance and capacitance) tree hydraulic representation. The leaf conductance model included dependence on both leaf matric potential, ΨL (so-called feedback control) and on vapor pressure deficit, D (so-called feedforward control). Model parameters were estimated by minimizing the error between predicted and measured sap flow. The whole-tree irrigation treatment had the effect of elevating measured transpiration during summer dry-downs, demonstrating the limiting effect that subsurface resistance may have on transpiration during these times of moisture stress. From the best fitted model, we infer that during dry downs, moisture stress manifests itself in an increase of soil resistance with a resulting decrease in ΨL, leading to both feedforward and feedback controls in the control trees, but only feedforward control for the irrigated set. Increases in the sum-of-squares error when individual model components were disabled allow us to reject the following three null hypotheses: (1) the f(D) stress is statistically insignificant (p = 0.01); (2) the f(ΨL) stress is statistically insignificant (p = 0.07); and (3) plant storage capacitance is independent of moisture status (p = 0.07).  相似文献   

11.
《Ecological modelling》2007,201(2):157-162
Soil respiration was measured with the enclosed chamber method during 2 years in fenced Leymus chinensis steppe, Inner Mongolia, China. Soil water content at 0–10 cm depth was a major limited factor of soil respiration in semi-arid grassland, accounting for 76.4% of the variation. The temperature-dependent exponential function could only explain 38.7% of the variation in soil respiration. With 246 data over the entire experimental period, multiple linear stepwise regressions of soil respiration rate were analyzed with the influencing factors, including soil water content at 0–10 cm depth, air temperature, air pressure, air humidity, total radiation and their interactions. With soil water content at 0–10 cm depth (W) and air temperature (Th) as combined factors, the twice linear regression (F = 1.68WTh  109.09) was simple and its coefficients were significant, accounting for 83.1% of the variation in soil respiration. Due to the lack of long-term and continuous soil water content, a water sub-model based on precipitation and evapotranspiration was introduced, which could provide better fits with the measured values (R2 = 0.813). The magnitudes of soil respiration calculated from the twice linear regression equation and water sub-model were 439.58 and 463.06 g CO2 m−2 in 2001 (19 June–23 September) and in 2002 (1 June–24 September), respectively. The mean hourly soil respiration rates were in the range of the previous studies in the adjacent region and the world's major temperate grasslands.  相似文献   

12.
This article presents results concerning the local calibration of the transport parameters (longitudinal and transversal diffusions and decay coefficient) for a two-dimensional problem of water quality at Igapó I Lake, located in Londrina, Paraná, Brazil, using fecal coliforms as an indicator of water quality. The simulation of fecal coliforms concentrations all over the water body is conducted by means of a structured discretization of the geometry of Igapó I Lake, together with the finite difference and finite element methods. By using the velocity field, modeled by the Navier-Stokes and Poisson equations, the flow of fecal coliforms is described by means of a transport model, which considers advective and diffusive processes, as well as a process of fecal coliforms decay. In the checkpoint, the longitudinal and transversal diffusion coefficients and the coliforms decay coefficient that best fitted the value of the fecal coliforms concentration were Dx = Dy = 0.001 m2/h and k = 0.5 d−1 = 0.02083 h−1. A qualitative and quantitative analysis of the numerical simulations conducted in function of the diffusion coefficients and of the coliforms decay parameter provided a better understanding of the local water quality at Igapó I Lake.  相似文献   

13.
The aim of this work was to test a process-based model (hydrological model combined with forest growth model) on the simulation of seasonal variability of evapotranspiration (ET) in an even-aged boreal Scots pine (Pinus sylvestris L.) stand over a 10 year period (1999-2008). The water flux components (including canopy transpiration (Et) and evaporation from canopy (Ec) and ground surface (Eg) were estimated in order to output the long-term stand water budget considering the interaction between climate variations and stand development. For validation, half-hourly data on eddy water vapor fluxes were measured during the 10 growing seasons (May-September). The model predicted well the seasonal course of ET compared to the measured values, but slightly underestimated the water fluxes both in non-drought and drought (2000, 2003 and 2006) years. The prediction accuracy was, on average, higher in drought years. The simulated ET over the 10 years explained, on average, 58% of the daily variations and 84% of the monthly amount of ET. Water amount from Et contributed most to the ET, with the fractions of Et, Ec and Eg being, on average, 67, 11 and 23% over the 10-year period, respectively. Regardless of weather conditions, the daily ET was strongly dependent on air temperature (Ta) and vapor pressure deficit (Da), but less dependent on soil moisture (Ws). On cloudy and rainy days, there was a non-linear relationship between the ET and solar radiation (Ro). During drought years, the model predicted lower daily canopy stomatal conductance (gcs) compared with non-drought years, leading to a lower level of Et. The modeled daily gcs responded well to Da and Ws. In the model simulation, the annual LAI increased by 35% between 1999 and 2008. The ratio of Ec: ET correlated strongly with LAI. Furthermore, LAI reduced the proportion of Eg as a result of the increased share of Ec and Et and radiation interception. Although the increase of LAI affected positively Et, the contribution of Et in ET was not significantly correlated with LAI. To conclude, although the model predicted reasonably well the seasonal course of ET, the calculation time steps of different processes in the model should be homogenized in the future to increase the prediction accuracy.  相似文献   

14.
Potential evapotranspiration (PET) is an important component of water cycle. For traditional models derived from the principle of aerodynamics and the surface energy balance, its calculation always includes many parameters, such as net radiation, water vapor pressure, air temperature and wind speed. We found that it can be acquired in an easier way in specific regions. In this study, a new PET model (PETP model) derived from two empirical models of soil respiration was evaluated using the Penman-Monteith equation as a standard method. The results indicate that the PETP model estimation concur with the Penman-Monteith equation in sites where annual precipitation ranges from 717.71 mm to 1727.37 mm (R2 = 0.68, p = 0.0002), but show large discrepancies in all sites (R2 = 0.07, p = 0.1280). Then we applied our PETP model at the global scale to the regions with precipitation higher than 700 mm using 2.5° CMAP data to obtain the annual PET for 2006. As expected, the spatial pattern is satisfactory overall, with the highest PET values distributed in the lower latitudes or coastal regions, and with an average of 1292.60 ± 540.15 mm year−1. This PETP model provides a convenient approach to estimate PET at regional scales.  相似文献   

15.
The Brazilian government has already acknowledged the importance of investing in the development and application of technologies to reduce or prevent CO2 emissions resulting from human activities in the Legal Brazilian Amazon (BA). The BA corresponds to a total area of 5 × 106 km2 from which 4 × 106 km2 was originally covered by the rain forest. One way to interfere with the net balance of greenhouse gases (GHG) emissions is to increase the forest area to sequester CO2 from the atmosphere. The single most important cause of depletion of the rain forest is cattle ranching. In this work, we present an effective policy to reduce the net balance of CO2 emissions using optimal control theory to obtain a compromising partition of investments in reforestation and promotion of clear technology to achieve a CO2 emission target for 2020. The simulation indicates that a CO2 emission target for 2020 of 376 million tonnes requires an estimated forest area by 2020 of 3,708,000 km2, demanding a reforestation of 454,037 km2. Even though the regional economic growth can foster the necessary political environment for the commitment with optimal emission targets, the reduction of 38.9% of carbon emissions until 2020 proposed by Brazilian government seems too ambitious.  相似文献   

16.
A high accuracy and speed method (HASM) of surface modelling is developed to find a solution for error problem and to improve computation speed. A digital elevation model (DEM) is established on spatial resolution of 13.5 km × 13.5 km. Regression formulations among temperature, elevation and latitude are simulated in terms of data from 2766 weather observation stations scattered over the world by using the 13.5 km × 13.5 km DEM as auxiliary data. Three climate scenarios of HadCM3 are refined from spatial resolution of 405 km × 270 km to 13.5 km × 13.5 km in terms of the regression formulations. HASM is employed to simulate surfaces of mean annual bio-temperature, mean annual precipitation and potential evapotranspiration ratio during the periods from 1961 to 1990 (T1), from 2010 to 2039 (T2), from 2040 to 2069 (T3), and from 2070 to 2099 (T4) on spatial resolution of 13.5 km × 13.5 km. Three scenarios of terrestrial ecosystems on global level are finally developed on the basis of the simulated climate surfaces. The scenarios show that all polar/nival, subpolar/alpine and cold ecosystem types would continuously shrink and all tropical types, except tropical rain forest in scenario A1Fi, would expand because of the climate warming. Especially at least 80% of moist tundra and 22% of nival area might disappear in period T4 comparing with the ones in the period T1. Tropical thorn woodland might increase by more than 97%. Subpolar/alpine moist tundra would be the most sensitive ecosystem type because its area would have the rapidest decreasing rate and its mean center would shift the longest distance towards west. Subpolar/alpine moist tundra might be able to serve as an indicator of climatic change. In general, climate change would lead to a continuous reduction of ecological diversity.  相似文献   

17.
In this paper, the main factors impacting the plug flow pattern of a clearwell were investigated by integrating pilot-scale, full-scale clearwell tracer testing and computational fluid dynamics (CFD) simulation. It was found that pilot tracer testing, full-scale tracer testing and CFD simulation all demonstrated that the correlation between the ratio of t 10/T and L/W can be approximately expressed by: t 10/T = 0.189 4ln(L/W)-0.049 4. This study confirmed that the installation of baffles within clearwells is an efficient way to optimize their configuration. In addition, the inlet velocity has a minimal contribution to the ratio of t 10/T. However, the ratio of turning channel width to channel width (d/W) significantly contributes to the ratio of t 10/T. The optimal ratio of d/W is 0.8–1.2 for maintaining better plug flow pattern. The number of turning channels is one of the main factors that impact the ratio of t 10/T. When increasing the number of turning channels, a lower ratio of t 10/T is obtained.  相似文献   

18.
Artificial neural networks are used to select a minimal set of input variables to model water vapour and carbon exchange of coniferous forest ecosystems, independently of tree species and without detailed physiological information. Neural networks are used because of their power to fit highly non-linear relations between input and output-variables. Radiation, temperature, vapour pressure deficit and time of the day showed to be the dynamic input variables that determine ecosystem water fluxes. The same variables, together with projected leaf area index are needed for modelling CO2-fluxes. The results for the individual sites show that the neural networks found mean water and carbon flux responses to the driving variables valid for all sites. The sensitivity analysis of the derived neural networks shows that the LAI-effect of the CO2-flux model is overfitted because of the low variability of LAI. However, the predictions of CO2-fluxes of sites not included in the calibration set indicate that the LAI-response of the network is reliable and that results can be used as a first estimate of the net ecosystem carbon exchange of the forest sites. Independent predictions of forest ecosystem vapour fluxes were equally satisfying as empirical models specifically calibrated for the individual sites. The results indicate that both short term water and carbon fluxes of European coniferous forests can be modelled without using detailed physiological and site specific information.  相似文献   

19.
Spatially and temporally distributed information on the sizes of biomass carbon (C) pools (BCPs) and soil C pools (SCPs) is vital for improving our understanding of biosphere-atmosphere C fluxes. Because the sizes of C pools result from the integrated effects of primary production, age-effects, changes in climate, atmospheric CO2 concentration, N deposition, and disturbances, a modeling scheme that interactively considers these processes is important. We used the InTEC model, driven by various spatio-temporal datasets to simulate the long-term C-balance in a boreal landscape in eastern Canada. Our results suggested that in this boreal landscape, mature coniferous stands had stabilized their productivity and fluctuated as a weak C-sink or C-source depending on the interannual variations in hydrometeorological factors. Disturbed deciduous stands were larger C-sinks (NEP2004 = 150 gC m−2 yr−1) than undisturbed coniferous stands (e.g. NEP2004 = 8 gC m−2 yr−1). Wetlands had lower NPP but showed temporally consistent C accumulation patterns. The simulated spatio-temporal patterns of BCPs and SCPs were unique and reflected the integrated effects of climate, plant growth and atmospheric chemistry besides the inherent properties of the C pool themselves. The simulated BCPs and SCPs generally compared well with the biometric estimates (BCPs: r = 0.86, SCPs: r = 0.84). The largest BCP biases were found in recently disturbed stands and the largest SCP biases were seen in locations where moss necro-masses were abundant. Reconstructing C pools and C fluxes in the ecosystem in such a spatio-temporal manner could help reduce the uncertainties in our understanding of terrestrial C-cycle.  相似文献   

20.
Two models, artificial neural network (ANN) and multiple linear regression (MLR), were developed to estimate typical grassland aboveground dry biomass in Xilingol River Basin, Inner Mongolia, China. The normalized difference vegetation index (NDVI) and topographic variables (elevation, aspect, and slope) were combined with atmospherically corrected reflectance from the Landsat ETM+ reflective bands as the candidate input variables for building both models. Seven variables (NDVI, aspect, and bands 1, 3, 4, 5 and 7) were selected by the ANN model (implemented in Statistica 6.0 neural network module), while six (elevation, NDVI, and bands 1, 3, 5 and 7) were picked to fit the MLR function after a stepwise analysis was executed between the candidate input variables and the above ground dry biomass. Both models achieved reasonable results with RMSEs ranging from 39.88% to 50.08%. The ANN model provided a more accurate estimation (RMSEr = 39.88% for the training set, and RMSEr = 42.36% for the testing set) than MLR (RMSEr = 49.51% for the training, and RMSEr = 53.20% for the testing). The final above ground dry biomass maps of the research area were produced based on the ANN and MLR models, generating the estimated mean values of 121 and 147 g/m2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号